Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 23;67(Pt 12):m1814–m1815. doi: 10.1107/S1600536811048914

Tris(1,10-phenanthroline-κ2 N,N′)nickel(II) bis­(2,4,5-tricarb­oxy­benzo­ate) monohydrate

Kai-Long Zhong a,*, Chao Ni a, Ming-Yi Qian a
PMCID: PMC3238718  PMID: 22199595

Abstract

In the title compound, [Ni(C12H8N2)3](C10H5O8)2·H2O, the NiII cation is coordinated by six N atoms of the three bidentate chelating 1,10-phenanthroline ligands in a slightly distorted octa­hedral coordination geometry. The Ni—N bond lengths range from 2.074 (2) to 2.094 (2) Å. The dihedral angles between the three chelating NCCN groups to each other are 85.71 (3), 73.75 (2) and 85.71 (3)°, respectively. The Ni cation, the phenyl ring of the 1,10-phenanthroline ligand and the lattice water molecule are located on special positions (site symmetry 2). In the crystal, the uncoordinated 2,4,5-tricarb­oxy­benzeno­ate anions join with each other through O—H⋯O hydrogen bonds, forming a two-dimensional hydrogen-bonded layer structure along the bc plane. The layers are further linked via additional O—H⋯O inter­actions between water and carboxyl groups, resulting in a three-dimensional supra­molecular network.

Related literature

For structures of complexes with six-coordinate nickel atoms and background references, see: Li et al. (2003); Fu et al. (2004); Fabelo et al. (2008); Zhong et al. (2009); Ni et al. (2010). For background to phenanthroline complexes, see: Wang & Zhong (2011); Zhu et al. (2006); Cui et al. (2010); Zhong (2011a ,b ,c ). graphic file with name e-67-m1814-scheme1.jpg

Experimental

Crystal data

  • [Ni(C12H8N2)3](C10H5O8)2·H2O

  • M r = 1123.62

  • Monoclinic, Inline graphic

  • a = 24.2009 (11) Å

  • b = 14.1546 (5) Å

  • c = 15.8347 (7) Å

  • β = 116.271 (5)°

  • V = 4864.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.49 mm−1

  • T = 295 K

  • 0.40 × 0.40 × 0.30 mm

Data collection

  • Oxford Diffraction Xcalibur Sapphire3 Gemini ultra diffractometer

  • Absorption correction: multi-scan (ABSPACK; Oxford Diffraction, 2009) T min = 0.829, T max = 0.868

  • 12270 measured reflections

  • 4977 independent reflections

  • 3050 reflections with I > 2σ(I)

  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.054

  • S = 1.02

  • 4977 reflections

  • 369 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.42 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811048914/bq2318sup1.cif

e-67-m1814-sup1.cif (26.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811048914/bq2318Isup2.hkl

e-67-m1814-Isup2.hkl (243.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O5i 0.82 1.87 2.690 (2) 177
O1—H5⋯O6ii 0.82 1.81 2.624 (2) 173
O7—H7⋯O6 0.82 1.63 2.4450 (19) 178
O1W—H1WA⋯O2iii 0.80 (2) 2.10 (3) 2.866 (3) 158 (4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported by the Scientific Research Foundation of Nanjing College of Chemical Technology (grant No. NHKY-2010–17).

supplementary crystallographic information

Comment

1,10-Phenanthroline (Phen) and 1,2,4,5-Benzenetetracarboxylate have also been widely employed as polydentate ligands in coordination reactions and in the construction of supermolecular networks (Li et al., 2003; Fu et al., 2004; Fabelo et al., 2008). Recently we have synthesized and reported many metal-Phen complexes such as cadmium complexe (Zhong, 2011a), cobalt complexes (Wang & Zhong, 2011), copper complexes (Zhong 2011b,c), nickel complexes (Zhong et al., 2009; Ni et al., 2010), manganese complex (Zhu et al., 2006), and zinc complex (Cui et al., 2010). The title compound [Ni(C12H8N2)3](C10H5O8)2.H2O, (I) was obtained unintentionally during an attempt to synthesize a mixed-ligand complex of NiII with Phen and 1,2,4,5-benzenetetracarboxylate ligand via a hydrothermal (solvothermal) reaction. The crystal structure of (I), has not hitherto been reported.

X-ray diffraction indicated that the title compound, (I), has the Ni2+ metal ion in a slightly distorted octahedral coordination geometry. The NiII atom is bonded by six N atoms of the three bidentate chelating 1,10-phenanthroline ligands. In the cation of [Ni(phen)3]2+, the Ni—N bond distances range from 2.074 (2) Å to 2.094 (2) Å and the N—Ni—N bite angles [80.02 (7)–79.49 (9)°] (see Table 1), which are similar to the reported literature values (Zhong et al., 2009; Ni et al., 2010). The dihedral angles between the neighbor two chelating NCCN groups is 85.71 (3)°, 73.75 (2)° and 85.71 (3)°, respectively. A twofold rotation axis (symmetry code: -x + 2, y, -z + 3/2) passes through the Ni atom and the phenyl ring of 1,10-phenanthroline. In the crystal structure, the uncoordinated trihydrogen-1,2,4,5-benzenetetracarboxylate anions (C10H5O8-) connected to each other by intermolecular O—H···O H-bonds through carboxylic acid to form a two-dimensional hydrogen-bonded layer structure along bc plane. The adjacent layers are further linked via additional water O–H···O carboxyl hydrogen interactions, forming a three-dimensional supramolecular network structure.

Experimental

0.1 mmol NiSO4.7H2O, 0.1 mmol phen, 0.1 mmol 1,2,4,5-Benzenetetracarboxylic acid and 3.0 ml water were mixed and placed in a thick Pyrex tube, which was sealed and heated to 423 K for 96 h, whereupon orange block-shaped crystals of (I) were obtained.

Refinement

The H atoms of Phen and trihydrogen-1,2,4,5-benzenetetracarboxylate were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å; O—H = 0.82 Å and Uiso(H) = 1.2Ueq(C); Uiso(H) = 1.5Ueq(O). The H atoms of water were located in difference map and then allowed to ride on their parent atoms, with O—H = 0.81 Å and 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

The unit of (I), showing the atom-numbering scheme and with displacement ellipsoids drawn at the 35% probability level. Unlabeled atoms of [Ni(C12H8N2)3]2+ and C10H5O8- anion are related to the labeled atoms by the symmetry operator -x + 2, y, -z + 3/2 and -x + 3/2, -y + 3/2, -z + 1, respectively.

Fig. 2.

Fig. 2.

Hydrogen-bonding interaction of (I), viewed along the a axis. Dashed lines indicate hydrogen bonds. All cations [Ni(C12H8N2)3]2+ and water molecules have been omitted for clarity.

Fig. 3.

Fig. 3.

The packing, viewed down the b axis. Dashed lines indicate hydrogen bonds. All cations [Ni(C12H8N2)3]2+ have been omitted for clarity.

Crystal data

[Ni(C12H8N2)3](C10H5O8)2·H2O F(000) = 2312
Mr = 1123.62 Dx = 1.534 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 4069 reflections
a = 24.2009 (11) Å θ = 2.8–29.2°
b = 14.1546 (5) Å µ = 0.49 mm1
c = 15.8347 (7) Å T = 295 K
β = 116.271 (5)° Block, orange
V = 4864.0 (4) Å3 0.40 × 0.40 × 0.30 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur Sapphire3 Gemini ultra diffractometer 4977 independent reflections
Radiation source: Enhance (Mo) X-ray Source 3050 reflections with I > 2σ(I)
graphite Rint = 0.037
Detector resolution: 15.9149 pixels mm-1 θmax = 26.4°, θmin = 2.9°
ω scans h = −30→29
Absorption correction: multi-scan (ABSPACK; Oxford Diffraction, 2009) k = −14→17
Tmin = 0.829, Tmax = 0.868 l = −14→19
12270 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.054 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0092P)2] where P = (Fo2 + 2Fc2)/3
4977 reflections (Δ/σ)max < 0.001
369 parameters Δρmax = 0.52 e Å3
3 restraints Δρmin = −0.42 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 1.0000 0.31042 (3) 0.7500 0.03040 (12)
N1 1.02407 (7) 0.21222 (12) 0.67422 (11) 0.0312 (5)
N2 0.91737 (7) 0.30145 (13) 0.62879 (11) 0.0326 (4)
N3 0.97131 (7) 0.42419 (13) 0.80545 (10) 0.0318 (5)
O1 0.68321 (7) 0.46426 (12) 0.52192 (11) 0.0511 (4)
H5 0.7152 0.4948 0.5473 0.077*
O1W 0.5000 0.5789 (3) 0.2500 0.1201 (14)
H1WA 0.4734 (13) 0.541 (2) 0.223 (3) 0.169 (19)*
O2 0.59675 (7) 0.46988 (12) 0.39080 (11) 0.0560 (5)
O3 0.70784 (6) 0.44147 (11) 0.35063 (10) 0.0452 (4)
O4 0.74751 (8) 0.53534 (11) 0.27810 (12) 0.0556 (5)
H4 0.7555 0.4850 0.2603 0.083*
O5 0.73100 (7) 0.86793 (11) 0.28224 (11) 0.0593 (5)
O6 0.71141 (6) 0.94807 (11) 0.38534 (10) 0.0459 (4)
O7 0.64163 (8) 0.93250 (12) 0.45856 (13) 0.0661 (5)
H7 0.6652 0.9388 0.4344 0.099*
O8 0.60196 (8) 0.81822 (13) 0.50512 (13) 0.0807 (6)
C1 1.07715 (9) 0.16650 (16) 0.69809 (14) 0.0398 (6)
H1 1.1077 0.1718 0.7597 0.048*
C2 1.08895 (10) 0.11114 (17) 0.63505 (17) 0.0456 (6)
H2 1.1267 0.0809 0.6543 0.055*
C3 1.04430 (10) 0.10193 (16) 0.54458 (17) 0.0424 (6)
H3 1.0517 0.0658 0.5016 0.051*
C4 0.98738 (9) 0.14703 (15) 0.51668 (15) 0.0344 (6)
C5 0.93748 (11) 0.13995 (16) 0.42380 (15) 0.0437 (6)
H9 0.9429 0.1063 0.3775 0.052*
C6 0.88307 (10) 0.18152 (17) 0.40309 (14) 0.0456 (6)
H8 0.8508 0.1735 0.3433 0.055*
C7 0.87341 (10) 0.23763 (16) 0.47020 (14) 0.0347 (6)
C8 0.81794 (10) 0.28303 (17) 0.45171 (15) 0.0481 (7)
H10 0.7846 0.2781 0.3925 0.058*
C9 0.81285 (10) 0.33462 (17) 0.52063 (17) 0.0483 (7)
H11 0.7759 0.3641 0.5093 0.058*
C10 0.86370 (10) 0.34262 (16) 0.60827 (15) 0.0416 (6)
H12 0.8598 0.3785 0.6545 0.050*
C11 0.92208 (9) 0.24801 (15) 0.56050 (14) 0.0284 (5)
C12 0.97938 (8) 0.20154 (15) 0.58436 (13) 0.0287 (5)
C13 0.94314 (9) 0.42376 (17) 0.86098 (14) 0.0423 (6)
H13 0.9339 0.3659 0.8795 0.051*
C14 0.92679 (10) 0.50594 (19) 0.89267 (17) 0.0535 (7)
H14 0.9068 0.5024 0.9311 0.064*
C15 0.94016 (10) 0.59170 (18) 0.86711 (16) 0.0543 (7)
H15 0.9296 0.6470 0.8882 0.065*
C16 0.97025 (9) 0.59569 (17) 0.80814 (15) 0.0383 (6)
C17 0.98481 (8) 0.50971 (16) 0.77988 (13) 0.0288 (5)
C18 0.98564 (9) 0.68215 (17) 0.77834 (14) 0.0504 (7)
H18 0.9760 0.7392 0.7978 0.061*
C19 0.66694 (8) 0.59686 (16) 0.41710 (14) 0.0303 (5)
C20 0.64826 (8) 0.67726 (16) 0.44598 (14) 0.0365 (6)
H20 0.6259 0.6701 0.4805 0.044*
C21 0.66067 (9) 0.76847 (16) 0.42678 (14) 0.0302 (5)
C22 0.69433 (8) 0.77913 (15) 0.37392 (13) 0.0273 (5)
C23 0.71376 (8) 0.69725 (17) 0.34589 (12) 0.0280 (5)
H23 0.7367 0.7037 0.3122 0.034*
C24 0.70075 (8) 0.60660 (16) 0.36553 (13) 0.0270 (5)
C25 0.71945 (9) 0.51885 (18) 0.33192 (14) 0.0325 (6)
C26 0.64675 (11) 0.50354 (17) 0.44011 (17) 0.0394 (6)
C27 0.63255 (10) 0.84283 (18) 0.46660 (17) 0.0454 (6)
C28 0.71315 (9) 0.87133 (16) 0.34430 (16) 0.0351 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.0374 (2) 0.0251 (3) 0.0303 (2) 0.000 0.01641 (19) 0.000
N1 0.0359 (10) 0.0267 (13) 0.0322 (10) 0.0028 (9) 0.0161 (9) 0.0017 (9)
N2 0.0349 (10) 0.0291 (12) 0.0354 (10) 0.0031 (9) 0.0171 (9) 0.0028 (10)
N3 0.0416 (10) 0.0303 (13) 0.0327 (10) −0.0019 (9) 0.0248 (9) 0.0017 (10)
O1 0.0665 (11) 0.0350 (12) 0.0542 (10) −0.0138 (9) 0.0289 (10) 0.0063 (10)
O1W 0.112 (3) 0.062 (3) 0.127 (3) 0.000 −0.001 (3) 0.000
O2 0.0499 (10) 0.0400 (12) 0.0752 (12) −0.0150 (9) 0.0251 (10) 0.0019 (11)
O3 0.0644 (10) 0.0244 (10) 0.0554 (10) 0.0035 (9) 0.0343 (9) 0.0033 (9)
O4 0.0908 (12) 0.0336 (11) 0.0732 (12) 0.0046 (10) 0.0643 (10) −0.0030 (10)
O5 0.1064 (13) 0.0326 (11) 0.0727 (11) −0.0077 (10) 0.0704 (11) 0.0013 (10)
O6 0.0653 (10) 0.0225 (9) 0.0604 (10) −0.0061 (8) 0.0373 (9) −0.0044 (9)
O7 0.0981 (14) 0.0290 (12) 0.1078 (15) 0.0010 (11) 0.0788 (12) −0.0063 (12)
O8 0.1316 (15) 0.0434 (13) 0.1301 (16) −0.0002 (12) 0.1151 (14) −0.0050 (13)
C1 0.0394 (13) 0.0362 (17) 0.0406 (13) 0.0039 (12) 0.0147 (12) −0.0007 (13)
C2 0.0487 (15) 0.0356 (17) 0.0616 (16) 0.0055 (13) 0.0327 (14) −0.0006 (15)
C3 0.0641 (16) 0.0268 (15) 0.0555 (16) −0.0045 (13) 0.0438 (15) −0.0063 (14)
C4 0.0463 (14) 0.0269 (15) 0.0367 (13) −0.0076 (11) 0.0246 (13) −0.0005 (12)
C5 0.0723 (17) 0.0308 (16) 0.0377 (14) −0.0149 (14) 0.0331 (15) −0.0078 (13)
C6 0.0570 (15) 0.0426 (18) 0.0281 (12) −0.0147 (14) 0.0106 (12) −0.0014 (14)
C7 0.0457 (14) 0.0275 (15) 0.0303 (13) −0.0064 (12) 0.0163 (12) 0.0056 (12)
C8 0.0427 (15) 0.046 (2) 0.0409 (14) −0.0040 (13) 0.0051 (12) 0.0069 (14)
C9 0.0388 (14) 0.0433 (19) 0.0552 (15) 0.0050 (12) 0.0141 (14) 0.0066 (15)
C10 0.0451 (14) 0.0346 (17) 0.0469 (15) 0.0052 (12) 0.0220 (13) 0.0028 (13)
C11 0.0390 (13) 0.0206 (14) 0.0283 (12) −0.0020 (10) 0.0175 (11) 0.0025 (11)
C12 0.0374 (12) 0.0224 (14) 0.0297 (12) −0.0040 (11) 0.0180 (11) 0.0014 (11)
C13 0.0556 (14) 0.0351 (17) 0.0463 (14) −0.0044 (13) 0.0318 (13) 0.0006 (14)
C14 0.0743 (17) 0.046 (2) 0.0668 (17) 0.0042 (15) 0.0549 (15) −0.0026 (17)
C15 0.0809 (17) 0.0329 (17) 0.0708 (17) 0.0069 (15) 0.0533 (16) −0.0060 (16)
C16 0.0501 (14) 0.0302 (16) 0.0444 (14) 0.0013 (12) 0.0298 (13) −0.0029 (13)
C17 0.0332 (13) 0.0258 (14) 0.0302 (13) −0.0002 (10) 0.0165 (11) −0.0007 (12)
C18 0.0761 (17) 0.0225 (14) 0.0686 (18) 0.0042 (13) 0.0465 (14) −0.0031 (15)
C19 0.0350 (12) 0.0241 (14) 0.0345 (13) −0.0021 (11) 0.0177 (11) −0.0004 (12)
C20 0.0473 (13) 0.0304 (16) 0.0461 (13) −0.0033 (12) 0.0338 (12) −0.0007 (14)
C21 0.0369 (12) 0.0248 (15) 0.0339 (12) 0.0003 (11) 0.0201 (11) −0.0010 (12)
C22 0.0313 (12) 0.0238 (15) 0.0258 (12) −0.0019 (10) 0.0117 (10) 0.0007 (11)
C23 0.0308 (11) 0.0329 (15) 0.0235 (11) −0.0006 (11) 0.0149 (9) −0.0003 (12)
C24 0.0332 (12) 0.0230 (14) 0.0256 (11) 0.0025 (10) 0.0136 (10) −0.0012 (11)
C25 0.0355 (13) 0.0333 (16) 0.0285 (13) 0.0013 (12) 0.0140 (11) −0.0007 (13)
C26 0.0517 (16) 0.0263 (16) 0.0506 (16) 0.0014 (13) 0.0320 (15) −0.0006 (15)
C27 0.0636 (16) 0.0265 (16) 0.0581 (16) 0.0019 (13) 0.0380 (14) −0.0019 (15)
C28 0.0419 (13) 0.0239 (14) 0.0392 (14) 0.0008 (11) 0.0176 (12) 0.0037 (11)

Geometric parameters (Å, °)

Ni1—N2i 2.0740 (15) C6—C7 1.426 (3)
Ni1—N2 2.0740 (15) C6—H8 0.9300
Ni1—N1 2.0809 (16) C7—C8 1.398 (3)
Ni1—N1i 2.0809 (16) C7—C11 1.401 (2)
Ni1—N3i 2.0943 (17) C8—C9 1.363 (3)
Ni1—N3 2.0943 (17) C8—H10 0.9300
N1—C1 1.335 (2) C9—C10 1.393 (3)
N1—C12 1.362 (2) C9—H11 0.9300
N2—C10 1.326 (2) C10—H12 0.9300
N2—C11 1.365 (2) C11—C12 1.426 (2)
N3—C13 1.330 (2) C13—C14 1.392 (3)
N3—C17 1.361 (2) C13—H13 0.9300
O1—C26 1.324 (2) C14—C15 1.363 (3)
O1—H5 0.8200 C14—H14 0.9300
O1W—H1WA 0.80 (2) C15—C16 1.417 (3)
O2—C26 1.210 (2) C15—H15 0.9300
O3—C25 1.200 (2) C16—C17 1.395 (3)
O4—C25 1.324 (2) C16—C18 1.419 (3)
O4—H4 0.8200 C17—C17i 1.433 (3)
O5—C28 1.237 (2) C18—C18i 1.357 (3)
O6—C28 1.276 (2) C18—H18 0.9300
O7—C27 1.304 (3) C19—C20 1.375 (3)
O7—H7 0.8200 C19—C24 1.395 (2)
O8—C27 1.200 (2) C19—C26 1.508 (3)
C1—C2 1.394 (3) C20—C21 1.389 (3)
C1—H1 0.9300 C20—H20 0.9300
C2—C3 1.366 (3) C21—C22 1.411 (2)
C2—H2 0.9300 C21—C27 1.532 (3)
C3—C4 1.400 (3) C22—C23 1.395 (3)
C3—H3 0.9300 C22—C28 1.523 (3)
C4—C12 1.402 (2) C23—C24 1.389 (3)
C4—C5 1.435 (3) C23—H23 0.9300
C5—C6 1.344 (3) C24—C25 1.498 (3)
C5—H9 0.9300
N2i—Ni1—N2 172.98 (11) C9—C10—H12 118.5
N2i—Ni1—N1 95.24 (6) N2—C11—C7 122.64 (18)
N2—Ni1—N1 80.02 (7) N2—C11—C12 117.26 (18)
N2i—Ni1—N1i 80.02 (7) C7—C11—C12 120.10 (19)
N2—Ni1—N1i 95.24 (6) N1—C12—C4 123.05 (18)
N1—Ni1—N1i 96.17 (9) N1—C12—C11 117.05 (18)
N2i—Ni1—N3i 94.15 (6) C4—C12—C11 119.90 (18)
N2—Ni1—N3i 91.25 (6) N3—C13—C14 123.0 (2)
N1—Ni1—N3i 92.43 (6) N3—C13—H13 118.5
N1i—Ni1—N3i 170.00 (7) C14—C13—H13 118.5
N2i—Ni1—N3 91.25 (6) C15—C14—C13 119.6 (2)
N2—Ni1—N3 94.15 (6) C15—C14—H14 120.2
N1—Ni1—N3 170.00 (7) C13—C14—H14 120.2
N1i—Ni1—N3 92.44 (6) C14—C15—C16 119.3 (2)
N3i—Ni1—N3 79.49 (9) C14—C15—H15 120.3
C1—N1—C12 117.49 (17) C16—C15—H15 120.3
C1—N1—Ni1 129.83 (14) C17—C16—C15 117.0 (2)
C12—N1—Ni1 112.40 (13) C17—C16—C18 120.33 (19)
C10—N2—C11 117.75 (17) C15—C16—C18 122.7 (2)
C10—N2—Ni1 129.68 (15) N3—C17—C16 123.54 (18)
C11—N2—Ni1 112.50 (12) N3—C17—C17i 117.22 (11)
C13—N3—C17 117.48 (19) C16—C17—C17i 119.24 (13)
C13—N3—Ni1 129.48 (16) C18i—C18—C16 120.44 (12)
C17—N3—Ni1 113.03 (12) C18i—C18—H18 119.8
C26—O1—H5 109.5 C16—C18—H18 119.8
C25—O4—H4 109.5 C20—C19—C24 118.5 (2)
C27—O7—H7 109.5 C20—C19—C26 117.07 (18)
N1—C1—C2 123.10 (19) C24—C19—C26 124.4 (2)
N1—C1—H1 118.5 C19—C20—C21 124.15 (19)
C2—C1—H1 118.5 C19—C20—H20 117.9
C3—C2—C1 119.1 (2) C21—C20—H20 117.9
C3—C2—H2 120.4 C20—C21—C22 117.8 (2)
C1—C2—H2 120.4 C20—C21—C27 111.71 (17)
C2—C3—C4 119.9 (2) C22—C21—C27 130.5 (2)
C2—C3—H3 120.1 C23—C22—C21 117.7 (2)
C4—C3—H3 120.1 C23—C22—C28 115.15 (18)
C3—C4—C12 117.33 (19) C21—C22—C28 127.2 (2)
C3—C4—C5 123.7 (2) C24—C23—C22 123.67 (17)
C12—C4—C5 118.92 (19) C24—C23—H23 118.2
C6—C5—C4 120.6 (2) C22—C23—H23 118.2
C6—C5—H9 119.7 C23—C24—C19 118.2 (2)
C4—C5—H9 119.7 C23—C24—C25 123.52 (19)
C5—C6—C7 121.9 (2) C19—C24—C25 118.3 (2)
C5—C6—H8 119.1 O3—C25—O4 124.2 (2)
C7—C6—H8 119.1 O3—C25—C24 121.9 (2)
C8—C7—C11 117.5 (2) O4—C25—C24 113.8 (2)
C8—C7—C6 124.0 (2) O2—C26—O1 120.6 (2)
C11—C7—C6 118.55 (19) O2—C26—C19 121.8 (2)
C9—C8—C7 119.8 (2) O1—C26—C19 117.2 (2)
C9—C8—H10 120.1 O8—C27—O7 120.0 (2)
C7—C8—H10 120.1 O8—C27—C21 119.7 (2)
C8—C9—C10 119.2 (2) O7—C27—C21 120.2 (2)
C8—C9—H11 120.4 O5—C28—O6 122.7 (2)
C10—C9—H11 120.4 O5—C28—C22 117.9 (2)
N2—C10—C9 123.1 (2) O6—C28—C22 119.40 (19)
N2—C10—H12 118.5
N2i—Ni1—N1—C1 −3.79 (18) Ni1—N1—C12—C11 −7.6 (2)
N2—Ni1—N1—C1 −178.55 (18) C3—C4—C12—N1 0.2 (3)
N1i—Ni1—N1—C1 −84.29 (18) C5—C4—C12—N1 179.90 (19)
N3i—Ni1—N1—C1 90.60 (18) C3—C4—C12—C11 −179.05 (18)
N3—Ni1—N1—C1 126.5 (4) C5—C4—C12—C11 0.6 (3)
N2i—Ni1—N1—C12 −177.45 (13) N2—C11—C12—N1 1.8 (3)
N2—Ni1—N1—C12 7.79 (13) C7—C11—C12—N1 −177.96 (19)
N1i—Ni1—N1—C12 102.05 (14) N2—C11—C12—C4 −178.87 (17)
N3i—Ni1—N1—C12 −83.05 (13) C7—C11—C12—C4 1.3 (3)
N3—Ni1—N1—C12 −47.1 (4) C17—N3—C13—C14 0.6 (3)
N2i—Ni1—N2—C10 128.53 (18) Ni1—N3—C13—C14 179.91 (17)
N1—Ni1—N2—C10 176.55 (19) N3—C13—C14—C15 −0.5 (4)
N1i—Ni1—N2—C10 81.19 (18) C13—C14—C15—C16 0.4 (4)
N3i—Ni1—N2—C10 −91.19 (18) C14—C15—C16—C17 −0.3 (3)
N3—Ni1—N2—C10 −11.64 (19) C14—C15—C16—C18 179.9 (2)
N2i—Ni1—N2—C11 −54.87 (13) C13—N3—C17—C16 −0.5 (3)
N1—Ni1—N2—C11 −6.84 (13) Ni1—N3—C17—C16 180.00 (16)
N1i—Ni1—N2—C11 −102.20 (13) C13—N3—C17—C17i 179.96 (18)
N3i—Ni1—N2—C11 85.41 (14) Ni1—N3—C17—C17i 0.5 (3)
N3—Ni1—N2—C11 164.96 (13) C15—C16—C17—N3 0.4 (3)
N2i—Ni1—N3—C13 −85.57 (16) C18—C16—C17—N3 −179.79 (19)
N2—Ni1—N3—C13 89.94 (16) C15—C16—C17—C17i 179.9 (2)
N1—Ni1—N3—C13 143.9 (3) C18—C16—C17—C17i −0.3 (4)
N1i—Ni1—N3—C13 −5.50 (16) C17—C16—C18—C18i 0.4 (4)
N3i—Ni1—N3—C13 −179.55 (19) C15—C16—C18—C18i −179.9 (2)
N2i—Ni1—N3—C17 93.81 (14) C24—C19—C20—C21 0.3 (3)
N2—Ni1—N3—C17 −90.68 (14) C26—C19—C20—C21 −177.1 (2)
N1—Ni1—N3—C17 −36.8 (4) C19—C20—C21—C22 0.3 (3)
N1i—Ni1—N3—C17 173.87 (14) C19—C20—C21—C27 178.78 (19)
N3i—Ni1—N3—C17 −0.18 (10) C20—C21—C22—C23 −1.1 (3)
C12—N1—C1—C2 1.6 (3) C27—C21—C22—C23 −179.2 (2)
Ni1—N1—C1—C2 −171.78 (16) C20—C21—C22—C28 179.9 (2)
N1—C1—C2—C3 −0.6 (3) C27—C21—C22—C28 1.7 (3)
C1—C2—C3—C4 −0.7 (3) C21—C22—C23—C24 1.3 (3)
C2—C3—C4—C12 0.8 (3) C28—C22—C23—C24 −179.49 (18)
C2—C3—C4—C5 −178.8 (2) C22—C23—C24—C19 −0.8 (3)
C3—C4—C5—C6 176.8 (2) C22—C23—C24—C25 177.38 (18)
C12—C4—C5—C6 −2.8 (3) C20—C19—C24—C23 −0.1 (3)
C4—C5—C6—C7 3.0 (3) C26—C19—C24—C23 177.1 (2)
C5—C6—C7—C8 179.3 (2) C20—C19—C24—C25 −178.30 (19)
C5—C6—C7—C11 −1.0 (3) C26—C19—C24—C25 −1.2 (3)
C11—C7—C8—C9 −0.2 (3) C23—C24—C25—O3 179.5 (2)
C6—C7—C8—C9 179.5 (2) C19—C24—C25—O3 −2.4 (3)
C7—C8—C9—C10 1.2 (3) C23—C24—C25—O4 −2.7 (3)
C11—N2—C10—C9 −0.8 (3) C19—C24—C25—O4 175.48 (17)
Ni1—N2—C10—C9 175.62 (17) C20—C19—C26—O2 83.8 (3)
C8—C9—C10—N2 −0.6 (3) C24—C19—C26—O2 −93.4 (3)
C10—N2—C11—C7 1.8 (3) C20—C19—C26—O1 −89.2 (2)
Ni1—N2—C11—C7 −175.25 (16) C24—C19—C26—O1 93.6 (2)
C10—N2—C11—C12 −177.99 (18) C20—C21—C27—O8 −2.9 (3)
Ni1—N2—C11—C12 5.0 (2) C22—C21—C27—O8 175.3 (2)
C8—C7—C11—N2 −1.3 (3) C20—C21—C27—O7 177.2 (2)
C6—C7—C11—N2 179.00 (18) C22—C21—C27—O7 −4.5 (4)
C8—C7—C11—C12 178.51 (18) C23—C22—C28—O5 15.8 (3)
C6—C7—C11—C12 −1.2 (3) C21—C22—C28—O5 −165.12 (18)
C1—N1—C12—C4 −1.4 (3) C23—C22—C28—O6 −162.56 (18)
Ni1—N1—C12—C4 173.10 (15) C21—C22—C28—O6 16.5 (3)
C1—N1—C12—C11 177.87 (17)

Symmetry codes: (i) −x+2, y, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O4—H4···O5ii 0.82 1.87 2.690 (2) 177.
O1—H5···O6iii 0.82 1.81 2.624 (2) 173.
O7—H7···O6 0.82 1.63 2.4450 (19) 178.
O1W—H1WA···O2iv 0.80 (2) 2.10 (3) 2.866 (3) 158 (4)

Symmetry codes: (ii) −x+3/2, y−1/2, −z+1/2; (iii) −x+3/2, −y+3/2, −z+1; (iv) −x+1, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2318).

References

  1. Cui, J.-D., Zhong, K.-L. & Liu, Y.-Y. (2010). Acta Cryst. E66, m564. [DOI] [PMC free article] [PubMed]
  2. Fabelo, O., Pason, J., Lloret, F., Julve, M. & Ruiz-Perez, C. (2008). Inorg. Chem. 47, 3568–3576. [DOI] [PubMed]
  3. Fu, Y.-L., Ren, J.-L. & Ng, S. W. (2004). Acta Cryst. E60, m1716–m1718.
  4. Li, Y., Hao, N., Lu, Y., Wang, E., Kang, Z. & Hu, C. (2003). Inorg. Chem. 42, 3119–3124. [DOI] [PubMed]
  5. Ni, C., Zhong, K.-L. & Cui, J.-D. (2010). Acta Cryst. E66, m746–m747. [DOI] [PMC free article] [PubMed]
  6. Oxford Diffraction (2009). ABSPACK and CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Wang, S.-J. & Zhong, K.-L. (2011). Acta Cryst. E67, m446. [DOI] [PMC free article] [PubMed]
  9. Zhong, K.-L. (2011a). Acta Cryst. E67, m1609–m1610. [DOI] [PMC free article] [PubMed]
  10. Zhong, K.-L. (2011b). Z. Kristallogr. New Cryst. Struct. 226, 286–288.
  11. Zhong, K.-L. (2011c). Acta Cryst. E67, m1215–m1216. [DOI] [PMC free article] [PubMed]
  12. Zhong, K.-L., Ni, C. & Wang, J.-M. (2009). Acta Cryst. E65, m911. [DOI] [PMC free article] [PubMed]
  13. Zhu, Y.-M., Zhong, K.-L. & Lu, W.-J. (2006). Acta Cryst. E62, m2688–m2689.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811048914/bq2318sup1.cif

e-67-m1814-sup1.cif (26.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811048914/bq2318Isup2.hkl

e-67-m1814-Isup2.hkl (243.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES