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Abstract
We assess performance in the structure refinement category in CASP9. Two years after CASP8,
the performance of the best groups has not improved. There are few groups that improve any of
our assessment scores with statistical significance. Some predictors, however, are able to
consistently improve the physicality of the models. Although we cannot identify any clear
bottleneck to improving refinement, several points arise: (1) The refinement portion of CASP has
too few targets to make many statistically meaningful conclusions. (2) Predictors are usually very
conservative, limiting the possibility of large improvements in models. (3) No group is actually
able to correctly rank their five submissions—indicating that potentially better models may be
discarded. (4) Different sampling strategies work better for different refinement problems; there is
no single strategy that works on all targets. In general, conservative strategies do better, while the
greatest improvements come from more adventurous sampling–at the cost of consistency.
Comparison with experimental data reveals aspects not captured by comparison to a single
structure. In particular, we show that improvement in backbone geometry does not always mean
better agreement with experimental data. Finally, we demonstrate that even given the current
challenges facing refinement, the refined models are useful for solving the crystallographic phase
problem through molecular replacement.

1 Introduction
We review here the performance of the 32 research groups who participated in the
refinement category in CASP9. This is the third round of the CASP refinement experiment
and second time within the main CASP framework (the first being in CASP8 [1]). The
refinement experiment is a blind test taking place just after the main structure prediction
portion of CASP. For selected targets, the best models submitted during the template-based
modeling (TBM) category are assigned as refinement targets. Along with the model and
sequence, the predictors are sometimes given a series of hints regarding where problematic
regions are and how accurate the starting model is.

Refinement is different from other categories in CASP and what would normally be called
refinement in the literature [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16] in that the
refinement structures have already been refined during the TBM portion of CASP. The best
TBM predictors are already able to add value, on average, to the single best template [17].
Here, predictors are trying to take this to the next level.
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In short, the most substantial improvements from the CASP9 refinement experiment are in
improved physicality of the models. Improving the global positioning of the backbone
remains a challenge and few groups were successful at this. The small size of the experiment
—only 14 targets—leads to very few results that are statistically significant.

We find that no group correctly rank-orders its models. So, even when predictors generate
an improved model, they may not know it.

The relative performance of different groups depends on the target protein. There is
currently no best strategy that works uniformly across targets.

We also compare the predicted structures directly with experimental data. We find that
improvement in the position of the backbone is only partially correlated with the
experimental data, which illustrates the difficulty in assessing refinement predictions.
Finally, we show that despite all of the challenges facing refinement, the refined models are
useful as input for solving the crystallographic phase problem through molecular
replacement.

2 Targets used for refinement in CASP9
There were 14 targets available for refinement in CASP9. Targets were selected by the
CASP organizers using the following criteria: (1) they should be relatively small domains;
(2) the area to be refined should, ideally, be free of crystal or oligomeric contacts; (3) the
experimental group who determined the structure is able to offer a further three week
extension—in addition to the usual three week prediction window—before the release of the
experimental structure. Table 1 shows the targets for refinement in CASP9.

The predictors were provided with hints. Predictors were told the GDT-TS (see Section
3.2.1 for definition) of the starting model and were told which groups of residues needed
refinement (“Focus” column in Table 1). The specificity of the advice varied. Sometimes
only the specified residues needed to be changed; in other cases, changes to additional
residues were required.

Some of the refinement targets were problematic for two reasons: (1) some starting models
are already close enough to the experimental structures that small changes are not clear
improvements within the protein’s thermal ensemble, and (2) some of the structures have
oligomeric or crystal contacts. We found several examples that we believe may be
problematic, but for completeness we include the results for all targets.

In order to determine which starting models may be too close to the crystal structure, we
generated a thermal ensemble around the crystal structure and then checked to see if the
starting model fell within this ensemble. We generated the thermal ensemble by performing
molecular dynamics simulations starting from the crystal structure. We used a current
forcefield (parm99sb [18]) and explicit water (TIP3P [19]) in the AMBER10 software
package [20]. We performed constant-temperature (300K) molecular dynamics for 10 ns.
The first 5 ns was discarded as equilibration and we calculated the RMSD between each
snapshot of the final 5 ns and the starting model. For most targets the thermal ensemble is
near the experimental structure, far from the starting model, and usually far from most of the
predictions. For such targets, it is meaningful to attempt refinement.

However, for target TR592, we believe it was not meaningful to attempt refinement of the
backbone. On average, the thermal ensemble for this target is as far away from the starting
model as from the experimental structure, and no further than 2Å in any case. The closest
any structure from the ensemble gets to the experimental or starting model structure is also
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about the same (between 1.2 and 1.8 Å). Thus, we don’t believe there is value added in
attempting to refine the backbone of this particular target since it is already within the native
thermal ensemble (Figure 1). It is, however, possible that other non-backbone aspects of the
structure may be improved through refinement.

We examined four structures for potential crystal packing problems: TR517, TR567, TR576,
and TR592. For target TR517, the residues targeted for refinement are at the interface with
another monomer from the asymmetric unit. However, analysis of the predictions shows that
several groups were able to improve the structure without knowledge of the interaction
partners. Indeed, inspection of the thermal ensemble for this structure in its monomeric form
(data not shown) reveals the structure to be very stable, indicating that contacts with
neighbor residues may not be needed to hold the structure in place.

TR567 is a special case, as the presence of crystal contacts stabilize the N-terminus in an
alpha helical secondary structure. Without the other monomers in the unit cell, the end of
this helix sticks out into empty space and is not stable in the MD ensemble (Figure 2). The
conformations of the N- and C-termini represent the largest deviations between the starting
model and the native structure—accounting for most of the low starting GDT-HA. The
predictors were not told to refine the problematic helical region. Instead, they were asked to
refine two other regions that are very similar in the starting model and the native structure.
Thus, we feel this target is problematic for two reasons: (1) the regions to refine are already
very close to native and within the thermal ensemble; (2) the end of the N-terminal helix is
not is not stable and changes in this helix may mask improvements in the focus region.

The packing issues appear to be more severe for TR576 (Figure 3) where there are two kinds
of interactions: β-sheet stabilization within the biological unit dimer and also β-sheet
stabilization between monomers in the asymmetric unit. Both kinds of interactions happen
around the same focus area of the protein and determine the position of three β-sheets, thus
pulling along the position of other secondary structure elements out of place. Final
refinement of this structure is tightly coupled to the identification of these contacts. The fact
that this target is the most difficult refinement target to improve (Figure 6) corroborates the
importance of these contacts in the determination of the native state.

Finally, TR592 could have been problematic, but the prediction center identified and
trimmed off the problematic portion of the structure.

With the exception of TR576 and TR567, we feel that the refinement challenges posed by
the prediction center are relatively unaffected by crystal packing.

3 Data Analysis
3.1 Filtering

Due to our use of all-atom scoring functions and the difficulty in normalizing the scores for
predictions of different lengths, we excluded some predictions from our analysis. The
predictors were given a model to use as the starting point for their refinement. Accordingly,
any prediction missing more than one residue or ten heavy atoms relative to the starting
model was excluded from our calculations. In total, 50 of 1615 predictions were excluded.
The MIDWAYHUMAN group had the most predictions excluded (25 of 60). Overall, only 3
of 34 groups (including MIDWAYHUMAN) had more than five predictions excluded.

We do not feel that there is a way to fairly evaluate these structures in the context of the all-
atom measures we use. The results for these predictions will still be available on the
Prediction Center website, but they are not included in any of the analysis in this paper.

MacCallum et al. Page 3

Proteins. Author manuscript; available in PMC 2012 August 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



3.2 Metrics used for evaluation
We measure the qualities of predicted structures using both global and local measures. We
use GDT-HA and RMSD, which are measures of the global positioning of the C-alpha
atoms. We use GDC-SC as a global measure of sidechain positioning. We use
SphereGrinder as a local all-atom measure of structural similarity. Finally, we use
MolProbity as a local measure of the physical reasonableness of the structure. We use a
weighted average Z-score to combine these five scores into a single overall score for each
prediction.

3.2.1 GDT-HA—GDT-HA is a global measure of the fraction of C-alpha atoms that are
positioned correctly [21]. GDT-HA is similar to GDT-TS, which has been a standard
assessment tool in previous CASPs. Both GDT-TS and GDT-HA are based on multiple
superpositions of the predicted and experimental structure. The difference between the two
scores is in the cutoffs used for these superpositions. GDT-HA uses cutoffs of 0.5, 1, 2, and
4 Å, while GDT-TS uses 1, 2, 4, and 8 Å. As a result, GDT-HA is more sensitive to small
errors. GDT-HA and GDT-TS are strongly correlated (Figure S1), so we chose to only use
GDT-HA in our analysis.

3.2.2 RMSD—We assessed the root-mean-squared deviation (RMSD) of the C-alpha
positions. Like GDT-HA, the RMSD is a global measure of the correct positioning of the C-
alpha atoms. GDT-HA and RMSD are only weakly correlated (Figure S2) because unlike
GDT-HA, RMSD is based on a single superposition and RMSD lacks any kind of distance
cutoff. These differences make RMSD more sensitive to large changes in the position of a
few atoms.

3.2.3 GDC-SC—We use GDC-SC [22] as a global measure of the correct positioning of
the sidechains. GDC-SC is similar to GDT-HA, but uses a single characteristic atom near
the end of each sidechain rather than the C-alpha atoms. GDC-SC also uses different
weighting of ten different super-positions (rather than four as with GDT-HA), although it is
otherwise conceptually similar.

3.2.4 SphereGrinder—SphereGrinder is a recently introduced all-atom score that
measures the local environment around each residue. For each residue in the experimental
structure, we consider the set of atoms within 6 Å of the C-alpha atom and perform an all-
atom RMSD fit between the experimental and predicted structures using only the atoms
within this sphere. We then calculate the fraction of atoms inside the sphere that are within 2
Å of their experimental counterparts. This gives a per-residue score, which is then averaged
over all residues to obtain the SphereGrinder score for the structure.

3.2.5 MolProbity—MolProbity is an all-atom measure of the physical correctness of a
structure based on statistical analysis of high-resolution protein crystal structures [23].
MolProbity is sensitive to steric clashes, rotamer outliers, and Ramachandran outliers. High-
resolution protein crystal structures contain very few defects of these types. We use a
combination of these terms, defined as the MPscore [22, 23]. Unlike the other scoring
measures we use, MolProbity is not native-centric, i.e. the native structure is not required to
calculate it. As such, MolProbity could be used by groups in the prediction stage to improve
the physicality of their models. We believe that having physically believable models is
important, particularly at the high accuracy end of structure prediction.

3.3 Normalizing and combining scores
Better values of GDT-HA, GDC-SC, and SphereGrinder are indicated by higher scores.
Better values of RMSD and MolProbity are indicated by lower scores. We report
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improvement in these scores rather than raw values, so that more positive scores are always
better.

In order to efficiently compare between different groups, targets, and scores, a normalized
measure is needed. Z-scores are often used for this purpose; However, the presence of
outliers can skew the results. To minimize the influence of outliers, we use a robust version
of the Z-score based on the median and median absolute deviation (MAD) of the median,
rather than the mean and standard deviation (Equations 1 and 2).

For a given target, we calculate the median absolute deviation using:

(1)

Here, xi is the set of all scores of one type (e.g. GDT-HA) for a particular target. The
notation mediani (xi) denotes the median of this set of scores and | · |is the absolute value.
The robust Z-scores are then calculated as:

(2)

The factor of 1.4826 scales the MAD to be the same as the standard deviation for a normal
distribution.

To combine the results for all five scores into a single overall score, we use a weighted
average of the five scores, where GDT-HA is given a weight of 4 (Equation 3). GDT-HA
makes up half of the overall score, while the other four measures make up the remaining
half. As we noted in our assessment of refinement in CASP8 [1], such a weighting is
arbitrary and changing the weighting factors would emphasize different aspects of
refinement and will change the rankings of different groups.

(3)

3.4 The “Null” group
As a control, we created an additional prediction group—the “Null” group—where we did
nothing to the starting model. Groups that perform worse than the Null group have made the
starting model worse rather than better.

There were two starting models for target TR614. In this case, our model for the Null group
was to randomly choose the two starting models with equal probability. Thus, the expected
value for each of refinement measure is simply the mean of the values for the two starting
models.

The performance of each group was compared to the Null group using the Wilcoxon signed-
rank test using p = 0.05. The Wilcoxon test is similar to a paired t-test, but it does make any
underlying assumption of the normality of the distributions being compared. Figure 5 shows
that due to the small number of targets, the distributions for the individual groups differ
substantially from normal distributions.
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3.5 Selection of predictions
Each group was asked to submit up to five predictions rank ordered from best to worst. We
perform one set of analysis using only Model 1, which is the model that the predictor
believes is the best. Due to the inability of groups to correctly rank their structures, we
performed a second set of analysis, where for each target we select the best model (as judged
by overall score) from each group. We refer to this as “cherry-picking”. The cherry-picked
results may or may not be useful depending on the specific application of refinement. For
example, as we discuss later, when using structure predictions as models for molecular
replacement[24, 25], it is possible to try many different models and use the one that agrees
best with experimental data. In this case, the ability to rank order the models is desirable—
but not required. Other applications, such as a very expensive physics based free-energy
calculations [26], may be too computationally demanding to perform on more than one
model.

Ideally, our assessment would use Model 1 exclusively, but since predictors cannot correctly
identify their best models, we feel it is reasonable to evaluate the best models.
Unfortunately, this rewards predictors who employ a “safety-net” strategy of always
submitting at least one model that is very close to the starting model. The assessors view this
as an undesirable strategy, but we note that we do not see evidence of the wide-spread
adoption of this strategy. In order to avoid bias when measuring improvement between
CASP experiments or deciding who “won” refinement in CASP9, we feel it is important to
use only the Model 1 results. This is the fairest measure of comparison and does not reward
safety-net strategies.

4 Results and discussion
4.1 Overall results

Figure 4 shows the overall performance of refinement in CASP9 across all targets and all
models from all groups. Some scores are improved more frequently than others. For
example, improvement in the global position of the backbone atoms—as judged by GDT-
HA—is observed in less than 25 percent of all predictions. Even in cases where GDT-HA is
improved, the improvement is typically modest. In contrast, the physicality of the models—
as judged by MolProbity—is improved in nearly 50 percent of all predictions. Clearly, the
predictors are better at improving physicality than at improving the backbone positioning.
This suggests that improvements can be made in the future by focusing method development
on global search techniques that can improve the overall fold, rather than on local search
techniques that can improve the physicality of the models.

The distributions in Figure 4 are multimodal, which indicates that not all targets are equally
easy to refine and that not all groups are equally good at refinement. It is also clear that the
best improvements are not large enough. The worst starting GDT-HA is 35, so the largest
possible improvement would be 65. The largest improvement we actually observe, however,
is only about 15. We will show later that the predictors are too conservative overall and that
for most groups there is little chance of such a large GDT-HA improvement.

If we focus on the top ten groups (Figure 5), we observe that different groups perform better
at different aspects of refinement. The distributions for each group are multimodal due to
variations between targets. We see interesting variations between groups. For example,
compared to the BAKER group, several groups (e.g. KNOWMIN) have higher average
GDT-HA and more frequently improve GDT-HA. However, when the BAKER group
improves GDT-HA it is often by a larger amount.
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Figure 5 also illustrates the difficulty of formulating an overall score. Different groups excel
at different aspects of refinement and changing the relative importance of the different
scores will clearly change the ordering of the groups.

Different aspects of refinement are easier in some targets than in others (Figure 6). Different
targets will be easier or harder for different groups depending on what aspect needs to be
improved. We believe that one way to improve refinement in the future is to combine
algorithms with different specialties in a smart way, so that the composite algorithm is better
than its individual constituents.

We have spent considerable effort trying to understand why a particular target is easy or
hard, but we have been unable to reach any compelling conclusions. After assessing both
CASP8 and CASP9, we cannot predict whether one particular target will be easy or hard.
For example, target TR592 has the highest starting GDT-HA (74.1), while target TR574 has
one of the lowest (39.7). We expected to see some difference in how often and by how much
these initial models were improved. However, Figure 6 shows that these two structures are
approximately in the middle of the range of improvement. In our view, this inability to
predict target difficulty is one of the most pressing questions in the field at the moment. If
we do not know what is hard about the problem, how can we hope to improve? When we
examine the relationship between the starting value of any of the scores and the predictors’
ability to improve the starting model (not shown), we can find few convincing correlations
of any kind. The only clear trend is that it is easy to improve the MolProbity score when it is
initially very bad—a rather trivial conclusion. We note, however, that the inability to predict
difficulty may not be true for individual groups. We are examining global results across all
groups. It could be that individual groups may be able to better predict how well their
strategy will work for a given target. For example, the KNOWMIN group has demonstrated
better performance when the GDT-HA of the starting model is higher [2]. With only 14
refinement targets—and many groups not even attempting all targets—it is difficult for us to
assess the difficulty for individual groups in a reliable way.

4.2 Group Performance: Model One
Figure 7 shows the overall results for each group considering only Model 1. The most
striking feature is the lack of statistical significance. No group is significantly better than the
Null group for Overall Score, GDT-HA, RMSD, or SphereGrinder. The BAKER group is
able to consistently improve GDC-SC and many groups are able to improve MPScore. We
believe that the MPscore is likely to be the easiest aspect of refinement to improve, although
this may not be true for every prediction method. This observation also applies to the
standard template-based modeling portion of CASP. If the TBM predictors begin to improve
the physicality of their models, the refinement category will become more difficult and
relative performance of different groups will change.

The lack of statistical significance is not surprising given the small number of targets. This
is obvious if we consider a simplified version of the Wilcoxon test, called the sign test. Here,
we only count the number of times that a group improves or worsens the starting model
while ignoring the magnitude. The null hypothesis is that a particular group will will
improve or worsen each target with equal probability, which leads to a binomial distribution.
The null hypothesis for 14 targets is the same as flipping a fair coin 14 times. We achieve a
statistically significant p-value of 0.05 only when 11 out of 14 trials come up heads—it’s
relatively easy to get 9 or 10 heads. So, in order for the results for a group to be statistically
significant, the group would have to improve a given metric 11 or more times out of 14.
None of the groups in CAPS9 is that consistent, so almost none of the results are significant.
The Wilcoxon test is more sophisticated and takes the magnitudes into account, but the
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intuition is still the same. There are a small number of targets, so a group must be very
consistent to be distinguishable from Null.

4.3 Group Performance: Cherry-Picked
Figure 8 shows the results for each group considering the cherry-picked best models for
each target. There are now a few statistically significant positive results. BAKER,
KNOWMIN, FOLDIT, LEE, and FEIG are significantly better than the Null group for at
least one score.

One of the groups to improve more under “cherry-picking” is the KNOWMIN group, due to
large (relative to other predictions) improvements in GDT-HA. Virtually every group has
better better performance when we cherry-pick models, illustrated by a shift to the right of
Figure 8 compared to Figure 7.

One striking observation is that even after cherry-picking the best overall models for each
group, only two groups are significantly better than the Null group. The rest are either
indistinguishable from (20 groups) or worse than the Null group (10 groups).

4.4 Ranking
We observed a significant improvement in scores when cherry-picking the best models from
each group, which indicates that the predictors have difficulty ranking their models. Figure 9
compares the ability of each group to rank their submissions with their performance on
cherry-picked GDT-HA. There are few groups that are able to rank order their structures
better than random. However, the few successes don’t necessarily reflect an improvement in
the ranking ability. With the exception of ZHANG, all of the groups that excelled at ranking
actually made the starting model worse on average. Only the ZHANG group was able to
improve GDT-HA and rank order their models. Upon examining the predictions in detail,
however, it is clear that some groups used different sampling strategies for their five models.
This appears true for the ZHANG group, where their Model 1 follows a conservative
strategy and is always less than 1 Å from the starting model. Their Model 2 seems to also
correspond to a conservative approach, while the rest of their predictions are more
“adventurous”. We feel that the ZHANG group’s ability to rank order their submissions
reflects that they know that their Model 1 submission can never be much worse than the
starting model, instead of knowing that some prediction is an improvement.

In discussions with several groups, we also discovered that they had produced models that
were better than those submitted. This is further evidence that the groups have difficulty
ranking their predictions. Of course, this information is unavailable to us during the
assessment. In the future, it might be helpful if predictors were able to submit a large
ensemble of models—in addition to the usual five rank ordered ones. The assessors could
use this set of additional models to separate sampling from scoring. That is, to separate the
problem into two questions: (1) Can we make better models? (2) Can we tell when we
generate them?

The issues between ranking, scoring, and sampling are not clear cut. The fact that groups
cannot rank order models does not necessarily mean that there are problems with scoring
functions. We don’t expect to see a linear—or even monotonic—relationship between the
scoring function and some measure of how geometrically accurate the model is—like GDT-
HA or RMSD. In particular, for a “physical” energy function, we don’t expect the energy to
go down much until the structure is very close to native. If a structure changes from 5 to 4 Å
the energy will not necessarily go down. Further, even if the backbone atoms were all in the
correct location, the energy will not go down unless the sidechains and all of the other
details of the system are also correct. This constitutes a sampling problem, not a scoring
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problem. Ultimately, the issues of sampling, scoring, and ranking are intertwined, which
makes it difficult to understand what improvements are required for refinement to become
more successful.

4.5 Breadth of sampling
Figure 10 shows the relationship between the breadth of sampling and improvement in
GDT-HA for all predictions from the top ten groups. Even considering only the best groups,
the average prediction is worse than the starting model (the GDT-HA Improvement is
skewed to negative values). Most of the predictions are conservative. Approximately 50
percent of the predictions have a GDT-HA to template of 75 or higher. In contrast, 6 of 14
targets have a starting model that has a GDT-HA of less than 50. Half of the targets require
changes more than 50 GDT-HA to be correct, but only 12 percent of the submitted
structures have a GDT-HA to template of below 50.

From the predictions of the top groups we can distinguish several kinds of strategies (not
shown). Some predictors (e.g. KNOWMIN) are conservative. Their predictions are close to
each other and are relatively close to the starting model. Other predictors (e.g. BAKER) are
more adventurous. Their predictions still generally cluster together, but they are farther from
the starting model. A number of groups appear to use a mixture of these two strategies (e.g.
ZHANG). Here the predictions are often quite different from one another. Some of the
predictions remain close to the starting model, while others are much farther away.

Depending on the target each strategy has its own strengths and weaknesses. For example,
conservative strategies almost never make the starting model much worse. However, they
will never produce a dramatic improvement in some structures because they do not sample
broadly enough. More adventurous search strategies have the potential of finding large
improvements, but also have challenges because the size of the search space increases
rapidly as the breadth of sampling is increased. There are many more structures that must be
sampled and more structures that must be correctly rank ordered—which, as we have seen,
is a challenge. This is illustrated by comparing the results for BAKER and KNOWMIN in
Figure 5. The distributions for KNOWMIN are narrower and the results more consistent,
while the best improvements for BAKER are larger, but the overall results are less
consistent.

We chose three structures of increasing difficulty (TR569, TR557, and TR624) to serve as
case studies to demonstrate the successes and pitfalls of different sampling strategies.

Target TR569 (Figure 11) is the easiest of the three targets. The starting model is largely
correct, but a loop is slightly misplaced and two short β-strands do not have the correct
geometry. Even though TR569 is the target for which the most groups improved GDT-HA,
less than half of the predictions were an improvement over the starting model (Figure 6). We
expect that increasing the secondary structure around the loop region, should greatly
improve the stability of the resulting structure. The amount of sampling required is not as
large as for other targets since no changes in topology are required. The success in this target
might also be due to scoring functions becoming more useful very close to the native
structure. Multiple kinds of search strategies perform well here.

In contrast, target TR557 poses a more difficult challenge because it requires rearrangement
of two β-sheets into an alpha helix (Figure 12). Few groups were able to capture this and the
ones that did had the helix in a completely wrong orientation. This target is significantly
challenging to local sampling strategies. Few groups were able to capture the change in
secondary structure (BILAB-SOLO, RECOMBINEIT, ZHOU-SPARKS-X), although the
resulting orientation of the helix was wrong. We suspect that these algorithms found
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additional reference templates and were able to bypass the problems of having to disrupt the
β-sheet—which would be very unfavorable—to then reform an alpha helix.

Target TR624 was especially challenging because large movements of two β-hairpins were
required. One of the hairpins must tilt “up” whereas the other must tilt “down”, thus
interchanging the position of the refined areas. This is an example where local sampling
cannot accomplish much because independently each of the hairpins is in its correct
secondary structure. This conformational change was only solved by a few groups (Figure
13). Sampling such a large conformational change requires an adventurous search strategy.
However, often such strategies make unrelated parts of the model worse (e.g BILAB-solo,
marked B in Figure 13), thus masking the positive aspects of their sampling strategy. Only
the FOLDIT and BAKER groups managed this interchange resulting in large GDT-HA
improvements.

The issues of sampling and scoring are intertwined. It is possible that the predictors sampled
a wider range of structures, but did not score them in the top 5. Again, it would be beneficial
if predictors could submit a much larger ensemble of structures to help the assessors
separate the issues of sampling and scoring.

4.6 Improvement since CASP8
As with the template-based modeling portion of CASP[27], it is very difficult to judge
improvement in refinement compared to previous CASPs. It does not appear that there has
been a significant step forward in refinement since CASP8. However, it is hard to assess if
there has been any small improvement because it would be masked by the fact that targets
change from year to year and we have no way of assessing target difficulty. Also, we judge
the improvement from models that have already been refined during the TBM category. As
the TBM methods improve, there should be less room for improvement, or at least, new
strategies for refinement should be used. Finally, the small number of targets means that it
would be virtually impossible to establish statistically significant improvement since
CASP8.

If we focus on the top group (BAKER, at least by our overall score) in both CASP8 and
CASP9 and examine their average cherry-picked GDT-HA values in both competitions, we
find that the BAKER group actually did worse in CASP9. Did they change strategies or
were the targets more difficult? Are the original templates better refined during TBM during
CASP9? Or, is this just statistical noise? There are few targets and the variances of the
scores are large. Since there’s no single strategy that works on all targets, the problems to be
solved during refinement on such a small set of targets might favor one strategy over
another.

Overall, if there is any improvement since CASP8, it is hard to detect. Since potential
improvements to prediction algorithms are obscured by changes in evaluation
methodologies and targets, the field would benefit from the registration and use of old
versions of the refinement codes. This will make it easier to measure progress. We also
suggest that the Prediction Center and the CASP organizers work with the predictors to
select one or more reference algorithms from the top performing CASP groups that can be
frozen in their current state and used as a benchmark to gauge improvement. It is also clear
that the refinement category needs more targets if statistically meaningful conclusions are to
be drawn.
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5 Comparison with experimental data
Proteins are flexible molecules. Flexibility is often crucial for a protein’s biological role [28,
29, 30]. Currently, this information is not taken into account during CASP assessment. Any
flexible regions are not included in the assessment and proteins are parsed into domains. We
believe a potentially better way to deal with flexibility is to quantify how well the predicted
models reproduce the experimental data. That is to say, are groups submitting predictions
compatible with the experimental information we have available? We have followed a
similar procedure as in the last CASP [1] by comparing to either the NMR information
coming from nuclear Overhauser effect data [31, 32] or by doing molecular replacement
likelihood analysis [24, 25] on X-ray structures. We have found only partial correlation
between experimental results and GDT-HA, further showing the difficulty in choosing one
metric alone as the gold standard to evaluate model similarity. Finally, we show that
refinement is useful for producing structures that are used as input for molecular
replacement.

5.1 Comparison with NMR data
Direct comparison with NMR data is valuable for two reasons. First, NMR is an ensemble
experiment and and the experimental data capture the flexibility of the entire ensemble.
Second, NMR experiments are performed near biologically relevant conditions. NMR
experiments should be free of artifacts due to crystal packing and are performed close to
physiological temperatures.

In well structured large molecules like proteins, inter-proton distances are directly related to
nuclear Overhauser effect (NOE) intensities [33]. These intensities give insight into inter-
proton distances that can be used to derive structures. In the previous CASP8 [1]
experiment, the NOE upper-bound distance violation (UBV) was used as an alternative way
to evaluate the success of refinement. It helped identify refined models that have better
agreement with NMR data but were regarded as worse models by the more traditional metric
GDT-TS. Normally, a hydrogen pair (i,j) is considered violating the NOE upper bound

distance  when  is positive [31], otherwise the violation vi,j is
considered zero. Since groups are not told to submit ensembles but individual structures the
above expression reduces to: . The average UBV was then calculated as

 where N is the number of experimentally determined NOE distances (for more
details see Ref [1]). The upper bound distances (UBD) are derived from experimental NOE
data and inherently allows for structural flexibility (all distances smaller than the UBD are
equally “good”). Thus, several models might be in accordance with this metric.

Figure 14 shows results for the present CASP. Overall, GDT-HA and NMR data are
correlated, but there are cases where the model has improved agreement with experiment
and worse GDT-HA (upper-left quadrant) and vice versa (lower-right quadrant). These
results follow the trend found in CASP8. Bear in mind that NOE violations are measured
from an ensemble of structures, meaning that at any point it is possible for a structure to not
obey some of the NOE restraints. Although this is a fairly simple implementation of
experimental information on the predicted models, it is still quite informative beyond the
information obtained by comparing with a single structure. In the future, deeper insights into
the qualties of structures may be obtainable from NMR ensembles.

5.2 Comparison with X-ray data
Structure prediction methods are already benefiting biomolecular X-ray crystallography by
providing input structures to molecular replacement (MR) likelihood algorithms [24, 25] as
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implemented in the Phaser software package [34]. The purpose of molecular replacement is
to use predicted homologous structures to solve the phase problem [35, 36, 37, 38]. We
estimate the quality of the predictions for this purpose by calculating the z-score of the best
orientation of the model in the unit cell of the crystal with respect to placing it in a set of
random orientations (for more details see supplementary information and ref. [39]). We
performed this calculation for all predictions on each of the eleven targets where the
structure was determined experimentally by X-ray crystallography. Intuitively, if the
prediction matches the data poorly, then the orientation does not matter very much.
However, if the prediction is a good fit to the data, then the optimal alignment is much better
than random and the resulting Z-scores are much higher. Empirically, Z-scores below 6
usually do not provide accurate enough initial phases for crystallographic refinement to be
successful, while scores above 8 usually result in success.

Table 2 shows the best molecular replacement results for each target. Out of the eleven X-
ray derived targets with available diffraction data, five starting models were already reliable
MR solutions. However, there were six starting models with Z-scores below 4.5 that are not
of sufficient quality to solve the phase problem. In these latter cases, the best predictions
provide useful or even dramatic improvements as MR inputs as demonstrated by a increase
of the Z-scores in all cases (with two dramatic improvements to > 27). Overall, the average
Z-score of the best predictions is 8.5 standard deviations better than the average of the
starting model. However, the Z-scores are much higher when the structure from the PDB is
used as input (Control), indicating that there is significant room for further improvements to
structure prediction algorithms. For example, the best predictions only slightly reduced the
number of clashes (PACK) between non-crystallographic symmetry (NCS) copies and/or
symmetry mates, whereas the PDB models have no C-alpha atoms within 3 Å of each other.
Accordingly, it might be helpful in future CASP refinement events to give information
regarding the crystal symmetry, since this missing information will have some influence on
the final refined structures. A recent experiment demonstrated that structure prediction is
more accurate when unit cell and NCS information is available [40].

Despite the apparent difficulty of the protein structure refinement problem, these results
clearly indicate that refinement is of practical utility for molecular replacement and can
make crystallographic refinement more successful. Successful MR only requires that one
model results in a viable solution. The inability to correctly rank order predictions does not
preclude refinement techniques from being successful at molecular replacement, as the MR-
Z score will indicate when a good model has been produced. It is possible to scan through
many models until a good solution is found—limited by available computer power and time.

It is difficult to turn the MR Z-score into a single average number per group for two reasons.
First, the sensitivity of different targets to the correct orientation is different. In particular,
the presence of NCS dramatically increases the sensitivity to correct orientation. Second, the
MR Z-score is asymmetric. A worse MR solution only lowers the Z-score slightly, while a
better MR solution can lead to a large increase in Z-score. Instead, Table 3 reports how often
each group was able to improve Z-scores from the likely unrefinable (< 7) to likely refinable
(> 7). Overall, 20 groups were able to improve at least one model to the point where MR
was likely to succeed.

Figure 15 shows the correlation between GDT-HA and MR Z-score. Models below 30
GDT-HA are not useful for phasing. Above 30 GDT-HA, there is some correlation, but a
high GDT-HA does not necessarily imply that a model will be useful for phasing. We have
also examined (not shown) the correlations between MR Z-score and our other metrics, as
well as weighted combinations of two metrics, and we do not find any clear correlations
with MR Z-score. This illustrates, once again, that there is no “right” score for evaluating
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models. The relative performance of different groups ultimately depends on the end use of
the refined model.

6 Ideas for future refinement
Based on our experience as CASP assessors, we suggest several improvements to the
structure of the refinement experiment:

• It is critical that refinement have more targets. We realize there are logistical
challenges to this, but it is very difficult to reach statistically significant
conclusions with so few targets.

• If a group wishes to test multiple prediction algorithms or scoring functions, they
should register multiple groups. Otherwise any information regarding ranking is
lost and it becomes difficult for the assessors to say anything meaningful.

• If groups could submit a larger unranked ensemble—in addition to the usual five
ranked models—it would help to separate the refinement problem into two
questions: (1) Can we generate better models? and (2) Can we pick them out?

• We also suggest that the organizers work with predictors to maintain a reference
refinement algorithm that can be frozen at its current state. This would make it
easier to assess changes in target difficulty and if there has been any progress in
refinement.

• It has become clear that not knowing the crystal environment poses a challenge for
high accuracy predictions in both TBM and refinement. It could be interesting to
give the unit cell and non-crystallographic symmetry information to the predictors.
This might allow for more successful predictions of targets like TR576, although
we realize that this would go beyond the usual CASP test where only the sequence
is given.

7 Summary
With CASP10 on the horizon, there appears to be significant room for improvement in the
refinement category. Nearly all of the predictors were indistinguishable from or worse than
the Null group. Of the groups where there is improvement, most do so at the local level by
refining the general physicality and sidechain positions. Few groups can consistently
improve backbone positioning (as measured by GDT-HA) and even in successful cases the
improvements are typically modest. If the TBM predictors improve the physicality and
sidechain modeling of their prediction pipelines, we expect refinement performance to suffer
in CASP10 unless more focus is given to broader sampling. Sampling locally around the
original model means that most groups will not sample very bad structures but it also limits
the ability to produce significant improvements. The inability to rank order models also
poses a significant challenge.

Despite current limitations, from the experimental point of view, value was added to the
original models that make them more useful for techniques such as molecular replacement.
This happened for all targets in this competition, with some models having a very large
improvement. Even with all of the current challenges, refinement appears to be useful for
molecular replacement. This also illustrates the difficulty faced by CASP assessors: the
utility of a particular prediction varies with the intended use and is not easy to capture in a
standardized way.
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Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Example of a difficult to refine target: TR592. Difficulties arise from the fact that the
starting model is already within the thermal ensemble of the native conformation.
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Figure 2.
Target TR567. Crystal contacts stabilize an alpha helical secondary structure near the N-
terminus. However, when those contacts are removed, this helix protrudes into space and is
no longer stable..
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Figure 3.
Refinement target TR576 which might suffer from crystal packing effects. Contacts are
stablished both within the biological dimeric unit and within the asymmetric unit (A.U).
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Figure 4.
Summary of aggregate (all models, all groups) results by score. The numeric values are the
percentage of time the structure was made better or worse for each metric.
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Figure 5.
Summary of scores for the ten groups (all models, top ten groups as judged by cherry-picked
overall score). The x-axis shows improvement with respect to the starting model. The
numeric values are the percentage of the time that the refined model was better or worse
than the starting model. The groups are ordered by the overall performance considering the
best model for each target (see Figure 8).
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Figure 6.
Summary of scores by target (all models, all groups). The x-axis shows improvement with
respect to the starting model. The numeric values are the percentage of the time that the
refined model was better or worse than the starting model. The targets are ordered by the
fraction of time the GDT-HA score was improved.
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Figure 7.
Summary of the results of the CASP9 Refinement Experiment. Only the models designated
as “Model 1” are included. Each column shows one of the metrics we used to evaluate
performance. The scales are marked at +/− 1 median absolute deviation (MAD) relative to
the Null group. Black points are statistically distinguishable from the Null group; grey
points are indistinguishable (Wilcoxon signed-rank test, p = 0.05). The area of each point is
proportional to the number of targets that group attempted. A chevron indicates that the
corresponding score was off the scale.

MacCallum et al. Page 23

Proteins. Author manuscript; available in PMC 2012 August 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 8.
Summary of the results of the CASP9 Refinement Experiment. For each target and each
group, the best overall performing model is selected. Each column shows one of the metrics
we used to evaluate performance. The scales are marked at +/− 1 median absolute deviation
(MAD) relative to the “Null” group. Black points are statistically distinguishable from the
Null group; grey points are indistinguishable (Wilcoxon signed-rank test, p = 0.05). The area
of each point is proportional to the number of targets that group attempted. A chevron
indicates that the corresponding score was off the scale..
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Figure 9.
Groups are unable to correctly rank order their submissions. For each group we plot the
average Spearman rank correlation coefficient versus the average change in GDT-HA
considering the best model for each target. The shaded region is statistically
indistinguishable from randomly ranking five predictions for twelve targets. For groups that
did less than twelve targets or less than five predictions for each target, the shaded region
would be wider than shown.
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Figure 10.
Relationship between breadth of sampling and improvement for the top groups (all models,
top ten groups by cherry-picked overall score). The histograms indicate the marginal
distribution along that axis. The solid line in the upper histogram shows the cumulative
distribution

MacCallum et al. Page 26

Proteins. Author manuscript; available in PMC 2012 August 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 11.
Example of an easily refinable target: TR569..
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Figure 12.
Example of a hard refinable target: TR557. Several difficulties arise, especially near one of
the termini where changes in secondary structure are needed..
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Figure 13.
Refinement of TR624 was a particularly hard challenge. Local environments near the
refinement areas are correct, but a topology change is needed: the β-sheets leading to the red
and blue loops have to tilt in opposite ways. Only three groups captured this.
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Figure 14.
Changes in GDT-HA and agreement with NOE data are partially correlated (all models, all
groups)
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Figure 15.
GDT-HA and MR Z-score are only partially correlated (all models, all groups). Structures
with low GDT-HA perform poorly in molecular replacement. Models with higher GDT-HA
perform better. A high GDT-HA, however, does not guarantee good performance in
molecular replacement..
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Table 3

Number of targets where molecular replacement results went from unlikely-to-succeed (TFZ < 7) to likely-to-
succeed (TFZ > 7). Groups that did not improve any targets are not included.

Group Improved Attempted

MIDWAYSERVER 2 3

ZHANG 2 6

LEE 2 6

BAKER 2 6

FEIG 2 6

SEOK 2 6

PCONS 2 6

PROQ2 2 6

GENESILICO 1 6

KEASAR 1 6

KNOWMIN 1 6

SBTJ 1 1

MIDWAYHUMAN 1 5

SCHRODERLAB 1 6

SAMUDRALA 1 6

YASARA 1 6

PCONSM 1 6

PCOMB 1 6

PROQ 1 6

PCONSD 1 3

Null 0 6
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