Proc. Natl. Acad. Sci. USA
Vol. 83, pp. 5086-5090, July 1986
Biochemistry

Complete cDNA sequence of human preceruloplasmin
(copper-binding protein/oligonucleotides/amino acid sequence hotﬁology/ gene evolution)

MARLYS L. KOSCHINSKY, WALTER D. FUNK, BERNARD A. VAN O0sT, AND Ross T. A. MACGILLIVRAY

Department of Biochemistry, University of British Columbia, Vancouver, BC, Canada V6T 1W5

Communicated by Harry B. Gray, March 31, 1986

ABSTRACT A cDNA for human ceruloplasmin (EC
1.16.3.1) was identified in a human liver cDNA library by
screening with two mixtures of synthetic oligodeoxyribo-
nucleotides that were complementary to two regions of
ceruloplasmin mRNA as predicted from the amino acid se-
quence of plasma ceruloplasmin. The resulting clone (phCP1)
contained DNA coding for amino acid residues 202-1046 of the
protein, followed by a stop codon, a 3’ untranslated region of
123 base pairs, and a poly(A) tail. To isolate cDNAs encoding
the 5’ end of ceruloplasmin mRNA, a cDNA library was
constructed in Agt10. The cDNA for this library was synthe-
sized by reverse transcription of human liver poly(A)* RNA,
using random oligonucleotides as primers. When this cDNA
library was screened by using a 5’ fragment of phCP1 as a
hybridization probe, several positive clones were identified.
One of these clones (\hCP1) contained DNA coding for a
probable signal peptide of 19 amino acid residues followed by
DNA coding for residues 1-380 of plasma ceruloplasmin. Blot
hybridization analysis showed that ceruloplasmin mRNA from
human liver and the human hepatoma cell line HepG2 is 3700
nucleotides in size. Liver contained an additional mRNA
species that is like ceruloplasmin mRNA and is 4500 nucleotides
in size. Comparison of the complete nucleotide sequences of
human ceruloplasmin cDNA and human clotting factor VIII
c¢DNA showed regions of sequence homology, suggesting that
these two proteins have evolved from a common ancestor.

Ceruloplasmin ([ferroxidase; iron (II):oxygen oxidoreduc-
tase, EC 1.16.3.1] is a blue glycoprotein from the a,-globulin
fraction of vertebrate plasma (1). This protein is synthesized
in the liver as a single polypeptide chain of M, 132,000 (2, 3)
and is the principal copper transport protein in plasma,
binding 90-95% of the blood copper in vertebrates (1). Each
molecule of ceruloplasmin possesses 6 (or 8) copper atoms
bound tightly at spectroscopically defined sites (4, 5). Up to
10 additional copper atoms are bound less tightly to the
molecule and may be involved in a copper transport function
for ceruloplasmin (6). The 6 (or 8) spectroscopically defined
copper-binding sites are differentiated into three types with
the following stoichiometry: two type I sites, one type II site,
and 2 (or 3) type III sites (4, 5). In addition to its primary role
in copper transport, at least three other functions have been
ascribed to ceruloplasmin, including ferroxidase activity (7,
8), amine oxidase activity (e.g., ref. 9), and superoxide
dismutase activity (10). Ceruloplasmin is also an acute phase
reactant (11), and its plasma level is increased 2- to 3-fold in
response to inflammation (4). It has been suggested that the
observed heterogeneity of function may be related to the
various catalytic activities provided by the three types of
copper-binding sites (1). However, the diverse functional
nature of ceruloplasmin remains poorly understood, since the
multiple enzymic functions of the protein have not yet been
localized to specific areas of the polypeptide chain. In the
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hereditary disorder Wilson disease (hepatolenticular degen-
eration), serum ceruloplasmin levels are characteristically
decreased (12). This deficiency has been ascribed to a genetic
defect that leads to a disruption of normal copper metabolism
and subsequent copper deposition in tissues (13).

The complete amino acid sequence of human ceru-
loplasmin demonstrates an internal threefold homology (3).
Each homology unit consists of approximately 350 amino
acid residues and shares 40% sequence identity with the other
units. The pattern of proteolytic cleavage of ceruloplasmin
suggests that each of the three repeat units can be further
subdivided into two or three domains (14). These domains
may correspond to the different biological activities observed
within the ceruloplasmin molecule such that the multiple
enzymic functions of the protein are localized to specific
areas of the polypeptide chain.

The internal triplication shown in the structure of the
human ceruloplasmin molecule poses some interesting evo-
lutionary questions. Ceruloplasmin contains amino acid res-
idues in positions homologous to known type I copper-
binding sites in azurin and plastocyanin (15, 16). A different
sequence in ceruloplasmin is homologous to a copper-binding
site in bovine superoxide dismutase (17) and also to se-
quences in cytochrome oxidase (18). In addition to this
observed relationship to both copper oxidases and multicop-
per oxidases, it has been demonstrated recently that regions
corresponding to the three repeat units in human ceruloplas-
min are present in bovine factor V (19) and human factor VIII
(20, 21), two accessory proteins in the blood clotting cascade
(22). Although factor V probably contains a type II copper-
binding site (23), the significance of the extensive sequence
homology between these clotting factors and ceruloplasmin is
unclear at present.

In this paper, we report the isolation and characterization
of two human ceruloplasmin cDNA clones that together
encode a leader peptide of 19 amino acid residues, the
complete amino acid sequence of plasma ceruloplasmin, a 3’
untranslated region, and a poly(A) tail.

MATERIALS AND METHODS

Materials. All restriction and DNA-modifying enzymes
were purchased from Bethesda Research Laboratories,
Pharmacia-PL Biochemicals, New England Biolabs, or
Boehringer Mannheim. Avian myeloblastosis virus reverse
transcriptase was purchased from Life Sciences (St.
Petersburg, FL). EcoRI-digested Agtl0 DNA (treated with
calf intestine alkaline phosphatase) and Gigapack packaging
extracts were obtained from Vector Cloning Systems. DNase
I-digested rat thymus DNA was generously supplied by A.
Wallis (Department of Medical Genetics, University of Brit-
ish Columbia).

Synthetic Oligonucleotide Mixtures Encoding Human
Ceruloplasmin. Three pools of heptadecadeoxyribonucleo-
tides were used as hybridization probes:
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FiG. 1.

Restriction map and sequencing strategy for human preceruloplasmin cDNA clones. The longer bars below the restriction map

represent the clones phCP1 and AhCP1 and together include regions coding for the leader peptide (hatched bar), the plasma protein (open bar),
and the 3’ untranslated sequence (solid bar). Arrows indicate the extent and direction of nucleotide sequence obtained from various M13 clones.
Restriction fragment probes A and B, which were used in library screening (see text for details), are indicated directly below the restriction map
(solid bars). The Pst I sites in parentheses result from the cloning procedure used in the construction of the cDNA library. kb, Kilobases.

Pool I: 5" d(TARTARTGYTTYTCYTT) 3’
Pool II: 5" d(ATNGCRTGCATYTTRTT) 3’
Pool III: 5' d(CCCATNARRTACCARTT) 3,

in which R represents both G and A, Y represents T and C,
and N represents A, G, T, and C. The three oligonucleotide
pools are complementary to the mRNA encoding amino acid
residues 1-6, 937-942, and 962-967 of ceruloplasmin, respec-
tively, as predicted from the amino acid sequence (3). The
oligonucleotide pools were synthesized with an Applied
Biosystems 380A DNA synthesizer, and the heptadeca-
nucleotide fractions were purified by polyacrylamide gel
electrophoresis in the presence of 8.3 M urea (24). The
oligonucleotide mixtures were labeled with [y-32P]JATP and
T4 polynucleotide kinase (25), and the unincorporated ATP
was removed by chromatography on Sephadex G-25. The
excluded fraction was added directly to the hybridization
mix.

Preparation of RNA. Samples of human liver were obtained
from brain-dead organ donors. The liver samples were rinsed
in cold saline, immediately frozen in liquid nitrogen, and
stored at —70°C. RNA was isolated from the frozen liver and
from HepG2 cells by the guanidine hydrochloride method
(26). Poly(A)™ RNA was isolated by chromatography on
oligo(dT)-cellulose (ref. 27, pp. 197-198).

Human Liver cDNA Libraries. An adult liver cDNA library
(28) was provided by S. H. Orkin (Children’s Hospital
Medical Center, Boston). This library contains cDNA inserts
of =500 base pairs (bp) inserted into the Pst I site of pKT218
by homopolymeric dG-dC tailing. To isolate cDNAs encoding
the 5’ end of ceruloplasmin mRNA, a randomly primed
human liver cDNA library was constructed in Agtl0 (29).
Human liver poly(A)* RNA was used as a template for the
synthesis of cDNA by reverse transcriptase. DNase I-
digested rat thymus DN A (average length 20 nucleotides) was
used as a primer (30). Second strand synthesis was performed
as described by Gubler and Hoffman (31), using ribonuclease
H, DNA polymerase I, and Escherichia coli DNA ligase.
After S1 nuclease treatment, the double-stranded cDNA was
methylated by using EcoRI methylase and S-adeno-
sylmethionine, EcoRI linkers were ligated to the ends, and
the linkers were digested with EcoRI. The cDNA was then
chromatographed on a column (30 X 0.2 cm) of Bio-Gel

A-50m (Bio-Rad) equilibrated with 0.01 M TrissHCl, pH
7.5/0.3 M NaCl/0.001 M EDTA. Fractions forming the
leading edge of the cDNA peak (corresponding to cDNA
fragments >1000 bp in size) were pooled, and the DNA (50
ng) was ligated with EcoRI-digested, dephosphorylated Agt10
DNA (1 ug). Half of the resulting DNA was packaged into
phage particles in vitro by using a Gigapack and plated on E.
coli strain C600 Hfl*. The library contained 400,000 inde-
pendent recombinants and was screened without amplifica-
tion.

Screening the cDNA Libraries. The cDNA libraries were
screened with 32P-labeled DNA fragments as hybridization
probes. Initially, mixtures of synthetic oligonucleotides were
used with the hybridization and washing conditions of Fung
et al. (32). The libraries were subsequently screened with
restriction fragments labeled by nick-translation (33) and
phage M13 clones labeled by primer extension (34). Hybrid-
ization and washing conditions for the latter screens were as
described by Maniatis et al. (ref. 27, pp. 326-328).

DNA Sequencing Analysis. DNA sequence analysis of
phCP1 (see Fig. 1) was carried out essentially as described by
Deininger (35). Plasmid DNA was randomly sheared by
sonication. Fragments (300-500 bp in length) were recovered
by electroelution from a 5% polyacrylamide gel, and the ends
were made blunt by using T4 DNA polymerase. These
fragments were then ligated into the Sma I site of M13mp8
and used to transform E. coli strain JM103 (36). Subclones
containing ceruloplasmin cDNA inserts were identified by
plaque hybridization (36), using the 3?P-labeled phCP1 Pst I
insert as a probe. Restriction endonuclease fragments
subcloned in appropriate M13 vectors were also used in
sequence analysis of the cDNA clones. All DNA sequence
analysis was performed by using the chain termination
method (37).

Computer Analysis. DNA sequence data were analyzed by
using the DBUTIL program of Staden (38).

Blot Hybridization Analysis. Samples of poly(A)”™ RNA
were denatured with formamide and separated by electro-
phoresis in a 1% agarose gel according to Maniatis et al. (ref.
27, pp. 202-203). After transfer to nitrocellulose, the RNA
was hybridized to phCP1 plasmid that had been labeled
previously by nick-translation (33).
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RESULTS AND DISCUSSION

Isolation of Human Ceruloplasmin ¢cDNAs. Two hundred
thousand recombinant clones from a human liver cDNA
library (28) were screened at high colony density by using the
pool IT and pool I1I oligonucleotide mixtures as hybridization
probes. One recombinant plasmid, designated phCP1, hy-
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bridized specifically to both oligonucleotide mixtures. Re-
striction endonuclease mapping showed that phCP1 con-
tained a Pst I insert of 2700 bp. Subsequent DNA sequence
analysis showed that this insert contained DNA coding for
amino acid residues 202-1046 of plasma ceruloplasmin (3) in
addition to a 3’ untranslated region and a poly(A) tract (see
following section). To isolate a clone coding for the 5’ region
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) F{G. 2. Nucleotide sequence of human preceruloplasmin cDNA. The sequence was determined by analysis of the overlapping clones shown
in Fig. 1. The predicted amino acid sequence of human preceruloplasmin is indicated above the DNA sequence. The putative signal peptidase
cleavage site is shown by a solid arrow. Potential carbohydrate attachment sites (3) are represented by solid diamonds. Boxed sequences are
complementary to oligonucleotide probes used to screen the cDNA libraries. The polyadenylylation signal ATTAAA is underlined.
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of ceruloplasmin mRNA, the cDNA library was rescreened,
using a 322-bp Hae III-Pst 1 fragment as a hybridization
probe. This fragment was derived from the 5’ end of the
phCP1 insert (probe A, Fig. 1). However, no clones were
identified that extended further 5’ than phCP1.

To isolate a clone containing cDNA coding for the remain-
der of ceruloplasmin mRNA, a second cDNA library was
constructed. To avoid the construction of a library that was
enriched for cDNAs coding for the 3’ regions of mRNAs [as
a consequence of priming cDNA synthesis from the poly(A)
tail], cDNA was synthesized from human liver poly(A)*
RNA with random deoxyribonucleotides (average size 20
nucleotides) used as primers. To select for longer cDNA
clones, the double-stranded cDNA was sized by gel filtration
prior to ligation into Agtl0. Four hundred thousand clones
from this library were screened by plaque hybridization using
the 1071-bp Pst I-EcoRI fragment of phCP1 as a probe (probe
B, Fig. 1). Of the 16 positive clones that were identified, 13
hybridized to the 322-bp Hae I1I-Pst I fragment derived from
the 5’ end of the phCP1 insert (probe A, Fig. 1). Of these, only
one was found to hybridize to the pool I oligonucleotide
mixture, which corresponds to the amino-terminal six amino
acids of plasma ceruloplasmin. Only this clone, designated
AhCP1, was studied further. Restriction endonuclease map-
ping indicated that AhCP1 contained a 1200-bp insert and
overlapped phCP1 as shown in Fig. 1.

DNA Sequence Analysis. The complete nucleotide se-
quences of the inserts of phCP1 and AhCP1 were determined
by using the strategy shown in Fig. 1. The majority of the
sequence was determined by analysis of randomly sheared
fragments cloned in M13. The remainder of the sequence was
determined by analysis of specific restriction endonuclease
fragments cloned in M13. The complete nucleotide sequence
of the two ceruloplasmin cDNAs and the predicted amino
acid sequence of the protein are shown in Fig. 2. The position
of each nucleotide was determined an average of 3.4 times,
and 62% of the sequence was determined on both strands. In
the region where they overlap, the nucleotide sequences of
AhCP1 and phCP1 were identical.

Nucleotides 58-3195 of the cDNA sequence code for the
plasma form of ceruloplasmin; the predicted amino acid
sequence agrees completely with that determined by
Takahashi ez al. (3), who used protein chemistry techniques.
Following the open reading frame is a TGA stop codon
(encoded by nucleotides 3196-3198), a 3’ untranslated region
of 123 bp (nucleotides 3199-3321), and a poly(A) tail. The 3’
untranslated region contains a putative polyadenylylation
signal ATTAAA (39) that is located 14 nucleotides upstream
of the poly(A) tail. This polyadenylylation signal is observed
in 12% of such 3’-terminal sequences from vertebrates (40)
and is a variant of the more commonly observed signal
AATAAA. Nucleotides 1-57 code for an amino-terminal
extension of 19 amino acid residues that is removed prior to
the appearance of ceruloplasmin in plasma. The amino-
terminal leader peptide contains a methionine residue at
position —19, which may function as the initiator methionine.
The leader peptide is rich in hydrophobic residues and thus
resembles a signal peptide (41, 42). Such sequences function
in the initiation of export of nascent polypeptide chains
across the rough endoplasmic reticulum (43). The cDNA
sequence predicts that an Ala-Lys bond (encoded by nucle-
otides 55-60, Fig. 2) is cleaved during the removal of the
leader peptide. This is consistent with demonstrated signal
peptidase cleavage specificity (44) and suggests that
ceruloplasmin is synthesized in liver as a typical preprotein
containing a signal sequence of at least 19 amino acids.

The base composition of ceruloplasmin mRNA is some-
what A+U rich (33% A, 26% U, 22% G, 19% C), reflective
of the coding region, in which 60% of the codons end in either
A or U. This observation is in contrast to the codon usage in
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other liver mRN As such as those for prothrombin (45), factor
X (46), and factor XII (47), in which approximately 90% of the
codons end in G or C. One codon is not used in the coding
region of ceruloplasmin mRNA (CGC for arginine), and
others are used rarely (2 of 51 alanine residues are encoded
by GCG).

Blot Hybridization Analysis. To estimate the size of
ceruloplasmin mRNA, samples of poly(A)* RNA from hu-
man liver and total RNA from the human hepatoma cell line
HepG2 (48) were separated by electrophoresis in an agarose
gel and transferred to nitrocellulose. The RNA blot was then
hybridized to the cDNA insert of phCP1. In both the liver and
HepG2 samples, the cDNA hybridized to a mRNA species
that was 3700 = 200 nucleotides in size (Fig. 3). However, the
cDNA hybridized to an additional mRNA species of 4500 +
250 nucleotides in the liver RNA sample (Fig. 3, lane 1). The
cDNA clones contain a total of 3321 bp plus a poly(A) tract,
which is usually 180-200 nucleotides (49). Ceruloplasmin is
synthesized and secreted from HepG2 cells (48), which
suggests that the 3700-nucleotide RNA species represents a
functional ceruloplasmin mRNA. The identity of the 4500-
nucleotide RNA species is unclear, but it may represent a
highly homologous mRNA or alternate processing of
ceruloplasmin heterogeneous nuclear RNA. Because it is not
detected in the hepatoma cell RNA, however, it is possible
that the 4500-nucleotide RNA represents a homologous
mRNA synthesized in nonhepatocyte cells in the liver.

Homology With Factor VIII. Extensive amino acid se-
quence homology has been reported between the three
domains of ceruloplasmin (3) and three domains of blood
coagulation factor VIII (20, 21). As expected, this homology
extends to the nucleotide sequences when they are aligned
according to Vehar et al. (20), as shown in Table 1. The three
domains of ceruloplasmin exhibit 46-51% nucleotide se-
quence identity with each other, while the three homologous
domains A1-A3 of factor VIII exhibit 40-44% identity with
each other. In addition, the ceruloplasmin domains show
40-48% identity with the factor VIII domains, indicating that
the sequences of each of the six domains have mutated to
approximately the same extent. This similarity in homology
may indicate similar functional constraints in the ceruloplas-
min and factor VIII molecules.

Summary. We have isolated and characterized cDNA
clones coding for human preceruloplasmin. These cDNAs

1. 2

Fic. 3. Blot hybridization analysis of human ceruloplasmin
mRNA. RNA was separated by electrophoresis in a denaturing
agarose/formaldehyde gel and transferred to nitrocellulose. The
filter was hybridized with 32P-labeled phCP1. The filter was exposed
to x-ray film for 18 hr at —70°C with Lightning Plus intensifying
screens (Du Pont). Lane 1, 10 ug of human liver poly(A)* RNA; lane
2,20 ug of total HepG2 cell RN A. The positions of HindIII fragments
of A phage DNA used as size markers are shown.
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Table 1. Comparison of the nucleotide sequences of the
homologous regions of ceruloplasmin and factor VIII
% identity
CP-2 CP-3 VIII-Al VIII-A2 VIII-A3

CP-1 51 48 43 48 42
CP-2 46 41 45 42
CP-3 40 43 46
VIII-Al 41 40
VIII-A2 44

The putative domains CP-1, CP-2, and CP-3 correspond to amino
acid residues 1-350, 351-710, and 711-1046 of ceruloplasmin, re-
spectively (see Fig. 2). The regions VIII-Al, VIII-A2, and VIII-A3
correspond to amino acid residues 1-339, 378-721, and 1691-2028 of
factor VIII (20), respectively. The nucleotide sequences were aligned
by inserting gaps to maximize the corresponding amino acid se-
quence homologies, as described by Vehar ez al. (20). The compar-
isons are expressed as the percentage of identical nucleotides in
corresponding positions in two sequences.

can now be used to isolate the human ceruloplasmin gene.
Comparison of the organization of the ceruloplasmin and
factor VIII genes will allow a detailed analysis of the
evolution of these two plasma proteins. In addition, the
cDNA clones can be used to investigate the association of
ceruloplasmin with Wilson disease by using restriction frag-
ment length polymorphisms.
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