
In a recent article in Genome Research [1], Thompson and 
colleagues present a development of a next-genera tion 
sequencing technology - the HeliScope sequencer - that 
enabled them to detect mutations in the human breast 
cancer 1 (BRCA1) gene, as a model of a clinical diag nostic 
protocol. Their technique is accurate and requires limited 
sample preparation before sequencing. It therefore holds 
great promise for overcoming the emerging problem in 
clinical genetics of target overload: the presence of a large 
number of gene mutations of clinical relevance in a single 
disease entity. In no field is this challenge more apparent 
than in the genomics of cancer.

The clinical application of next-generation 
sequencing
The past few years have seen an unprecedented deluge of 
data on the genes mutated in cancer and other diseases. 
So far, the sequences of over 50 individual cancer 
genomes have been published and this number is set to 
increase exponentially. The advent of next-generation 
technologies (such as the Roche 454 GS FLX+, llumina 
Hiseq 2000, Applied Biosystems SOLID and HeliScope 

single-molecule sequencer machines), which allow a 
human genome to be sequenced in a single week-long 
run, has led to a large shift in our understanding of the 
mutations that drive cancers [2]. For the clinician, muta-
tions in cancer can have relevance for diagnosis, prog-
nosis and treatment choice. However, it is now apparent 
that these clinically relevant mutations will be both 
numerous and found at low prevalence in individual 
cancer types. In particular, for the majority of cancers 
there will be no single ‘magic bullet’ targeted therapy. The 
breakpoint cluster region-Abelson murine leukemia 
homolog (BCR-ABL) fusion kinase, which is character-
istic of chronic myeloid leukemia, is the exception not 
the rule when it comes to druggable cancer genes; it 
seems, instead, that multiple drug targets will be mutated 
at low frequency throughout common cancers [3]. This 
target overload is not restricted to the management of 
cancers and is also seen with monogenic disorders, for 
example, mental retardation and hereditary cancer pre-
disposition [4].

It is therefore necessary to screen numerous genetic 
loci to decide on the best course of clinical management 
for an individual patient and this must be done in a rapid 
and cost-effective manner. The current technology for 
searching for mutations is to amplify a region of interest - 
in multiple fragments of a few hundred base pairs each in 
separate PCR reactions - then sequence the products by 
standard Sanger chain terminator sequencing. Although 
highly accurate for the detection of single-nucleotide 
variants and small insertions or deletions, this approach 
is expensive, labor intensive and unable to detect large-
scale insertions or deletions. Furthermore, in tumor 
samples, mutations may be missed. This is because Sanger 
sequencing can reliably detect mutant alleles only when 
they are present in more than about 20% of the relevant 
DNA, and this will not be the case, for example, for a 
heterozygous mutation in a tumor contaminated with 
60% normal DNA, a scenario that is not uncommon [5].

Targeted true single-molecule sequencing
Thompson and colleagues [1] have used a next-generation 
true single-molecule sequencing (tSMS) system, the 
HeliScope sequencer, to profile the mutational pattern of 
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the human cancer gene BRCA1. Germline mutations in 
the genes BRCA1 and BRCA2 are associated with 
dramati cally increased rates of breast and ovarian cancers 
and contribute to about 10% of all breast cancer cases [6]. 
In addition, poly-ADP ribose polymerase inhibitors, a 
recently developed family of pharmaceutical agents, 
seem to show selective toxicity for cancers with muta-
tions in the BRCA genes. Cost-effective sequencing of 
these genes is therefore a highly desirable clinical tool for 
the management of breast cancer patients and those with 
strong family histories of the disease.

The technology used is a development of the HeliScope 
tSMS platform [1]. In the standard HeliScope protocol, 
DNA is fragmented and poly(A) adaptors are added to the 
ends of fragments. They are then captured on a glass slide 
coated with covalently bound poly(dT) oligo nucleo tides, 
and sequenced [7]. Thompson et al. [1] were able to 
dispense with the initial sample preparation steps (addi-
tion of poly(A) adaptors and 3’ blocking - performed to 
prevent extension of the 3’ end of bound poly(A)-tagged 
DNA molecules) and instead directly captured only the 
fragments of DNA belonging to the BRCA1 locus, using 
oligonucleotides that match sequences in the BRCA1 
region (Figure  1). This targeted capture approach was 
highly success ful. Approximately 20% of the sequenced 
reads mapped to BRCA1, which equates to about 
100,000-fold enrich ment of the target sequence. As the 
length of sequence that can be read in this system is 
limited, oligonucleotides were designed at 20-30 base 
pair intervals throughout the coding sequence of the 
gene, to ensure complete coverage. Importantly, the 
authors [1] were able to obtain sequencing results from 
as little as 100 ng of input material - thus showing that 
the technology could be used with samples collected as 
diagnostic biopsies.

This approach [1] has several advantages over the more 
traditional Sanger sequencing commonly used for the 
detection of mutations. Firstly, there is little required in 
the way of sample preparation - only sonication of the 
DNA, and in the case of archival formalin-fixed material 
it is possible that even this step could be dispensed with - 
therefore reducing cost, turn-around time and the risk of 
errors in sample handling. Secondly, unlike Sanger 
sequenc ing, the HeliScope system allows the detection of 
large deletions, by determining the number of fragments 
of DNA that are present from a specific location; a 
decreased number of fragments from a region suggests a 
loss of genetic material. Finally, the HeliScope system 
directly sequences individual molecules rather than - as 
with Sanger sequencing - examining the average 
sequence of many millions of DNA molecules. This 
should provide increased sensitivity for the detection of 
low prevalence mutations, an essential feature in the 
sequencing of a heterogeneous cancer sample.

The present technology [1] is an advance over recently 
presented techniques for analyzing the mutational status 
of target genes using next-generation sequencing 
instruments [8,9]. With the advent of more competitively 
priced next-generation sequencing machines, which can 
provide sequence data in a matter of hours, not days 
(such as Life Technologies’ Ion-torrent and Illumina’s 
Miseq), it is feasible that such approaches could be used 
routinely in the clinical setting. However, the instruments 
involved still require the selective amplification of target 
DNA and the relatively complex preparation of this 
material for sequencing. Thus, although they take advan-
tage of the exceptionally cheap per-base cost of next-
generation sequencing, competing techniques are still 
limited by its flaws: high complexity and slow turnaround 
time. Genotyping by mass spectrometry has also been 

Figure 1. Outline of the tSMS gene capture approach. Tumor 
material can be collected and (a) snap frozen to preserve intact 
DNA and RNA or (b) fixed in formalin then embedded in paraffin for 
section and histopathological review. Following (c) DNA extraction, 
(d) the DNA is broken by sonication to approximately 200 bp 
fragments. Green, sequences from the BRCA1 region; black, other 
regions. Formalin fixed material provides fragmented DNA, removing 
the need for a sonication step. (e) DNA fragments are hybridized to 
the flow cell, which is covered with oligonucleotides with sequence 
complementary to the region corresponding to the BRCA1 gene. 
BRCA1 sequences are therefore enriched on the flow cell. (f) Each 
individual molecule of DNA is then sequenced simultaneously by 
sequential addition of fluorescently labeled nucleotides (purple).
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applied to the resequencing of relevant mutations [10]. 
This approach, although sensitive, is limited, in that it is 
capable of detecting only known mutations and will 
therefore miss novel gene lesions.

The future of gene sequencing in the clinic
For the foreseeable future, the high cost and complexity 
of data analysis will limit the application of whole-
genome sequencing for the detection of mutations in a 
clinical setting. Targeted resequencing of areas of interest 
will therefore remain key to determining mutational 
status. The method published by Thompson et al. [1] is a 
stride forward in putting this into practice. Although 
currently only a single gene is screened, there is clearly 
scope for the creation of multi-gene capture arrays, 
allowing large numbers of loci to be analyzed rapidly and 
cost-effectively with low DNA input requirements. In its 
simplicity, this approach provides an opportunity to truly 
begin integrating the vast quantity of genomic data 
generated in this next-generation era with clinical practice.
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