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Abstract
Severe burns are among the most common causes of death from unintentional injury. The
induction and resolution of the burn-induced systemic inflammatory response are mediated by a
network of factors and regulatory proteins. Numerous mechanisms operate simultaneously, thus
requiring a systems level approach to characterize their overall impact. Towards this goal, we
propose an in silico semi-mechanistic model of burn-induced systemic inflammation using liver
specific gene expression from a rat burn model. Transcriptional responses are coupled with
extracellular signals through a receptor mediated indirect response (IDR) and transit compartment
model. The activation of the innate immune system in response to the burn stimulus involves the
interaction between extracellular signals and critical receptors which triggers downstream signal
transduction cascades leading to transcriptional changes. The resulting model consists of fifteen
(15) coupled ordinary differential equations capturing key aspects of inflammation such as pro-
inflammation, anti-inflammation and hypermetabolism. The model was then evaluated through a
series of biologically relevant scenarios aiming at revealing the non-linear behavior of acute
inflammation including: investigating the implication of effect of different severity of thermal
injury; examining possible mechanistic dysregulation of IKK-NFκB system which may reflect
secondary effects that lead to potential malfunction of the response; and exploring the outcome of
administration of receptor antagonist or anti-body to significant cytokines.
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Introduction
In the United States, over 1.2 million burn injuries are reported annually [1] and despite
significant advances in patient care morbidity and mortality remain high in those patients [2;
3]. Responses to thermal injury are both local and systemic, involving cellular protection
mechanisms, hypermetabolism, prolonged catabolism, organ dysfunction and immune-
suppression [4]. Innate immune cell activation leads to the production and release of
proinflammatory cytokines, which are proximal mediators of the systemic inflammatory
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response. Changes in energy expenditure following burn injury have been attributed to
processes such as gluconeogenesis, ureagenesis, fatty acid synthesis and catabolism,
processes relating to the need to compensate for the increased loss of body heat through the
injured skin, as well as changes in the circulating levels of plasma proteins primarily
synthesized in the liver [5].

Though much is known about the molecular and physiological pathways of the acute
inflammatory response induced by thermal injury, this knowledge has not led to effective
therapies. One reason may be that the complex nature of the response renders targeting
isolated components an ineffective strategy [6]. Thus, the complex dynamics of burn-
induced inflammation make appealing system, model-based, approaches that explore
simultaneously multiple hypotheses for deciphering complex modes of action [7]. Therefore,
it has been hypothesized that mathematical modeling may provide insights into the global
dynamics of the inflammatory process [8].

A number of excellent prior studies [6; 8; 9; 10; 11] have placed significant emphasis on
simulating inflammation based on the kinetics of well accepted constituents of the acute
inflammatory response. A key feature in these models is the a priori postulation of particular
components that are consistent with biological knowledge and play a major role in triggering
the inflammatory response. Because such computational integration can offer significant
insight on how such components interact, combinations of in silico and in vivo approaches
are emerging as a viable analysis strategy [12].

However, how to identify representative biological features that can adequately represent the
complex dynamics of a host undergoing an inflammatory response is a big challenge.
Therefore, there is emphasis on reducing the complexity of the unified inflammatory
response by identifying a limited number of time-dependent interactions of key elements
that are highly sensitive to specific modes of initiation and modulation of the inflammatory
response. Recently, we proposed a computational methodology which effectively
decomposes the dynamics of the response from DNA microarray data into an elementary set
that can serve as a surrogate for predicting the collective behavior of the system [13]. Based
on this, we have proposed a model for endotoxin-induced systemic inflammation using an
indirect response model (IDR) in Foteinou et al [14] which describes the dynamics of LPS-
induced inflammation, as well as evaluates effectiveness of corticosteroid therapy under
various treatment schedules establishing an in silico zone of therapeutic opportunity [15].

Despite the aforementioned advances no major efforts have been undertaken towards the
development of dynamic models of burn-induced inflammation. It is therefore the aim of the
present study to discuss a liver-specific physicochemical model of burn inflammation based
on in vivo data. The focus on liver is driven by the fact that it is the organ that undertakes the
burden of producing the majority of circulating cytokines in response to the thermal injury.
We begin by extracting a critical set of liver-specific transcriptional signatures and then
outline the development of a semi-mechanistic model of thermal injury- induced acute
inflammation in rat liver that aims at coupling extracellular signals with essential
transcriptional responses through a combination of receptor mediated indirect response
(IDR) [16] and transit compartment [17] models. We hypothesize that the inflammatory
response is activated when trauma-induced products are recognized by appropriate
recognition receptors. Tumor necrosis factor-alpha (TNF) is a key product released
following a cutaneous thermal injury [18] and is a key mediator of local and systemic
inflammation [19; 20]. Thus, we assume that the circulating levels of TNF will act as a
prototypical “invader” activating the inflammatory response. Our model describes the
kinetic interaction between the ligand (TNF) and its signaling receptor (TNFR1) coupled
with the activation of transcriptional factor (NFκB) which triggers the stimulation of
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expression of the essential transcriptional motifs identified through the analysis of the
corresponding gene expression data. Based on the analysis of rat liver microarray data
following burn injury, we hypothesize that the essential components include the early,
intermediate and late pro-inflammatory responses associated with increased expression of
proinflammatory cytokines and chemokines; the anti-inflammatory response that serves as
the immuneregulation of the host defense system; and an anabolism response characterized
by the increased expression of genes that participate in cell growth and metabolism. Such
thermal injury-induced models could potentially emerge as critical enablers towards
understanding the connectivity and relationship of the critical components in the innate
immune system, which offers opportunities for unraveling the control mechanisms of the
onset and resolution of systemic inflammation. The potential of our model is demonstrated
by investigating the implications of varying the severity of the thermal injury; examining
possible mechanistic dysregulation which may reflect secondary effects that lead to potential
malfunction of the response leading to highly activated inflammation; and evaluating the
impact of administration of receptor antagonists or antibodies of important cytokines.

Identification and Functional Characterization of Essential Transcriptional
Responses
Rat Thermal Injury Model

Male Sprague-Dawley rats were subjected to a full skin thickness scald burn injury of the
dorsum which is calculated to be ~20% of the rat’s total body surface area (TBSA) as
previously described in [21]. Liver samples were obtained at 5 time points (0, 1, 4, 8 and 24
h post burn) and RNA extracted from liver samples was isolated and subsequently
hybridized on an Affymetrix U34A GeneChip that had 8,799 probes represented on each
chip. Thus the control for this experiment is the measurement labeled “Time 0” which was
obtained prior to the thermal injury. The data are available with accession number GSE802
at the Gene Expression Omnibus (GEO).

Identification of Essential Transcriptional Responses
A 20% TBSA thermal injury to rats elicits a complex dynamic transcriptional response
altering the expression level of numerous liver-specific genes. Our aim is to unravel a
critical set of “informative” temporal responses that are characterized as the “blueprints” of
the orchestrated dynamics of the perturbed biological system which will serve as surrogate
for modeling. Based on our previous work, a micro-clustering approach is applied first,
which is based on a symbolic transformation of time series data assigning a unique integer
identifier (hash value) to each expression motif [13]. Hashing allows us to uniquely
characterizing the overall dynamic response of each transcriptional profile through a single
integer number. Expression motifs are composed of the probe sets which are very similar in
shape and hashed to the same value. Therefore, the expression values of thousands of genes
can be assigned to unique expression motifs. A distribution of motif values for all the
available probes is produced by the symbolic transformation of the expression motifs and
the subsequent assignment of hash values to each expression profile [13] as seen in Figure 1.

We further process the data by calculating a p-value based on the cluster size and filtering
out those expression motifs which are highly likely to be generated by a random model.
Reshuffling of the original gene expression data is used to generate random background data
in order to estimate a p-value for each expression motif. The analysis identifies a sub-set of
18 transcriptional motifs which are considered to be statistically significant and these are
depicted in Figure 2.
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The set of motifs is further lumped by identifying a discriminating set of critical temporal
shapes that best characterizes the intrinsic dynamic response of the system utilizing the
concept of Transcriptional State (TS) we previously introduced in [13]. The TS of the
system is defined as the overall distribution of expression values at a specific time point by
quantifying the deviation of the system at each time point versus a baseline distribution (t=0
h) applying a Kolmogorov- Smirnov (K-S) test [22]. Our quantifying metric is the
summation of all the estimated K-S values over time. Therefore, the aim here is selecting a
set of expression motifs whose corresponding transcriptional state deviates maximally from
the baseline (distribution of expression values at time t=0h). Given the aforementioned
metric we are interested in identifying the minimum number of expression motifs which
characterize the maximum deviation of the Transcriptional State of the system. The selection
is a combinatorial optimization problem for which we apply a stochastic optimization
algorithm, based on simulated annealing (SA)[23]. The maximum deviation from
homeostasis is obtained when we select 5 motifs, whereas further addition of motifs reduced
the deviation indicating the addition of less critical responses. We therefore hypothesize the
existence of a distinct critical set of temporal responses that best capture the intrinsic
dynamics of the host response to thermal injury, Figure 3.

The first response (E) is characterized by an early up-regulation during the first hour
following the thermal injury whereas the second (M) and the third (L) essential response
represent later up-regulation events at about 4h and 8h post-injury respectively. All three
responses return to base line within the first 24h. The fourth response (A) exhibits a later,
yet persistent up-regulation after 24h. Finally, the fifth response (D) is characterized by
persistent down-regulation during the time course of the experiment and deviation from
baseline. 59, 54, 62, 81 and 52 probe sets are included in E, M, L, A, D respectively.

Functional Characterization of Essential Responses
Once the inflammatory signal is de-convoluted into its essential components, it is
hypothesized that genes whose transcriptional signatures are highly correlated with the
essential motifs participate in relevant inflammatory pathways. This enables us to gain a
biologically relevant understanding of the systemic response with respect to the thermal
injury. We characterize the biological relevance of the intrinsic responses by evaluating the
enrichment of the corresponding subsets in thermal injury-induced inflammation –specific
pathways by using ARRAYTRACK [24].

The “E” response displays an early peak in up-regulation within the first hour following the
burn injury and contains genes which are primarily responsible for the early pro-
inflammatory response. Genes in this major temporal class are involved in Gap junction
(Raf1, Csnk1d, and Drd2) as well as in Adipocytokine signaling pathway (TNF, Acs14,
Adipor2, and G6pc). It is reported that activation of Kupffer Cells in vivo or in vitro resulted
in formation of Gap Junction and plays a critical role during liver inflammation [25].
Adipose tissue secretes a large number of physiologically active peptides that often share
structural properties with cytokines and are therefore referred to collectively as
adiocytokines [26]. The adipokines or adipocytokines are a group of cytokines (cell-to-cell
signaling proteins) secreted by adipose tissue including chemerin, interleukin-6 (IL-6), TNF
et.al. Moreover, we identified genes (TNF) which are critical in activating transcription
factors that act as important initial mediator of pro-inflammatory response. TNF is an
important mediator of the production of acute phase proteins (APP), is one important
proinflammatory cytokine, acting via cytokine-receptor interactions, intracellular signaling
pathways, and ultimately influencing transcription factors, these cytokines are able to
modulate the promoter regions of multiple acute phase proteins [27; 28]. TNF’s primary role
is in the regulation of immune cells. We should discriminate the TNF as the initiator of the
overall response and that in the “E”. Under assumption, circulating TNF released

Yang et al. Page 4

Math Biosci. Author manuscript; available in PMC 2012 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



immediately following thermal injury triggers overall response. This early, or “alarm”,
cytokine has pleiotropic activity and act both locally and distally. Distally, immune cells
such as Kupffer cells begin to synthesize and release their own particular set of cytokines
within particular tissues such as liver. Although some of these cytokines may have been
released earlier by the monocytes, it is this secondary wave that augments the homeostatic
signal and initiates the cellular and cytokine cascade that are involved in the complex
process of APR [5]. Thus, the transcriptional expression of TNF in “E” stands for the
activation of acute response of hepatic cells in response to circulating TNF.

The “M” response represents an intermediate, middle, pro-inflammatory actions and is
associated with genes involved in P38 MAPK signaling pathway (Interleukin-1alpha,
(IL-1α), Map3k12 (p38mapk), cxcl14) essential in regulating the pro-inflammatory
response. P38MAPK is known to play a central role in the cellular response to external
stress and mediate proinflammatory cytokine production [29]. Activated p38MAPK results
in downstream activation of proapoptotic transcription factors such as p53 and stimulates
robust proinflammatory cytokine production of IL-6, interleukin-1 beta (IL-1β), and TNF
[30; 31]. Moreover, we identified the late increased expression of IL-1a and Cxcl14 which is
assumed to be indicative of pro-inflammatory response.

The “L” response represents a late pro-inflammatory reaction. Motif “L” is enriched in
genes which are mainly involved in the late pro-inflammatory response, such as complement
and coagulation cascades (C1qb, C1s, C3, and C4a) associated with the innate and adaptive
immune systems. The end result of this activation cascade is massive amplification of the
response and activation of the cell-killing membrane attack complex. Due to the fast
response of the component complement cascade following thermal, this may reflect a
restoration of the levels to normal due to the exhaustion of complement at the time of injury.
In addition, other genes which code significant pro-inflammatory cytokines are also found
such as IL-1β, IL-18, IFN-γ and cxcl2. It is widely accepted that IL-1β is one of the most
important proinflammatory cytokines following thermal injury [32]. In addition, IL-18 is a
TH-1 inducing, proinflammatory cytokine and member of the IL-1 family [33]. Similarly,
IFN-γ is considered as a proinflammatory cytokine because it augments TNF activity and
induces nitric oxide (NO)[32].

The “A” response is found to be associated with the anti-inflammatory component. Genes in
this major temporal class are important in ribosome (RPL/RPS family) and proteomes
(psma1, psma2, psma6) which can be interpreted as characteristic of a change in protein
synthesis patterns, more specifically an increase in the synthesis of the positive acute phase
proteins and important anti-inflammatory cytokines as well as a decrease in the synthesis of
negative acute phase proteins and the constituent proteins. In addition, the genes coding
important positive acute phase proteins such as FGA, KGA, and A2m are also present in this
motif. Acute phase proteins are considered as important ‘diffusible’ anti-inflammatory
mediators [34]. Moreover, the genes which code important anti-inflammatory cytokines
such as IL-10, IL-1ra, IL-1r2, Il-1r2β [35] are also identified.

Finally, the “D” response is identified to be related to anabolism. Genes in this major
temporal class are important in the JAK-STAT (Bcl211, IL13, and IL9, jak1, socs2 and
stat5a), MAPK signaling pathways (Map2k1, Map2k5, Map3ka, Map4k4, Mapk14 and
mapkapk3) and VEGF signaling pathways (Map2k1, Mapk14, Mapkapk3). In addition,
many growth factors are found in this motif, such as IGF-1, EGF, HGF, Fgfr2 which are
considered to be important in regulation of anabolic effects such as stimulating the synthesis
of protein, glucose and lipid, cell growth, proliferation. STAT5 is used to regulate certain
hepatocyte functions, particularly in response to growth hormones. VEGF regulates several
endothelial cell functions, including proliferation, differentiation, permeability, vascular
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tone, and the production of vasoactive molecules. Signaling cascades that have been
implicated in VEGF action include Src, PLC-g, MAPK, as well as STAT3 and STAT5.
Synthesis of nutrients, cell growth and proliferation can be considered as anabolism, since
the growth and proliferation of cells do need synthesis of new proteins, lipid and glucose.
Therefore, the down regulation represents the opposite effect, i.e., catabolism, which induces
hypermetabolism following thermal injury. This motif could be seen as the indicator of the
metabolic status of the hepatic cells. The deviation from normal levels is the representative
of damage to the body.

These transcriptional responses effectively represent the overall dynamics and define the
constitutive elements of the overall response. We hypothesize that they correspond to the
cellular signatures in response to thermal injury and manifest the integrated systemic
response and, subsequently, we explore the possibility of developing a model describing the
dynamics of these responses.

Modeling Burn Injury Induced Acute Inflammation
Putative structure of the network of interacting components

It is believed that the cells of the innate immune system are activated by alarm/danger
molecules released from injured or stressed cells, such as those exposed to pathogens,
toxins, or mechanical, physical, or physiological stimuli [36]. We hypothesize that the
inflammatory response is activated when trauma-induced products are recognized by
appropriate receptors. Tumor necrosis factor (TNF) is a key product released following a
cutaneous thermal injury [18]. TNF, a cytokine with a relative molecular mass of 17,000, is
produced by activated macrophages in response to pathogens and other injurious stimuli,
and is a necessary and sufficient mediator of local and systemic inflammation [19; 20].
Administration of TNF to humans reproduces many acute physiologic and metabolic
responses to injury, including inflammatory response and energy substrate mobilization.
TNF induces a net catabolic state by mediating increased catabolism, causing anorexia, and
activating the hypothalamic – pituitary- adrenal axis in both humans and animals [37; 38;
39; 40]. Furthermore, the metabolic effects following TNF administration are dose-
dependent and dose increases result in enhanced energy expenditure, increased hepatic
gluconeogenesis, increased whole body protein breakdown, activation of the hypothalamic-
pituitary-adrenal axis and increased whole body lipolysis; all features of the metabolic
response to thermal injury. In even larger doses, TNF triggers potentially catastrophic tissue
injury and lethal shock [20; 41]. Therefore, TNF is assumed to be initiator of overall
response.

The combination of the prototypical initiator, i.e., TNF, and its receptor (R), i.e., TNFR1, on
the membrane of hepatic cells triggers a series of intracellular events that ultimately result in
the activation of major transcription factors, such as NF-κB [42] known to regulate the
expression of inflammatory cytokines, chemokines, immunoreceptors, and cell adhesion
molecules. Due to its role and significance, NF-κB has often been termed a central mediator
of the human immune response [43]. Therefore, we assume that it is the translocation of NF-
κB from the cytoplasm to the nucleus that stimulates the production of the proinflammatory
response. Although numerous signaling molecules and reactions participate in NF-κB
signaling pathway [44], sensitivity analysis has shown that the activity of NF-κB is
maximally modulated by a reduced set of three basic signaling molecules (IKK, IκBα and
NF-κB) [45].

The activated transcriptional factor NF-κB will indirectly stimulate the production rate of
“E” the early pro-inflammatory response. ”E” is characterized as the ‘first line’
transcriptional response that is triggered upon the recognition of the extracellular ligand
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(TNF) by its pattern recognition receptors (TNFR1). Since “E” denotes early pro-
inflammation it serves as the signal that will further stimulate downstream processes
associated with the intermediate response “M”, further activating late pro-inflammatory
response ”L”. The activation of this pro-inflammatory cascade of responses in known to
involve a number of interrelated steps forming a complex signal transduction cascade [34;
46; 47]. This is also evident but the transient up-regulation of each component of the pro-
inflammatory family of responses with a characteristic peak at different points in time. In
order to best simulate the time delays we hypothesize the existence of transit compartments
between each leading response, namely “E”, “M” and “L”, [17]. We assume the existence of
one compartment between each successive step, (M1) and (M2), used to describe the time
delay between the components of the pro-inflammatory response.

Once the pro-inflammatory response has mounted it serves as a subsequent signal for
stimulating the anti-inflammatory component “A” [5; 34; 48; 49]. Given the temporal
dynamics of “A” and “L”, we assume that “L” is activated as soon as the pro-inflammatory
response has reached its peak, as expressed by the maximal activation of “L”. Therefore, we
assume a direct inhibitory link between “A” and “L” aiming at dampening the response [50].

Several studies have shown that increased pro-inflammatory cytokine synthesis contributes
to hypermetabolism and catabolism [51; 52]. Therefore, the pro-inflammatory response,
“E”, “L” and “M”, are expected to inhibit anabolism, i.e., increase catabolism, “D”.
Furthermore, up-regulation of the expression of acute phase proteins, component of “A”,
will further increase hypermetabolism [53; 54; 55]. The metabolic rate in burns is extremely
high; energy requirements are immense and are met by the mobilization of proteins and
amino acids. Increased protein turnover, degradation (as expressed by an increase in “A”
response), and negative nitrogen balance leading to the enhanced metabolic requirements
which causes catabolism [56]. Therefore, the anti-inflammatory response “A” will further
inhibit anabolism “D”.

All the aforementioned qualitative relations are depicted in the form of a network in Figure
4.

A Quantitative model of burn induced inflammation
The mathematical model is succinctly presented in equations (1–15). Specifically, the
components represented in the model are the following:

Circulating TNF dynamics and primary activating signal formation—In order to
model the primal instigator, in the form of a rapid release of TNF due to the burn injury, we
adopted the formalism of Vodovotz et al [9]. Equation (1) is therefore used to describe the
effect of trauma expressed as an exponential decay of influence after an initial insult. It
represents possible released cellular material, assumed to be TNF, which can trigger
inflammation. The parameters TRon, tTR, xTR determine the peak value of TNF. Circulating
TNF is recognized by its appropriate surface receptor TNFR1. The corresponding ligand-
receptor equilibrium is expressed in equations (2) and (3). The rate of translation of
mRNATNFR1 to the corresponding surface protein describes the dynamic evolution of
synthesis of new receptors and is described by equation (4). The dynamic profile of
mRNATNFR1 in (4) is characterized by a 0th order synthesis and 1st order degradation,
whereas the expression is stimulated by “E” (early pro-inflammatory) [57] using the
principles of IDR.

NFκB dynamics—In order to model the dynamics of the activation of NFκB we pursue a
simplified model as suggested in our earlier work [15] as expressed in equation (5–8).
Qualitatively, the IKK activity corresponds to its intracellular concentration and it serves as
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the input signal for the subsequent activation of NFκB signaling module. The activation of
kinase activity IKK is induced by the cellular surface complex TNF-TNFR1. In order to
achieve a oscillation and bistability [58] response in the dynamics of the explored system
which could lead to constrained response or unconstrained one, a non-linear function of
Hill- type is assumed. In chronic inflammatory diseases several cytokines might be
responsible for perpetuating and amplifying the inflammatory reaction through the critical
node IKK [59]. Therefore, such an interaction is simulated by the presence of a positive
feedback loop between (E) and (IKK) in equation (5). NFκBn is used to denote both the
fraction of cytoplasmic concentration in nucleus and nuclear activity in this study. Thus, the
term (1- NFκBn) denotes the available free cytoplasmic concentration of NFκB. The
dynamics of nuclear concentration of NFκBn is depicted in equation (6). The import rate of
cytoplasmic NFκB into the nucleus depends on the availability of its free cytoplasmic
concentration (1- NFκBn) stimulated by the kinase activity, IKK. However, its degradation
rate depends on the presence of its primary inhibitor IκBα as the latter retrieves nuclear
concentrations of NFκB by forming an inactive complex in the cytoplasmic region. The
dynamics of the gene transcript of mRNAIκBα in equation (7), are characterized by a zero
order production rate kin,IκBα and a first order degradation rate kout,IκBα which is stimulated
by NFκBn. The protein inhibitor of NF-κB, IκBα, is synthesized based on the translation
from its gene transcript mRNAIκBα with rate kI,1 and it degraded at a rate kI,2 which is
stimulated by the kinase activity (IKK) as seen in equation (8). Based on the premise that
IκBα forms a complex with the available cytoplasmic NFκB [60], mathematically we
expressed it as the product(1− NFκBn)× IκBa. From a modeling point of view, in order to
achieve a zero steady state for the protein inhibitor IκBα we need the additional negative
term − kI,1.

Dynamics of intrinsic transcriptional responses—The core of the cellular dynamics
representing the activation of cellular responses is described in equations (9–15). The
dynamics of “E”, “M”, “L”, “A” and “D” basically follow the basic principles of modeling a
cellular response using a 0th order synthesis and a 1st order degradation dynamics. Both are
appropriately stimulated and/or inhibited by appropriate terms as described next. The
dynamics of “E”, the early pro-inflammatory response is given in (9). At the transcriptional
response level, we assume the nuclear activity of NFκB serve as the “active signal” that
indirectly stimulates the production rate of “E” by enhancing the expression of the
associated genes. Mathematically the stimulation effect of the nuclear activity NFκB is
expressed by the linear function(1+ kE,NFκBn × NFκBn). The link between the various
components of the pro-inflammatory response is, as explained earlier, quantified by means
of a compartmentalized signal transduction cascade with intermediate signals denoted by M1
and M2. In (11) the indirect response model is used to model the dynamics of “M” which is
stimulated by the upstream signal M1 with rate kM,M1 and coefficient γ1. Similarly, the late
pro-inflammatory response signal “L” is activated by the intermediate transduction process
M2 with rate kL,M2 coefficient γ2 as shown in equation (13). In (10) and (12) the
transduction processes M1 and M2 are modeled using the transit compartment model; these
steps will propagate stimulatory effects from “E” to “M” and from “M” to “L” with transit
times τ1 and τ2 respectively. The anti-inflammatory signal “A” is stimulated by the activated
late proinflammatory response “L” and decays with rate kout,A as shown in equation (14).
Finally, both the pro-inflammatory and anti-inflammatory responses would inhibit the
anabolism, thus the modifying functions in denominator decreases kin,D the production rate
of “D” as shown in (15).
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(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)
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(12)

(13)

(14)

(15)

Results and Discussion
Estimation of Relevant Parameters

The model depends on the values of 40 parameters. However, 15 are obtained either from
literature or estimated in relation to other model parameters. Specifically:

i. The half-life of TNF has been estimated to be 70 ± 11 min [61], and then we
speculate the initial normalized concentration of the inflammatory stimulus (TNF)
quickly decays so that it completely clears at about 1 hour to 80 min. Thus the
parameters describing the dynamics of TNF in equation (1), TRon, tTR and xTR, are
set to 1, 0.3 and 0.5 respectively.

ii. The dynamics of the TNF receptor (R) based on equation (2) depend on the ratio of
dissociation/association parameters of the ligand–receptor interaction whose
corresponding parameters k2 and k1 are assumed to be related k2 =1.5*k1 [62].

iii. For a 20% TBSA burn injury, all rats are expected to survive and eventually fully
recover [63]. Therefore, all the immune responses will eventually resolve and
return to homeostasis. As a result a number of relations exist between kinetic
parameters based on the system dynamics. Detailed relationships between those
parameters are derived and presented in the Appendix.

iv. A basic qualitative characteristic of the model is that, in the absence of any external
therapeutic intervention, it should posses the ability to generate two possible
outcomes (steady states) based on the severity of the primary burn injury. Namely,
the subject are expected to either recover and return to the prior to injury
homeostatic state, or attain a level of persistent inflammatory activation [64]. The
central control in the proposed model centers on the dynamics of NFkB regulation.
A thorough parametric analysis identify the critical role of k4 (5), kI,1 (8), kI,2 (8) in
controlling the manifestation of the two steady states. Thus, in order to assure the
model have the switch like behavior, k4 (5), kI,1 (8), kI,2 (8) are determined to
assume the values 2, 1.4 and 1.48 respectively.

v. Once the released initiator TNF is recognized by its specific receptor TNFR1, the
concentration of the free receptor should decrease at the beginning due to the
increased occupation and subsequently increase because of the degradation of the
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initiator TNF and decomposition of the complex (TNF·TNFR1). Thus, consistent
with this fact, the set of the parameters controlling the dynamics of the receptor in
equation (2), ksyn, k1, k2 and kdeg should be chosen such that the qualitative
characteristics of the receptor are similar to what was previously described.

As a result of the aforementioned analysis, only 25 independent parameters need to be
estimated. However, identification of a unique set of appropriate parameter values is
precluded based on the complex and nonlinear nature of the model [65] and the limited
number of available experimental data [66]. This limitation could be overcome by applying
widely used and robust resampling approaches, such as bootstrapping which can provided
estimates for the parameter values and confidence interval using the resulting empirical
distribution of parameters [67].Given the nature of the data used for the estimation of the
relevant model parameters, the sampling is based on the probe sets constituting each
essential cluster. Each expression motif used for the model calibration is composed of a
number of probe sets, as earlier described. For each bootstrap run sampling with
replacement is performed on the original set of probe sets. Each bootstrap sample is used for
estimating a set of parameters. The resampling process is repeated a number of times (1000
in our case) and mean of multiple bootstrap estimated model parameters is reported as the
most likely parameter estimate [68]

(16)

where i denotes bootstrap iteration. The relevant kinetic parameters are shown in Table 1,
and the performance of the model in reproducing the recorded responses is shown in Figure
5.

Confidence interval by bootstrap percentiles
The percentile method is explored in order to estimate confidence intervals for the estimated
parameters. The estimated interval is denoted as

(17)

where subscript l and u respectively denote the lower and the upper limits of the vector of
true model parameters β which is approximated by α central confidence interval.

The 100(α/2) and 100 (1−α/2) percentile values of the bootstrap distribution are used as the
upper and lower confidence limits for a parameter. The probability α (0<α<1) indicates a
100α% confidence that β∈[β ̂l, β ̂u]. In this study, α is chosen as 5, then 95% confidence limits
for β based on 1000 bootstrap replications are given by β ̂l = 25th and β ̂u = 976th largest
estimates of β [68]. The confidence intervals for parameter are also shown in Table 1.
Histograms of 1000 bootstrap replications of 4 parameters are presented in Figure 6. All
histograms are roughly Gaussian in shape, suggesting that confidence interval evaluation
based on bootstrap percentile is a reasonable approach.

Sensitivity analysis
Sensitivity analysis is performed to gain an insight in the model’s dependence on all the
parameters. The sensitivity coefficients [45] are calculated as:
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(18)

where p denotes the parameter whose sensitivity is to be estimated. In order to obtain a
broader view of the model sensitivities, the analysis is performed with respect to each of the
five essential responses individually. The target response, m, is thus defined as the
maximum over the 24hr period following the burn injury of E, M, L, A and the minimum of
D. Normalized sensitivity coefficients are depicted in Figure 7. The parameters showing
negative normalized sensitivity coefficient are either the ones directly modulate the
degradation rate of components such as k4 (12), kNFκB,2 (14), kout,E (22), kout,M (25) kout,L
(30), kout,A (34) or the ones that indirectly inhibit the signaling activity of NFkBn such as
kin,IκBα (15), kIκ Bα,1 (16), kI,1 (18). Perturbations of the parameters labeled 37–40 (kin,D (37),
k out,D (38), kD,L (39), kD,A (40)) which only modulate the dynamics of D, anabolism, have,
as expected, low impact on upstream model components. Similarly, perturbation of the
parameters labeled 33–36 (kin, A (33), kout, A (34), kA,L (35), γ3 (36)), 29–32(kin,L (29), kout,L
(30), kL,M2 (31), γ2 (32)), 24–27 (kin,M (24), kout,M (25), kM,M1 (26), γ1 (27) will only affect
A/D, A/D/L, A/D/L/M respectively. The sign and absolute value of normalized sensitivity
coefficients for the parameters labeled 1–22 are almost identical for all 5 responses
indicating that the perturbation of any of those parameters will have similar influence to all
transcriptional responses. Sensitivity analysis predicts that the most sensitive parameters are
the ones related to the IKK-NFkB-IkBa system and the pro-inflammation system.
Parameters involved in the dynamics of IKK (k4 (12)), mRNAIKBA (kin,IκBα (15), kIκ Bα,1
(16)) and IkBa (kI,1 (18)) which combine together to control the magnitude of the NFkB
signal in the activation of downstream components. Parameters governing the behavior of
the early response (kin,E (20), kE,NFκB (21), and kout,E (22)), intermediate (kin,M (24), kout,M
(25), kM,M1 (26), and γ1 (27)), and late proinflammatory responses (kin,L (29), γ2 (32)) also
have high sensitivities since they directly determines the intensity and duration of the pro-
inflammatory response.

Increasing the severity of thermal injury
It is reported that burn size determines the robustness of the inflammatory and
hypermetabolic responses [64]. An increase in burn size is associated with increased
hypermetabolism, persistent inflammation, catabolism and organ dysfunction. We simulate
the increases in the severity of the injury by increasing the initial condition of the initiator
TNF and thus inferring in silico progression of the inflammatory trajectory. We used the
model to predict the outcome under different initial value of the initiator TNF, as seen in
Figure 8.

The situation in which the initial level of TNF is 0 mimics a sham burn scenario and the
result is, as expected, no deviation from homeostasis. Since in our model we assume that the
arbitrary initial concentration of TNF of 1 correspond to 20% TBSA burn, values lower than
that would correspond to reduced injury severity and higher values to increase injury
severity. Figure 8 depicts typical predictions for varying levels of burn injury. A heightened
response and slower return to homeostasis is observed. These findings are in agreement with
prior studies [64] in which it was observed that larger burns cause a marked inflammatory
response and elevation in catecholamines, both of which are associated with increased
metabolic rate.

The nominal condition of TNF (0) =1 represents the 20% TBSA burn injury which is
tolerated by the animals. Our model, however, predicts that an initial condition of
TNF(0)=2.1, which corresponds to approximately 40% TBSA and is known to be
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detrimental [64], results in sustained synthesis of positive acute phase proteins and persistent
turnover of the constitute proteins leading to prolonged hypermetabolism. Heightened levels
of the inflammatory insult therefore leads an amplification of the immune response [69]
followed by a dysregulation in the host defense intrinsic dynamics leading to an
unconstrained inflammatory response. Moreover, the anti-inflammatory response becomes
highly activated which will further inhibit anabolism. Persistent down-regulation of
anabolism (thus causing increased catabolism) is consistent with chronic hypermetabolism.
In all, these results show that switch between healthy state (recovery/survival) and unhealthy
state (sepsis/morbidity and mortality) in burned patients is burn size dependent [64]. Thus
our model has the ability to predict the existence of two possible steady states corresponding
to a resolved and unresolved inflammatory states depending on the extend of the injury.

Dysregulation of intracellular controls
The cellular host response to injury plays a pivotal role in determining the intensity and
duration of the inflammatory response. NF-κB, a ubiquitous nuclear transcription factor,
plays a key role in regulating inflammation as well as other immune responses. Consistent
with this role, incorrect regulation of NF-κB has been implicated with cancer, inflammatory
and auto-immune diseases, septic shock, viral infection, and improper immune development
[70]. It is considered that aberrant NF-κB activity could be caused by defects in the
regulatory mechanisms controlling NF-κB activation[71]. Our model allows us to
investigate the response dynamics emerging from alterations in the IKK-NFκB dynamics.
We explore the effect of increasing the activation rate of the kinase NFκB quantified
through increases in the rate of activation NFκB by IKK signal, by increasing kNFkB,1 in
equation (6), by 50% and 100% respectively. This “mutation” would result in a persistently
elevated output signal from the NFκB module, leading to persistently elevated responses for
“A” and “D” as depicted in Figure 9. The result illustrates the implications of aberrant
regulation of NFκB [72] leading to improper immune response. The increase systemic
sensitivity to the tight regulation of NFkB dynamics could render an, otherwise, self-limited
to an aberrant, detrimental response The central role of NFkB signaling renders it a critical
regulator of the inflammatory response [73].

Implication of Administration of Receptor Antagonists or Antibodies Targeting Pro-
Inflammatory Cytokines

The thermal injury-induced severe sepsis, persistent hypermetabolism and surprisingly high
morbidity and mortality call for effective mechanistic-based treatments. Our model indicates
that persistent hypermetabolism and catabolism following severe thermal injury are linked to
the release of proinflammatory mediators which will trigger, broaden and deepen
downstream immune responses. Thus, blocking and neutralizing the pro-inflammatory
cytokines with administration of receptor antagonists or antibodies post burn might be an
effective strategy to prevent overactivation of downstream responses as well as deduce
mitigating hypermetabolism through injection of receptor antagonists or antibodies of
proinflammatory cytokines, such as monoclonal antibodies against TNF-α, soluble TNF
receptors, IL-1 receptor antagonists and soluble IL-1 receptors [74]. We explore the
influence of administrating a receptor antagonist against IL-1 (a prototypical representative
marker of the “M” response) as a potential target for therapeutic intervention [75]. Blocking
and neutralizing IL-1 with through soluble IL-1 receptor antagonists are simulating by
increasing the degradation rate of “M” through kout,M which represents accelerated lost of
effective IL-1 signals. The administration of a receptor antagonist at 5 hours postburn is
depicted in Figure 10. The administration of IL-1RA could reduce the effective signal of
‘M’ which will ultimately attenuate subsequent responses and reduce hypermetabolism. This
result is in agreement with recent observations that administration IL-1RA has the ability to
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favorably influence chronic inflammatory diseases supporting the hypothesis that blocking a
single mediator of the immune response may have clinical impact [76].

It is worth noting that for antibody and antagonist therapies the “window of opportunity”
determines the therapeutic effect [77]. The administration of the antibody before the full
onset of the response will have a beneficial result while no effect will be observed if the
injection occurs too early or too late. In our model, ‘M’, the intermediate response peaks at 4
hour post burn, and declines slowly until it returns to baseline at about 12 hour post-thermal
injury. Thus, it is predicted by our model that administration of the IL-1RA 12 hour
postburn will have no effect in controlling the response.

Concluding Remarks
The proposed response model describes a sequence of intracellular inflammatory responses
and nuclear transcriptional events in response to a thermal injury. The physicochemical,
mechanistic-based indirect response model allows us to intuitively explore the relationship
between the significance of inflammatory responses and the severity of thermal injury which
directly determines the outcomes. The model allows the design of a number of in silico
experiments aiming at deciphering complex interactions between constitutive elements, such
as signaling components and mediator blocking trough receptor antagonists, and the severity
of the injury. A better understanding of complexities of burn-induced inflammatory
responses trough modeling could be a significant step forward towards the discovery of
improved treatment options and strategies.
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Appendix

Steady-State Equations
In order to obtain the baseline dynamics within 24 hours post burn injury, steady state
equations were derived as follows:
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Figure 1.
Expression motifs of inflammatory transcriptional signatures in rat liver. 8,799 probe sets
are micro-clustered to 492 expression motifs.
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Figure 2.
Temporal profiles of statistically significant expression motifs: Normalized Signal Intensity
of expression motifs with P, 0.0020 vs. time
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Figure 3.
Essential Transcriptional Elements of the Inflammatory Response. (E) Early pro-
inflammatory response, (M) Intermediate pro-inflammatory response, (L) Late pro-
inflammatory response, (A) Anti- inflammatory response and (D) Anabolism
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Figure 4.
Qualitative Structure of the Thermal Injury Induced Model Detailed explanations are in the
text.
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Figure 5.
Model Building Results: Dynamic profiles of the elements that constitute the mechanistic
model of thermal injury-induced inflammation. Experimentally measured normalized
mRNA transcript levels are denoted by symbols (●); solid lines (-) are the model
predictions.
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Figure 6.
Histograms of 1000 bootstrap estimates of 4 parameters. The bars represent frequency. The

average bootstrap estimator values of parameters  are indicated by a dashed line and

its lower and upper confidence limits  and  respectively, are represented by dotted
lines.
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Figure 7.
Sensitivity analysis on the model parameters. Sensitivity coefficients are calculated by using
Eq. (18) with δ p= 0.01. Normalization is obtained by dividing the raw sensitivity coefficient
by the maximum one for each response. The numbered labels on the x-axis correspond to
the parameter in Table 1.
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Figure 8.
Implications of different severities of thermal injury. 1) TNF (0) =0: All the profiles stay at
baseline. 2) TNF (0) =0.6: Thermal injury triggers a stronger response for every profile. All
the pro-inflammatory responses (E), (M) and (L) and the anti-inflammatory response (A)
ultimately abate and return to the baseline while the anabolism response (D) increases and
returns to baseline. 3) TNF (0) = 1.2: A much stronger response for every profile is
observed. In addition, due to the increased initiator, the time the late-inflammatory response
(L), anti-inflammatory response (A) and anabolism response (D) return to the baseline is
postponed.
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Figure 9.
Implication of dysregulation of NF-κB activity by increasing the activation rate of NF-κB by
IKK signal kNFκ B,1 by 50% and 100% respectively. It leads to persistently elevated
responses for “A” and “D”. The larger the NF-κB activation rate kNFκB,1, the higher the
response will be for (L) the proinflammatory response, (A) the anti-inflammatory, and (D)
the anabolism.
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Figure 10.
Implication of administration of IL-1 receptor antagonist by decreasing concentration of (M)
through increasing the degradation rate constant. Increase kout,M by 20% and 40%
respectively from the 5th hour. The larger the degradation rate of (M), the lower the response
will be for (M) the intermediate proinflammatory response, (L) the proinflammatory
response, (A) the anti-inflammatory, and (D) the anabolism. All the responses, including the
anabolism, returned to baseline after a period of time.
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