Carbon-13 NMR studies on [4-13C] uracil labelled E. coli transfer RNA<sub>1</sub><sup>Val<sup>1</sup></sup>

Martin P.Schweizer<sup>2</sup>, W.David Hamill, Jr., Irene J.Walkiw, W.James Horton and David M.Grant

Departments of Medicinal Chemistry<sup>2</sup> and Chemistry, University of Utah, Salt Lake City, UT 84112, USA

Received 28 January 1980

### ABSTRACT

In this paper we describe carbon-13 nuclear magnetic resonance results on <sup>13</sup>C-enriched purified transfer RNA<sub>I</sub><sup>VAL</sup> from <u>E</u>. <u>coli</u> SO-187, a uracil requiring auxotroph. The organism was grown on uracil 90% <sup>13</sup>C-enriched at the carbonyl C<sub>4</sub> position. Transfer RNA<sub>V</sub><sup>Val</sup> was purified from bulk tRNA by sequential chromatography on columns of BD cellulose, DEAE-Sephadex A-50 and reverse gradient sepharose 4B. Dihydrouridine, 4-thiouridine, <sup>3</sup> and uridine 5-oxyacetic acid located at discrete positions in the polymer backbone were tentatively assigned in the highly resolved 25 MHz <sup>13</sup>C-spectra. Chemical shift versus temperature plots reveal differential thermal perturbation of the ordered solution structure, evident in the large dispersion (ca 3-4 ppm) of the uridine C<sub>4</sub> resonances. Over the range 26-68°C, V in the anticodon displays the largest downfield shift. Whereas several uridine residues rapidly shift downfield between 50-68°, one moves <u>upfield</u> beginning at 37°. The results are qualitatively compared with proton NMR analysis of the three dimensional structure.

#### INTRODUCTION

Of the many spectroscopic techniques which have been utilized to probe the structural and dynamic properties of transfer RNA in solution, nuclear magnetic resonance has been quite illuminating. In particular, monitoring lowfield protons involved in secondary and tertiary hydrogen bonding interactions has yielded many insights and has provided a comparison with the solid state.<sup>4-12</sup> Despite the success of this approach, there exists the difficult problem of definitively assigning the resonances from 23-30 imino and amino protons involved in secondary and tertiary hydrogen bonds.<sup>4</sup>

Carbon-13 NMR studies of transfer RNA site specifically enriched in carbon-13 offers advantages in ease of assignment, a broad chemical shift range and the potential to readily relate relaxation data to specific dynamic features of the molecule. In addition, monitoring only the <sup>13</sup>C-enriched carbons overcomes the peak overlap and sensitivity difficulties of the pioneering natural abundance studies of Komoroski and Allerhand.<sup>13,14</sup> Several reports on bulk transfer RNA enriched <u>in vivo</u> with carbon-13 have recently appeared. Agris and co-workers <sup>15-17</sup> have utilized the <u>E</u>. <u>coli</u> methionine auxotroph C6 to obtain tRNA labelled in the various methyl groups of modified nucleosides and also to incorporate <sup>13</sup>C-2 labelled uracil and <sup>13</sup>C-2 labelled adenine into tRNA. Hamill, et al. <sup>18,19</sup> have also used a nutritional auxotroph to incorporate 90%[4-<sup>13</sup>C]-uracil into tRNA of <u>Salmonella typhimurium</u> JL-1055, a uracil requiring strain which was selected in order to insure good incorporation and avoid the side labelling of cytidines. The carbonyl carbon-4 was chosen as a site for labelling because: 1) It is a quaternary carbon with a fairly long T<sub>1</sub>, (1.5-3 sec; Hamill, et al.<sup>19</sup>) thus having a narrow resonance; 2) It is involved in secondary and tertiary structure hydrogen bonding; 3) It has been found to be a probe sensitive to the electronic and magnetic environment around it (Hamill, et al.<sup>10</sup>). 4) Most of the unusual uracil nucleosides in tRNA involve modification at C<sub>5</sub> thus affording the opportunity to identify and monitor these unusual residues as well as uridine itself.

Ideally, one would want to study invidividual isoaccepting tRNA molecules in order to correlate <sup>13</sup>C NMR parameters with molecular structure and dynamics and to relate these properties with biological features. In this communication we describe encouraging 25 MHz carbon-13 NMR data on tRNA<sup>Val</sup> purified from bulk tRNA isolated from the uracil requiring <u>E</u>. <u>coli</u> strain SO-187 grown on 90%[4-<sup>13</sup>C]uracil. To our knowledge, this is the first report on a specific isoaccepting tRNA containing C-13 enrichment at known positions in the polymer chain.

### METHODS

Preparation of  $[4-^{13}C]$ -uracil labelled tRNA<sub>1</sub>

<u>E</u>. <u>coli</u> SO-187 was obtained from Dr. Jan Neuhard. This strain requires histidine, leucine, methionine, cytidine, thymidine and uracil for normal growth which was accomplished in minimal media of glucose and salts supplemented with the required nutrients including  $90\%[4-^{13}C]$ -Uracil. This C<sub>4</sub> labelled uracil was prepared in 17% overall yield based on KCN via Scheme I (asterisk denotes <sup>13</sup>C enrichment).

A total of 2.2 Kg of cell paste yielded 4.7 gms bulk tRNA which was obtained by the standard phenol extraction methods, modified to include precipitation of tRNA with 2 <u>M</u> LiCl<sup>20</sup> and final purification on DEAE-Sephacel. The tRNA was stripped of endogeneous amino acids by incubating in 2 <u>M</u> tris. HCl, pH8 for 90 minutes followed by ethanol precipitation. tRNA<sup>Val</sup> was obtained from 1.4 g



of the bulk tRNA using a modification of the method of Reid, et al.<sup>21</sup>. We were unable to obtain homogeneous tRNA<sup>Val</sup><sub>I</sub> following chromatography on BD cellulose (Cellex BD from Bio-Rad) and DEAE-Sephadex A-50 (Pharmacia 40-120 $\mu$  or Bio-Rad DEAE Bio-Gel A) as reported by these authors. Partially purified tRNA<sup>Val</sup><sub>I</sub> (<sup>13</sup>C-valine acceptance; 700 pmole/A<sub>260</sub>) as obtained from the DEAE-Sephadex A-50 column was chromatographed on the third type of column suggested by Reid, et al.<sup>21</sup>, Sepharose 4B using a reverse salt gradient.<sup>22</sup> Homogeneous tRNA<sup>Val</sup><sub>I</sub> was obtained between 0.85 and 0.75 M (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, eluting later than methionine, glycine and glutamic acid activities. The <sup>14</sup>C-valine acceptance was greater than 1400 pmoles/A<sub>260</sub>. For the charging assays we used partially purified valine synthetase obtained from DEAE chromatography as described by LaPointe and Soll.<sup>23</sup>

Slow scanning mass spectrometry was performed on TMS derivitized uridine

obtained from tRNA $_{\rm I}^{\rm Val}$  by digestion with ribonuclease T<sub>2</sub> and bacterial alkaline phosphatase. Per-<sup>13</sup>C-labelled uridine was used as a carrier. Analysis of the M + 1 peak (selected ion monitoring not performed) indicated that 75% of the uridines are <sup>13</sup>C enriched whereas only 2-3% of the cytidines are labelled. NMR Measurements

Two separate isolations of the  $[4^{-13}C]$ uracil labelled tRNA<sup>Val</sup><sub>I</sub> were carried out. In the first, seven mg lyphilized solid were isolated and used to produce the ambient temperature <sup>13</sup>C spectrum in Figure 1. The second larger isolation yielded 25 mg which was used for the thermal perturbation studies (Figure 2). The tRNA<sup>Val</sup><sub>I</sub> samples were dissolved in 0.3 ml phosphate buffered D<sub>2</sub>O solutions (pD = 7.3) containing NaCl, MgCl<sub>2</sub>, EDTA, Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>, and NaN<sub>3</sub> as given in the figure captions. D<sub>2</sub>O solvent was used to provide a strong lock signal. These solutions in 5 mm tubes were examined at 25 MHz using a Varian XL-100 spectrometer operating in the FT mode. Chemical shifts were measured from internal dioxane and converted to TMS by adding 66.3 ppm. A standard Varian variable temperature accessory was used for the thermal perturbation work. Probe temperatures were measured by a precision thermometer inserted into the sample spinner to the normal sample depth in the probe.

#### RESULTS AND DISCUSSION

## Resonance Assignments

The 25 MHz <sup>13</sup>C-spectrum of the  $[4-{}^{13}C]$ uracil enriched tRNA<sup>Val</sup><sub>I</sub> is displayed in Figure 1(a). Individual chemical shifts and tentative assignments are in Table I. The well resolved ambient temperature spectrum contains eleven resonances of the fourteen which would be expected based upon the sequence of <u>E. coli</u> K12 tRNA<sup>Val</sup>.<sup>24</sup>,<sup>25</sup> Peaks 5, 7 and 8 are thought to consist of overlapping resonances. The nuclear Overhauser enhancements (NOE's) of the C<sub>4</sub> in dihydrouridines and uridines in tRNA have been reported to be respectively 1.5 and 1.1<sup>19</sup>. This larger NOE for the C<sub>4</sub> of dihydrouridine is sufficient to account for the larger size of this line.

Assignments listed in the table for several of the C<sub>4</sub> signals from modified uridine nucleosides were based on comparison with reference nucleosides. Preliminary studies on the binding of paramagnetic manganese and cobalt ions reinforce the assignment of peak #11 to V. Also preliminary results on  $[4-^{13}C]$ uracil labelled tRNA<sup>phe</sup>, which does not contain V, shows no resonance at 160 ppm. In agreement with previous x-ray data on yeast tRNA<sup>phe 26</sup> and lowfield <sup>1</sup>H-NMR on <u>E. coli</u> tRNA<sup>Val 9</sup> we find that both ions bind in the hinge region of the tRNA



( a ) 25 MHz <sup>13</sup>C-spectrum of 4-<sup>13</sup>C-Uracil labeled tRNA<sup>Val</sup>T from *E. Coli* SO-187





Figure 1(a). 25 MHz spectrum of  $[4^{-13}C]$ uracil labelled tRNA $I^{al}$ . 21 Mg/ml in D<sub>2</sub>O solution of 30 mM K<sub>2</sub>HPO<sub>4</sub> (pD - 7.3), 150 mM NaCl, 15 mM MgCl<sub>2</sub>, 1.5 mM EDTA, 3 mM Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>, 0.03% NaN<sub>3</sub>; ambient temperature 32-34°C. 1 KHz sweep width, 16,304 transients, 90° pulse (45 µsec), and 4 second acquisition time. Chemical shifts measured from internal dioxane and converted to TMS by adding 66.3 ppm. (b). Three dimensional framework of yeast tRNAPhe with the superposition of the <sup>13</sup>C enriched uracils as found in <u>E</u>. <u>coli</u> tRNA $I^{al}$ .

three dimensional structure (see Figure 1(b)) by noting the preferential intensity loss at  $s^U$  and D as well as other peaks in the uridine region with progressive addition of metal. However, these titrations had negligible effect on peaks 4, 7 and 11 which indicates these residues are located some distance

| Peak<br>(see Fig. 1) | Chemical Shift<br>(ppm) | Assignment                       | Reference<br>Chemical Shift (ppm) |
|----------------------|-------------------------|----------------------------------|-----------------------------------|
| 1                    | 189.2                   | 4-Thiouridine (s <sup>4</sup> U) | 190.9                             |
| 2                    | 173.4                   | Dihydrouridine (D)               | 173.5                             |
| 3                    | 166.6                   |                                  |                                   |
| 4                    | 166.0                   |                                  |                                   |
| 5                    | 165.7                   | Ribothymidine (rT)               | 166.0 (rT)                        |
| 6                    | 165.6                   | (Uridine (U)                     | 165.8 (U)                         |
| 7                    | 165.1                   | Pseudouridine (ψ)                | 165.O (ψ)                         |
| 8                    | 164.8                   | Č                                |                                   |
| 9                    | 163.3                   |                                  |                                   |
| 10                   | 163.1                   |                                  |                                   |
| 11                   | 160.4                   | Uridine-5-oxyacetic<br>Acid (V)  | 161.4                             |

 TABLE I.
 13C-Chemical Shifts (in ppm from TMS) of C4 Carbonyls from Reference Nucleosides and 4-13C-uracil Labelled

 E.
 col1 SO-187 tRNA<sup>Val</sup>

from the "bend" area, i.e., in the anticodon loop (V,U<sub>29</sub>, U<sub>33</sub>) or acceptor stem (U<sub>4</sub>).

# **Thermal Perturbation Studies**

It is of interest to note the range of shifts for the uridines in the tRNA (163-167 ppm) compared with  $\sim$ 166 ppm for uridine itself. This is indicative of the influence of tRNA secondary and tertiary structural effects upon the environment of the individual uridine residues. Hamill, et al<sup>18,19</sup> have shown that this nonequivalence disappears upon heating through the order-disorder transition. Figure 2 is a plot or resonance position versus temperature. The data were collected sequentially from 31-68°C, followed by the data at 26.5°C. The fact that the peak positions at this low temperature fit nicely with the other data argues for the reversibility of structure and conformation.

One can readily note the numerous differential thermal effects in Figure 2. "V" in the anticodon loop displays twice the downfield shift ( $\sim$ l ppm) over the temperature range as do the other peaks. At 31°C, peak #5 splits and at 36.5°C peak, 6b appears to the high field side of #6. This resonance displays a steady <u>upfield</u> movement with temperature increase, contrary to every other resonance. Between 49-62°C peak #7 yields two resonances and #8 splits into three separate lines. At 62°C 15 discrete resonances can be counted, one more



Figure 2. Chemical shift versus temperature for the C<sub>4</sub> carbonyl resonance of  $[4^{-13}C]$ uracil labelled tRNAYal. 75 mg/ml in a D<sub>2</sub>O solution of 20 mM K<sub>2</sub>HPO<sub>4</sub> (pD=7.3), 100 mM NaCl, 10 mM MgCl, 5 MM EDTA, 2 mM Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>, 0.02% NaN<sub>3</sub>. 1 KHz sweep width, 15-20,000 transients per spectrum. Dioxane in this milieu shifted ca 10 Hz downfield over the temperature range.

than the 14 expected from the E. coli B of K12 primary sequence. $2^{24}$ , $2^{3}$  Either this mutant has an extra uridine residue, or the modified uridines are not 100 per cent modified.

In addition to these differential shift changes, the s<sup>4</sup>U resonance narrows at 36.5°C, indicating a possible rupture of the tertiary structure involving the s<sup>4</sup>U and A<sub>14</sub> bases. This change in the s<sup>4</sup>U line width supports the explanation

that the low intensity and broad base of this line is due to the restriction of motion experienced by this nucleoside in its tertiary environment. Reid's group has recently published proton NMR results on the low field exchangeable imino and amino protons involved in tertiary and secondary hydrogen bonds for several purified transfer RNA's.<sup>6-9</sup> They show that in tRNA<sup>Val</sup><sub>I</sub>, (refer to Figure 1(b)) tertiary interactions involving  $rT_{54}$ -A<sub>58</sub> and s<sup>4</sup>U<sub>8</sub>-A<sub>14</sub> are weakened early as temperature is raised, as well as is  $G_{18}$ - $\psi_{55}$ .

It is not strictly possible to directly compare the low field proton NMR data with our own because of the fact that our samples are dissolved in  $D_2O$  as opposed to water. However, we have found that replacing  $H_2O$  for the  $D_2O$  yields essentially the same spectrum at  $32-34^{\circ}C$ .  $D_2O$  was, as mentioned above, used to provide a strong lock signal, particularly for the variable temperature studies. It is probable that the perturbations seen here at 49-62°C reflect the general breakup of tertiary structure involving the D- and T $\psi$ C loops (Figure 1(b)).

The appearance of peak #6 and the line narrowing for s<sup>4</sup>U at 31-37°C seem to indicate an early structural perturbation and perhaps rearrangement of tertiary structure leading to a more flexible segment. On this basis  $U_7$ , adjacent to s<sup>4</sup>U<sub>8</sub>, may give rise to peak #6.

The gradual upfield drift of 6b undoubtedly reflects the greater time average diamagnetic influence of neighboring purine rings as the tRNA structure is perturbed. We do not know at this time which uridine residue is so affected, but it is probably in the "bend" region of the molecule. In the case of V in the anticodon, the larger downfield movement may signal a gradual lessening of diamagnetic ring current effects from purthes in the anticodon loop ( $A_{36}$ ,  $m^6A_{37}$ ,  $A_{38}$ ).

We are continuing our assignment efforts of the various uridine  $C_4$  resonances. These include specific nucleolytic fragmentation. Purification of other specific tRNA's is also underway. The results reported here demonstrate the considerable promise of carbon-13 NMR as a means of probing the structure and conformation of purified <sup>13</sup>C-enriched transfer RNA.

#### REFERENCES

Presented at the 21st Rocky Mountain Conference on Analytical Chemistry Biopolymers Symposium, Denver, July 30, - August 1, 1979. This work was supported by USPHS Grant GM 25512 (MPS) and GM08421, RR07092 and RR00574 (DMG). One of the authors (WDH) is indebted to the NIH for support in the form of Postdoctoral Fellowship GM 05546. We are grateful to Dr. Susumu Nishimura, National Cancer Research Center, Tokyo, for a generous sample

of uridine-5-oxyacetic acid and we wish to thank Dr. Brian Reid and staff for advice in  $tRNAY^{a1}$  purification. We are most grateful to Dr. Jan Neuhard of the University Institute of Biological Chemistry, Copenhagen, Denmark for graciously suppling the <u>E</u>. <u>coli</u> 50-187 culture. Address correspondence to this author. Phone 801-581-7599. 2. Abbreviations used: uridine (U); 4-thiouridine (s<sup>4</sup>U); dihydrouridine (D); 3. ribothymidine (rT); pseudouridine ( $\psi$ ); uridine-5-oxyacetic acid (V); tetra-methylsilane (TMS); T<sub>1</sub>; spin-lattice relaxation time; deuterium oxide (D<sub>2</sub>O). Bolton, P. H. and Kearns, D. R. (1978) in Biological Magnetic Resonance, 4. Eds. Bérliner, L. J. and Reuben, J., Plenum Press, pp. 91-137. Patel, D. J. (1978) Ann. Rev. Phys. Chem. <u>29</u>, 337-362. 5. Reid, B. R., Ribeiro, S. N., McCollum, L., Abate, J. and Hurd, R. E. (1977) 6. Biochemistry <u>18</u>, 3996-4005. Hurd, R. E. and Reid, B. R. (1979) ibid <u>18</u>, 4005-4011. Hurd, R. E. and Reid, B. R. (1979) ibid <u>18</u>, 4017-4024. 7. 8. Hurd, R. E., Azhderian, E. and Reid, B. R. (1979) ibid 18, 4012-4017. 9. 10. Johnston, P. D. and Redfield, A. G. (1979) in Transfer RNA, Part 1, Structure, Properties and Recognition, Eds. Schimmel, P., Soll, D. and Abelson, J. Cold Spring Harbor Laboratory Press, pp. 181-206. 11. Robillard, G. T., Tarr, C. E., Vosman, F. and Berendsen, H.J.C. (1976) Nature 262, 363-369. 12. Robillard, G. T., Tarr, C. E., Vosman, F. and Reid, B. R. (1977) Biochemistry 16, 5261-5273. 13. Komoroski, R. A. and Allerhand, A. (1972) Proc. Nat'l Acad. Sci. USA, 69, 1804-1808. 14. Komoroski, R. A. and Allerhand, A. (1974) Biochemistry 13, 369-372. 15. Agris, P. F., Fujiwara, F. G., Schmidt, C. F. and Loeppky, R. N. (1975) Nucl. Acids Res. 2, 1503-1572. Tompson, J. G., Hayashi, F., Pankstelis, J. V., Loeppky, R. N. and Agris, 16. P. F. (1979) Biochemistry <u>18</u>, 2070-2085. Tompson, J. G. and Agris, P. F. (1979) Nucleic Acids Research <u>7</u>, 765-779. 17. 18. Hamill, W. D., Jr., Grant, D. M., Horton, W. J., Lundquist, R. and Dickman, S. (1976) J. Amer. Chem. Soc. 98, 1276-1278. 19. Hamill, W. D., Jr., Horton, W. J. and Grant, D. M. (1979) ibid, submitted 1979. 20. Avital, S. and Elson, D. (1969) Biochim. Biophys. Acta. 179, 297-307. Reid, B. R., Ribeiro, S. N., McCollum, L., Abate, J. and Hurd, R. E. 21. (1977) Biochemistry <u>16</u>, 2086-2094. Holmes, W. M., Hurd, R. E., Reid, B. R., Rimerman, R. A. and Hatfield, G. W., (1975) Proc. Nat'l Acad. Sci., USA <u>72</u>, 1068-1071. LaPointe, J. and Soll, D. (1972), J. Biol. Chem. <u>247</u>, 4966-4974. Harada, F., Kimura, F. and <u>Mishimura</u>, S. (1971) Biochemistry <u>10</u>, 3269-3276. Harada, F., Kimura, F. and Nishimura, S. (1971) ibid <u>10</u>, 3277-3283. 22. 23. 24.

- 25.
- 26. Jack, A., Ladner, J. E., Rhodes, D., Brown, R. S. and Klug, A. (1977) J. Mol. Biol. <u>14</u>, 315-328.