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Abstract

Background: The insulin-like growth factor (IGF) signaling pathway has long been established as playing critical roles in
skeletal muscle development. However, the underlying regulatory mechanism is poorly understood. Recently, a large family
of small RNAs, named microRNAs (miRNAs), has been identified as key regulators for many developmental processes.
Because miRNAs participate in the regulation of various signaling pathways, we hypothesized that miRNAs may be involved
in the regulation of IGF signaling in skeletal myogenesis.

Methodology/Principal Findings: In the present study, we determined that the cell-surface receptor IGF-1R is directly
regulated by a muscle-specific miRNA, microRNA-133 (miR-133). A conserved and functional binding site for miR-133 was
identified in the 39untranslated region (39UTR) of IGF-1R. During differentiation of C2C12 myoblasts, IGF-1R protein, but not
messenger RNA (mRNA) expression, was gradually reduced, concurrent with the upregulation of miR-133. Overexpression of
miR-133 in C2C12 cells significantly suppressed IGF-1R expression at the posttranscriptional level. We also demonstrated
that both overexpression of miR-133 and knockdown of IGF-1R downregulated the phosphorylation of Akt, the central
mediator of the PI3K/Akt signaling pathway. Furthermore, upregulation of miR-133 during C2C12 differentiation was
significantly accelerated by the addition of IGF-1. Mechanistically, we found that the expression of myogenin, a myogenic
transcription factor reported to transactivate miR-133, was increased by IGF-1 stimulation.

Conclusion/Significance: Our results elucidate a negative feedback circuit in which IGF-1-stimulated miR-133 in turn
represses IGF-1R expression to modulate the IGF-1R signaling pathway during skeletal myogenesis. These findings also
suggest that miR-133 may be a potential therapeutic target in muscle diseases.

Citation: Huang M-B, Xu H, Xie S-J, Zhou H, Qu L-H (2011) Insulin-Like Growth Factor-1 Receptor Is Regulated by microRNA-133 during Skeletal Myogenesis. PLoS
ONE 6(12): e29173. doi:10.1371/journal.pone.0029173

Editor: Leon J. de Windt, Cardiovascular Research Institute Maastricht, Maastricht University, Netherlands

Received May 31, 2011; Accepted November 22, 2011; Published December 15, 2011

Copyright: � 2011 Huang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was supported by grants from the National Natural Science Foundation of China (No. 30830066, 81070589 and 30870530) and the
National Basic Research Program (No.2011CB811300) from the Ministry of Science and Technology of China. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: lssqlh@mail.sysu.edu.cn

Introduction

Skeletal muscle development (myogenesis) is orchestrated by

myoblast proliferation, withdrawal from the cell cycle, differenti-

ation and subsequent fusion into multinuclear myotubes. The

process of myogenesis requires cooperative actions of the basic

helix-loop-helix transcription factors of the MyoD family (MyoD,

Myf5, myogenin, MRF4) and other transcription factors, such as

members of the MEF2 family (MEF2A-D) [1], which are

modulated by various extracellular stimuli and regulated by

distinct signaling pathways [2,3,4,5].

The insulin-like growth factor (IGF) signaling pathway is unique

because it promotes virtually every biological process, including

proliferation, differentiation, growth and survival during embry-

onic and postnatal muscle development [6]. The actions of the

IGFs (IGF-1 and IGF-2) in stimulating intracellular signaling

cascades are mediated by the IGF-1 receptor (IGF-1R), a receptor

tyrosine kinase. Upon ligand binding, IGF-1R becomes autopho-

sphorylated and induces the phosphatidylinositol 3-kinase (PI3K)/

Akt pathway, which is integral to the processes of skeletal muscle

development and growth [7,8]. Disrupted IGF-1R signaling may

lead to abnormal muscle development, as shown by the fact that

mice carrying a null mutation of the Igf-1r gene develop muscle

hypoplasia and those lacking IGF-1R in muscle exhibit impaired

skeletal muscle development [9,10]. By contrast, ectopic expres-

sion of IGF-1R in muscle results in muscle hypertrophy [11,12].

Therefore, tight control of the IGF-1R signaling pathway is

important for normal muscle cell development. However, the

regulatory mechanisms of IGF-1R signaling during muscle

development remain unclear.

MicroRNAs (miRNAs) represent a class of ,22-nucleotide

endogenous non-coding RNAs. These molecules typically repress

gene expression by base pairing to the 39untranslated regions

(39UTR) of target messenger RNAs (mRNA), leading to

translational repression and/or mRNA degradation in animals

[13]. Since their discovery, a cohort of miRNAs have been found

to participate in the regulation of various cellular processes,

including cell proliferation, differentiation and apoptosis [14,15].

In particular, spatial- and temporal-specific miRNAs serve as

pivotal regulators of tissue determination, differentiation and

maintenance [16,17]. Recently, compelling evidence suggests that

signal transduction pathways are prime candidates for miRNA-
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mediated regulation during embryogenesis or tissue development

[18]. Therefore, we hypothesized that miRNAs may be involved

in the regulation of IGF-1R signaling during skeletal myogenesis.

In the present study, we found that muscle-specific miR-133

posttranscriptionally represses IGF-1R expression during myo-

genic differentiation of C2C12 myoblasts by directly binding to its

39UTR and thus negatively modulating the PI3K/Akt signaling

pathway. Furthermore, IGF-1 accelerated induction of miR-133

in differentiating myoblasts, probably through an increase of

myogenin protein. Our results reveal a negative feedback

mechanism in which IGF-1-stimulated miR-133 is involved in

the downregulation of the IGF-1R signaling pathway during

skeletal muscle development.

Results

IGF-1R is a direct target of miR-133
To investigate which miRNAs participate in IGF-1R regulation,

we screened the 39UTR of IGF-1R mRNA for potential miRNA

binding sites by TargetScan 5.1. Among the miRNAs predicted to

target IGF-1R mRNA, we focused on miRNA-133, which is

expressed abundantly during muscle development [19]. The

mouse IGF-1R transcript was predicted to contain two canonical

miR-133 response elements (MREs) in the 39UTR, suggesting that

IGF-1R may be a regulatory target of miR-133. The 39UTR

sequence of mouse IGF-1R was aligned to those of rat, human,

dog and cow. The seed-matched region of the miRNA-mRNA

interaction is most conserved in MRE 1 (Figure 1A). Predicted

hybridization structure also suggested a more favorable folding

energy between MRE 1 of mouse IGF-1R mRNA and miR-133

(Figure 1B).

To further investigate whether miR-133 represses IGF-1R

directly, fragments of the IGF-1R 39UTR containing the potential

binding sites were inserted downstream of the Renilla luciferase

gene in the psiCHECK2 reporter vector. As a positive control,

activity of the luciferase reporter with the antisense sequence of

miR-133 (miR-133-luc) was abrogated by miR-133. Cotransfec-

tion of the reporter construct containing wild-type MRE 1 along

with the miR-133 expression vector caused a significant reduction

of luciferase activity. In contrast, introduction of a mutation in the

seed-matched region of MRE 1 abolished the repression by miR-

133. However, miR-133 had no effect on the reporter construct

containing wild-type MRE 2 (Figure 1C).

Reciprocal expression of IGF-1R and miR-133 during
muscle development and C2C12 cell differentiation

To study the possible regulation of IGF-1R by miR-133, we

monitored the expression of IGF-1R protein and miR-133 during

muscle development. Muscle tissues were separated from the hind

limbs of embryonic, neonatal and adult mice for protein or RNA

extraction. Western blotting showed that IGF-1R protein was

abundantly expressed in skeletal muscle of 18.5 days post-coitum

(dpc) embryos, whereas reduced expression of IGF-1R protein in

adult skeletal muscle was observed. In contrast, results from

northern blotting showed that miR-133 levels increased dramat-

ically in skeletal muscles as mice grew into adulthood (Figure 2A),

displaying an inverse relationship to IGF-1R expression.

We next used C2C12 myoblasts, an established mouse cell line

model, to recapitulate the process of myogenic differentiation [20].

C2C12 cells continue to proliferate in high serum conditions but

exit from the cell cycle and differentiate into myotubes after serum

withdrawal (Figure 2B). During 8 days of culturing in low serum

conditions, IGF-1R protein levels increased early and then sharply

declined when C2C12 cells differentiated into mature myotubes

(Figure 2C). In contrast, IGF-1R transcript remained at a constant

level from day 4, suggesting a posttranscriptional regulation of

IGF-1R mRNA. Meanwhile, expression of miR-133 simulta-

neously increased during the differentiation process (Figure 2C).

MiR-133 negatively modulates IGF-1R/PI3K/Akt signaling
through repression of IGF-1R in C2C12 cells

To test whether miR-133 mediates the posttranscriptional

regulation of endogenous IGF-1R in muscle, we introduced miR-

133 mimics into C2C12 cells. An RNA duplex of scrambled

sequence was transfected as negative control. Western blot analysis

showed that ectopic expression of miR-133 decreased endogenous

IGF-1R protein in a dose-dependent manner in C2C12 cells

(Figure 3A). When 29-O-methylated antisense RNA inhibitors and

miR-133 mimics were cotransfected into C2C12 cells, the miR-

133 inhibitors, but not the negative control, reversed the

repression of IGF-1R expression, further confirming the specific

regulation of IGF-1R by miR-133 (Figure 3B). Notably, exogenous

miR-133 exerted minor effects on IGF-1R mRNA levels, while

small interfering RNA (siRNA) targeting IGF-1R led to dramatic

reduction of both IGF-1R mRNA and protein levels in C2C12

cells. These data demonstrate that miR-133 represses IGF-1R at

the posttranscriptional level (Figure 3C).

Because the IGF-1-activated IGF-1R/PI3K/Akt signaling

pathway is essential for skeletal muscle development, we asked

whether miR-133-mediated regulation of IGF-1R protein levels

was sufficient to modulate this signaling pathway. Overexpression

of miR-133 in C2C12 cells reduced IGF-1-stimulated phosphor-

ylation of Akt at Serine-473, the Akt activation site. Moreover,

siRNA targeting of IGF-1R also repressed phosphorylation of Akt

(Figure 3D). These results indicate that ectopically expressed miR-

133 represses IGF-1R translation to reduce overall PI3K/Akt

signaling.

IGF-1 stimulation potentiates expression of miR-133
during myogenesis

It was observed that plasma levels of IGF-1 increase during

development [21], and IGF-1 was found to induce expression of

myogenin, a myogenic transcription factor demonstrated to

activate miR-133 expression [8,22]. We thus hypothesized that

IGF-1 contributes to miR-133 induction via myogenin during

myogenesis. To recapitulate IGF-1-stimulated muscle develop-

ment, we applied IGF-1 to differentiating C2C12 cells. IGF-1

potently induced myotube formation as shown by the morphology

of differentiating C2C12 cells examined by microscopy. Higher

cell density and more differentiated myotubes were observed in

C2C12 cells treated with IGF-1, demonstrating the positive effects

of IGF-1 on muscle cell proliferation and differentiation

(Figure 4A). Interestingly, expression of miR-133 displayed faster

kinetics in C2C12 cells treated with IGF-1 than those without

stimulation, indicating that IGF-1 exerts positive effects on miR-

133 expression during myogenesis. Consistently, differentiating

C2C12 cells expressed higher levels of myogenin protein in the

presence of IGF-1 (Figure 4B). To test whether IGF-1 stimulates

miR-133 expression directly through myogenin, we used RNA

interference (RNAi) technology to knock down myogenin. An

siRNA targeting myogenin significantly hindered the differentia-

tion of C2C12 cells even in the presence of IGF-1 (Figure 4C). As a

result of the repression of myogenin by siRNA, miR-133

expression decreased in differentiating C2C12 cells. IGF-1

treatment did not reverse such repressive effect (Figure 4D),

indicating that myogenin is necessary for IGF-1-induced miR-133

expression.

miR-133 Regulates IGF-1R Pathway in Myogenesis
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Discussion

This study identified a novel function of miR-133 during

skeletal myogenesis of negative regulation of IGF-1R and the

PI3K/Akt signaling pathway. In addition, we showed that IGF-1

stimulates the upregulation of miR-133 during skeletal myogenic

differentiation. Our findings support a negative feedback circuit in

the regulation of IGF-1R signal transduction during skeletal

myogenesis, as illustrated in Figure 5.

The expression level of IGF-1R is critical for the regulation of

muscle development because it directly influences the intracellular

responsiveness of muscle cells to the extracellular IGF signal. Both

transcriptional and posttranscriptional regulatory mechanisms are

essential for tight control of the expression of IGF-1R [23,24].

Here we show that the gradual reduction of IGF-1R protein levels

during C2C12 differentiation is regulated by miR-133, which is

significantly induced during the same process. Through inhibition

of IGF-1R protein expression, miR-133 downregulates the

Figure 1. Identification of a functional miR-133 binding site in the IGF-1R 39UTR. (A) Seed-matched sequences in the IGF-1R 39UTRs are in
red and conserved regions between aligned sequences are indicated by stars. (B) Schematic representation of luciferase reporter constructs. miRNA-
mRNA hybridization structures and folding energies were predicted by RNAhybrid. (C) HEK 293T cells were transfected with psiCHECK2 luciferase
reporter vectors containing wild type or mutated miR-133 binding sites downstream of the Renilla luciferase gene (50 ng), and the internal Firefly
luciferase gene was used to normalize for transfection efficiency. A pcDNA6.2-miR-133 expression vector or pcDNA6.2-negative control vector was
cotransfected (150 ng). Dual-luciferase assays were performed 48 hours after transfection. Normalized luciferase activities of miR-133 transfectants
were shown as the percentage relative to pcDNA6.2 transfectant, which was set at 1. Data represent the mean 6 standard deviation (S.D.) of three
independent experiments. ***p,0.001 vs. pcDNA6.2 transfectants.
doi:10.1371/journal.pone.0029173.g001

miR-133 Regulates IGF-1R Pathway in Myogenesis
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phosphorylation of Akt, which plays a key role in multiple cellular

processes such as glucose metabolism, cell proliferation, differen-

tiation, growth and apoptosis [25,26]. Therefore, miR-133 may

regulate various intracellular responses controlled by the IGF-1R/

PI3K/Akt signaling pathway during myogenesis. Supportive of

such role is the evidence that phosphorylation of Akt (at Ser-473) is

shown to be gradually silenced during C2C12 differentiation [27].

During our study, others have found that another muscle-specific

miRNA, miR-1, also directly targets IGF-1R [27]. The two most

abundant miRNAs in muscle are employed to posttranscription-

ally repress IGF-1R expression during skeletal muscle develop-

ment, implying that the IGF-1R expression level may be a decisive

factor in myogenesis.

As one of the most abundant myogenic microRNAs, miR-133

has been reported to regulate multiple targets which are involved

in skeletal muscle development. The first one identified is the

transcription factor serum response factor (SRF), which is critical

for muscle proliferation and differentiation [19]. Other target

genes like alternative splicing factor neuron-polypyrimidine tract-

binding protein (nPTB) and energy expenditure regulator

uncoupling protein 2 (UCP2) were also verified [28,29]. These

findings emphasized the important regulatory role of miR-133 in

modulating muscle development.

Several myogenic transcription factors have been shown to

transactivate miR-133 in muscle cells [22,30,31]. However, the

upstream signaling pathway has not been determined. Interest-

ingly, we found that stimulation of differentiating C2C12 cells with

IGF-1 increased the expression of both miR-133 and the

transcription factor myogenin (Figure 4B), which has been shown

to directly regulate miR-133 transcription [8,22]. This finding

reveals that miR-133 forms a feedback circuit with the IGF-1R

signaling pathway in muscle cells (Figure 5). This notion is

supported by the observation that IGF-1R and miR-133 were

reciprocally expressed (Figure 2A) when circulating IGF-1 levels

increased as the mice matured [21]. Such a homeostatic regulatory

mechanism may play an important role in normal muscle

development. Coincidentally, similar regulatory circuits has been

reported recently in a neuron-like differentiation model, suggesting

that miRNA-mediated negative feedback loops may be general

mechanisms for the regulation of IGF-1R signaling in various

tissues [32].

miRNAs exert profound effects by cooperatively regulating

multiple components in the same signaling pathway. Apart from

the IGFs in the microenvironment, the endogenously expressed

IGFs also play important roles in myogenesis [33]. Therefore,

muscle cells may also utilize miRNAs to tightly control the

expression of IGF genes. Recently, miR-1 and miR-125b have

been reported to negatively regulate IGF-1 and IGF-2 respectively

in myogenesis [27,34]. Thus, while miR-1 and miR-125b reduce

intracellular production of IGFs, cotranscribed miR-133 and miR-

1 repress IGF-1R and modulate muscle cell responsiveness to

circulating (endocrine) or local (autocrine/paracrine) IGF stimu-

lation. By contrast, muscle-enriched miR-486 facilitates the IGF-1-

activated IGF-1R/PI3K/Akt signaling by directly targeting to the

negative signaling regulators PTEN and Foxo1a [35]. Therefore,

the miRNA-mediated posttranscriptional regulatory network

could be of significant importance in balancing the activities of

IGFs in muscle cells (Figure S1).

Deregulated IGF-1R signaling can result in muscle pathogen-

esis. Rhabdomyosarcoma (RMS) is a pediatric soft-tissue sarcoma

that arises from dysregulated proliferation and differentiation of

skeletal muscle progenitors. IGF-1R expression is elevated in RMS

tissues and is considered a key initiator of oncogenic transforma-

tion of muscle cells [24]. Recently, miR-1 and miR-133 were

Figure 2. Reciprocal expression of IGF-1R and miR-133 during muscle development and C2C12 cell differentiation. (A) IGF-1R protein
and miR-133 levels were determined in hind limb muscles at 18.5 dpc embryos, 2 days postnatal neonates or adults in C57BL/6J mice by western blot
or northern blot analysis. GAPDH or U6 snRNA served as loading controls for protein or small RNA. (B) Morphology of proliferating myoblasts
maintained in growth medium or differentiated myotubes after serum derivation for 6 days. (C) C2C12 myoblasts were induced to differentiate for up
to 8 days. Protein levels were determined by western blotting, miRNA by northern blotting and mRNA by semi-quantitative RT-PCR. Representative
results from independent experiments (n$2) are shown. The numbers below the blots represent relative expression levels. GM represents growth
medium and DM represents differentiation medium.
doi:10.1371/journal.pone.0029173.g002

miR-133 Regulates IGF-1R Pathway in Myogenesis
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found to be dramatically reduced in RMS cell lines, suggesting a

pathological link between these miRNAs and RMS [36].

Therefore, our data suggest that reduced miR-133 expression

may be responsible for IGF-1R elevation in RMS, thus leading to

increased proliferation and blocked differentiation. Compromised

IGF-1R signaling has also been implicated in muscle hypertrophy,

atrophy and age-associated sarcopenia [37,38]. A work-induced

muscle hypertrophy model has demonstrated that miR-133 and

miR-1 expression is reduced in rodent skeletal muscle [39].

Although direct evidence remains to be provided, our findings and

those of other studies have suggested that the deregulation of miR-

133 and miR-1 may be critical for the pathological mechanism of

these muscle diseases. This also raises the possibility that muscle-

specific miRNAs may serve as potential therapeutic targets for

muscular disorders. Further studies are needed to fully elucidate

miRNA-involved physiological or pathological regulatory mecha-

nisms in skeletal muscle.

Materials and Methods

Ethic statement
This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals by the National Academy of Sciences. The

protocol was approved by the Committee on the Ethics of Animal

Experiments of Sun Yat-sen University (Permit Number: 2009-

0011). All efforts were made to minimize suffering.

Cell culture and transfection
C2C12 myoblasts obtained from the Cell Bank of Chinese

Academy of Sciences (Shanghai, China) were maintained at

subconfluent densities in growth medium (GM) supplemented with

10% fetal bovine serum (Gibco, Carlsbad, CA) in Dulbecco’s

modified Eagle’s medium (DMEM). Near-confluent cells were

induced to differentiate in differentiation medium (DM) consisting

of DMEM plus 2% horse serum (Gibco, Carlsbad, CA) for 8 days.

LONGTM R3 IGF-1 (Sigma-Aldrich, St. Louis, MO) was added to

differentiation medium to a final concentration of 5 nM. HEK

293T cells obtained from the Cell Bank of Chinese Academy of

Sciences (Shanghai, China) were maintained in DMEM supple-

mented with 10% fetal bovine serum. RNA oligonucleotides or

DNA vectors were transfected with LipofectamineTM 2000

(Invitrogen, Carlsbad, CA) following the manufacturer’s instruc-

tions. RNA duplexes were synthesized by GenePharma (Shanghai,

China), and 29-O-methylated miRNA inhibitors were synthesized

by RiboBio (Guangzhou, China). RNA oligonucleotides are listed

in table S1.

Plasmid constructs
To generate a miR-133 expression vector, a 300-bp fragment

containing the miR-133-1 genomic sequence was amplified by

PCR from C57BL/6J mouse genomic DNA and cloned into a

modified pcDNA6.2-GW/EmGFP vector (Invitrogen, Carlsbad,

CA) between EcoRI and XhoI sites [17]. Fragments of 39UTRs

containing putative miR-133 binding sites were amplified by PCR

Figure 3. miR-133 negatively regulates the IGF-1R signaling pathway in C2C12 cells. (A) C2C12 cells were transfected with negative
control or miR-133 mimics at 50 nM or 100 nM for 36 hours. (B) C2C12 cells were transfected with 50 nM RNA mimics and inhibitors as indicated for
36 hours. (C) C2C12 cells were transfected with 50 nM negative control, miR-133 mimics or anti-IGF-1R siRNA. Proteins were extracted for western
blotting against IGF-1R. a-tubulin was served as loading control. The mRNA levels of IGF-1R were determined by semi-quantitative RT-PCR, and
GAPDH was used as internal control. (D) C2C12 cells were transfected as in (C). 24 hours after transfection, cells were serum starved for 24 hours and
incubated in differentiation medium supplemented with 5 nM IGF-1 for 30 minutes. Proteins were extracted for western blotting against Ser-473
phosphorylated Akt and total Akt. GAPDH was used as a loading control. Representative results from independent experiments (n$2) are shown. The
numbers below the blots represent relative expression levels.
doi:10.1371/journal.pone.0029173.g003

miR-133 Regulates IGF-1R Pathway in Myogenesis
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and cloned into the psiCHECK2 vector (Promega, Madison, WI)

between SalI/XhoI and NotI sites downstream of the Renilla

luciferase gene. Point mutations were introduced by PCR using

primers with the mutated sequence at the 59 end. All constructs

were verified by DNA sequencing. Primers are listed in table S1.

Dual-luciferase reporter assays
HEK 293T cells were allowed to attach overnight in 48-well

plates (46104 cells in each well). On the following day, the cells

were cotransfected with either 150 ng pcDNA6.2-miR-133a or

pcDNA6.2-negative control expression vectors and 50 ng wild-

type or mutant psiCHECK2-39UTR reporter vectors. The cells

were harvested, and dual-luciferase assays were performed

48 hours after transfection using the Dual-Luciferase Reporter

Assay System (Promega, Madison, WI). Renilla luciferase activity

was normalized to Firefly luciferase expression for each sample to

account for differences in transfection efficiency.

RT-PCR and northern blot analysis
Total RNA was extracted from mouse tissues or C2C12 cells

with Trizol reagent (Invitrogen, Carlsbad, CA). For RT-PCR,

total RNA was reverse transcribed using the PrimeScript reverse

transcription reagent kit (Takara Biotech. Co., Ltd., Dalian,

China) and amplified by PCR using specific primers. For

quantitative RT-PCR of miRNA, RNA was reverse transcribed

using a stem-loop primer as described elsewhere [40] and PCR

amplified with the SYBRTM Premix ExTaq kit (Takara Biotech.

Co., Ltd., Dalian, China). Fold changes in gene expression were

calculated as 22DDCt. For northern blot analysis, RNA was

separated on 15% polyacrylamide denaturing gels and transferred

Figure 4. IGF-1 stimulation induces expression of miR-133. (A) C2C12 cells were induced to differentiate in the presence or absence of 5 nM
IGF-1. Morphological change was examined by phase contrast microscopy. (B) miR-133 levels normalized to U6 were determined by quantitative RT-
PCR. miR-133 levels in day 1 after differentiation induction were set at 1, and relative expression was shown as fold induction. Data represent the
mean 6 S.D. of three independent experiments. **p,0.01 vs. day 1 without IGF-1 treatment. Protein extracted from differentiating C2C12 cells in the
presence or absence of IGF-1 was used for western blot analysis using a myogenin antibody; a-tubulin served as loading control. (C) C2C12 cells were
transfected with myogenin siRNA for 24 hours before induced to differentiate in the presence or absence of 5 nM IGF-1 for another 48 hours.
Morphological change was shown. (D) Relative miR-133 levels were determined by quantitative RT-PCR. miR-133 levels in negative control
transfectants without IGF-1 treatment were set at 1, and relative expression was shown. Data represent mean 6 S.D. of three independent
experiments. *p,0.05, **p,0.01 vs. negative control transfectants without IGF-1 treatment. Western blot analysis determined the expression of
myogenin protein. Representative results from independent experiments (n$2) are shown. The numbers below the blots represent relative
expression levels.
doi:10.1371/journal.pone.0029173.g004

miR-133 Regulates IGF-1R Pathway in Myogenesis
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to Hybond-N nylon membranes (Amersham Biosciences, Buck-

inghamshire, England). Membranes were hybridized using specific

probes with [c-32P] ATP labeling at the 59end. Membranes were

exposed with a phosphorimager plate and visualized by a

Typhoon 8600 imager (Amersham Biosciences, Buckinghamshire,

England). All primers are listed in table S1.

Western blot analysis
Skeletal muscle was dissected from hind limbs of C57BL/6J

mice and ground to powder in liquid nitrogen. Proteins from

mouse tissues or C2C12 cells were extracted in RIPA buffer

(50 mM Tris-HCl, pH 8.0, 150 mM Sodium chloride, 1% NP-40,

0.5% sodium deoxycholate, 0.1% SDS, 2 mM EDTA and 1 mM

PMSF), and protein concentration was determined by the BCA

protein assay kit (Pierce Biotechnology Inc., Rockford, IL).

Proteins were separated on 10% SDS-PAGE gels and transferred

to Hybond-P PVDF membranes (Amersham Biosciences, Buck-

inghamshire, England). The membranes were incubated with

primary antibodies to IGF-1Rb, a-tubulin, p-Akt (Ser-473), Akt

(pan), GAPDH from Cell Signaling Technology (Beverly, MA), or

myogenin from Santa Cruz Biotechnology Inc. (Santa Cruz, CA).

The blots were then incubated with horseradish peroxidase-

conjugated secondary antibodies and visualized using commercial

ECL kits (Cell Signaling Technology, Beverly, MA).

Bioinformatic and statistical analysis
Prediction of miRNA target sites in 39UTRs was performed by

TargetScan 5.1 Mouse (http://www.targetscan.org) [41]. The

hybridization structure between miRNA and its putative binding

site was analyzed with RNAhyrid (http://bibiserv.techfak.uni-

bielefeld.de/rnahybrid/) [42]. Results from northern blot, western

blot and RT-PCR were quantified using the densitometric image

analysis software Quantity One from Bio-Rad (Richmond, CA).

Normalization was made against internal controls. Data are

presented as the mean 6standard deviation and subjected to

Student’s t test; a value of p,0.05 was considered statistically

significant.

Supporting Information

Figure S1 Coordinate regulation of IGF-1R/PI3K/Akt
pathway by miRNAs in muscle. miR-1, miR-133 and miR-

125b negatively regulate IGF-1R/PI3K/Akt signal transduction

by reducing ligand production or IGF-1R protein levels. miR-486

promotes this pathway by repressing negative regulators.

(TIF)

Table S1 Sequence of RNA and DNA Oligonucleotides.

(DOC)
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