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Abstract

The study of biological systems dynamics requires elucidation of the transitions of steady states. A ‘‘small perturbation’’
approach can provide important information on the ‘‘steady state’’ of a biological system. In our experiments, small
perturbations were generated by applying a series of repeating small doses of ultraviolet radiation to a human keratinocyte
cell line, HaCaT. The biological response was assessed by monitoring the gene expression profiles using cDNA microarrays.
Repeated small doses (10 J/m2) of ultraviolet B (UVB) exposure modulated the expression profiles of two groups of genes in
opposite directions. The genes that were up-regulated have functions mainly associated with anti-proliferation/anti-
mitogenesis/apoptosis, and the genes that were down-regulated were mainly related to proliferation/mitogenesis/anti-
apoptosis. For both groups of genes, repetition of the small doses of UVB caused an immediate response followed by
relaxation between successive small perturbations. This cyclic pattern was suppressed when large doses (233 or 582.5 J/m2)
of UVB were applied. Our method and results contribute to a foundation for computational systems biology, which
implicitly uses the concept of steady state.
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Introduction

Systems biology studies the dynamics of networks of interact-

ing molecules in living organisms [1,2]. According to the new

paradigm for biomedical study proposed by Kitano [2], a systems

framework for biology has at least four key properties: I) system

structure, II) system dynamics, III) control method, and IV)

design method. An adequate experimental method of studying

biological systems dynamics, particularly the transitions of

physiological states (defined [3,4,5] according to various factors

such as amounts of metabolites corresponding to metabolic states

or RNA expression profiles for transcriptional states), has not yet

been developed. Beyond the physiological state, physiological

robustness [2] is also an essential feature for life to be

maintained. To maintain the physiological robustness, a variety

of levels of robustness, including transcriptomic expression, are

critical. This can be referred as the transcriptomic expression

steady state.

To unravel the complex regulatory networks underlying a living

organism, many systems approaches have been applied to biological

model systems. In those studies, chemical treatment [6], radiation

exposure [7,8], and physical stresses [9,10] were frequently used to

investigate their corresponding biological effects. However, the

stimuli commonly used to investigate state transitions are often so

intense that they casue exaggerated results leading to irreversible

transitions of biological states, thus obscuring the physiological

responses that occur under normal conditions. Here we present a

new method of studying systems dynamics using a small

perturbation technique; we also experimentally demonstrated the

existence of steady states at the transcription level. The concepts of

small perturbation and steady state used here are adapted from

quantum physics. We used small doses of UVB radiation as a source

of small perturbations to explore the gene expression profiles of

disturbed biological states in auto-transformed human keratinocytes

(HaCaT) [11].

Following repeated small perturbations of 10 J/m2 UVB, two

opposite classes of genes, one down-regulated and the other up-

regulated, exhibited an immediate response followed by relaxation

between successive small perturbations. When larger doses (233 or

582.5 J/m2) of UVB were applied, however, these genes exhibited

prolonged down- or up-regulation without relaxation. A cyclic

pattern of gene expression following repeated small perturbations

indicates the existence of steady states. This cycle pattern is

suppressed when large perturbations are applied. In our

experiments, the functions of up-regulated genes were mainly

associated with anti-proliferation, anti-mitogenesis, and apoptosis.

On the other hand, down-regulated genes were mainly related to

proliferation, mitogenesis, and anti-apoptosis.

In conclusion, this study provides experimental evidence for the

concept of steady state at the transcription level and demonstrates

the feasibility of using small perturbation approaches for investi-

gating steady-state phenomena. This study could also contribute to
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a foundation for computational systems biology, which implicitly

uses the concept of steady state.

Results

Overview of Microarray Measurement
We set up experiments (Figure 1A) to study gene expression

profiles of HaCaT cells during multiple irradiations of UVB. The

cells were irradiated at 0, 8, and 16 hours and harvested at 0.5, 8,

8.5, 16, 16.5, and 24 hours (T1 to T6 sampling time points) with

its companion control. T1, T3, and T5 were timed to be 30

minutes after the corresponding UVB irradiation. T2, T4, and T6

were allocated 8 hours after each UVB irradiation and immedi-

ately before the next UVB irradiation (except T6).

One way to reduce the variance of microarray data is to

increase the total number of measurements. Recent studies on

microarray data processing suggested that loop design is more

efficient than reference design [12,13,14]. Loop design (Figure 1B)

was adapted and twelve samples were compared in this

investigation. Samples C1 to C6 and UV1 to UV6 were non-

irradiated and irradiated ones, respectively. Each sample was

harvested at the indicated sampling time point.

In pre-processing the microarray data, we filtered out defective

spots using the criteria described in Materials and Methods and

then performed the loop calculation. In summary, 44% of spots

(corresponding to 3.2 k genes) survived filtering. From the spots

that survived, 2,019 genes were non-singular in the loop

calculation. Among these 2,019 genes, we selected 155 genes with

significant changes in gene expressions across the six sampling

time points. For this selection, we set the standard deviation (SD)

of the gene expressions at the six time points to be larger than 0.21

(see Text S1 for the selection criterion), which allowed 155 genes

of the 2,019 genes to be submitted to the steady-state model-fitting

algorithm (see Materials and Methods).

Transcriptomic Steady State
By applying the steady-state model-fitting algorithm to the

expression data, genes with an absolute value of correlation

coefficient, |R|, (Equation 2) greater than 0.75 (see Text S1 for

the selection criterion) were considered to have a perturbation

response followed by relaxation to steady state. For those genes

with positive correlation coefficient (Figure 2B), their expression

profiles are similar to that of the fitting model. For those genes

with negative correlation coefficient (Figure 2A), their expression

profile are opposite to that of the fitting model. Genes with a

negative correlation (Figure 2C) were those whose expression

profiles are opposite to that of the model. Two classes of genes

with steady-state characteristics were identified by the steady-state

model-fitting algorithm (Figure 2B, C and Table 1). Genes in class

I were up-regulated and then relaxed (Figure 2B and D); genes in

class II were down-regulated and then relaxed (Figure 2C and E)

in response to repeated small UVB (10 J/m2) stimuli. Figure 2D

and E also show expression profiles of steady-state genes after

single large stimulus. Genes with a positive correlation coefficient

in response to repeated small perturbations were almost

consistently up-regulated at all time points (35 out of 56 time

points, i.e., 62.5%) after both single large doses [I (233 J/m2) and

II (582.5 J/m2)]. Genes with negative correlation showed an

inverse pattern, i.e., almost all gene in this case were consistently

down-regulated at all time points (88 out of 96 time points, i.e.,

91.7%).

Pathway Analysis of Genes with Steady-state Response
In order to gain insight into the relationships between those two

classes of genes mentioned above, PathwayAssist (Stratagene,

USA), a bioinformatics tool for identifying biological interactions

among genes of interest from the published literature, was

implemented. The functions of up-regulated genes are mainly

associated with anti-proliferation (four out of ten genes), anti-

mitogenesis (two out of ten genes), and apoptosis (six out of ten

genes) (Figure 3A). On the other hand, down-regulated genes are

mainly related to proliferation (six out of fourteen genes) and

mitogenesis (four out of fourteen genes), and anti-apoptosis (two

out of fourteen genes) (Figure 3B).

Real-time PCR Confirmation
To confirm the gene expression changes observed by our cDNA

microarray system, several critical genes were re-evaluated using

real-time PCR (Figure 4A). The correlation coefficient R between

results of cDNA microarray and those of real-time PCR of all tests

is 0.93 (Figure 4B).

Discussion

In this study, we used a new approach of repeated small

perturbations to demonstrate the existence of a transcriptional

Figure 1. UVB stimulation and microarray experimental design.
A) Three UVB exposures are indicated by UV at 0, 8, and 16 hours. T1–6

denote the sampling time points. T1, 3, 5 are timed 30 minutes after the
corresponding UVB irradiation. T2, 4, 6 are timed 8 hours after each UVB
irradiation. At each sampling time point, two samples (control and UV-
irradiated) were collected. B) Seventeen dual-color microarray slides,
each represented by an arrow, are used to measure the expression
levels of the 12 samples. UVi/Ci denotes the UV-irradiated/control
sample harvested at time Ti. Samples appearing at the tail/head of an
arrow are labelled with Cy3/Cy5. Slides no. 14 and 16 are dye-swap
hybridizations. Slides no. 11 and 15 are technical replications. Slide
no. 17 is a mock experiment.
doi:10.1371/journal.pone.0029241.g001

Repeated Small Perturbation Reveals Steady States

PLoS ONE | www.plosone.org 2 December 2011 | Volume 6 | Issue 12 | e29241



steady state, which is a crucial step in life maintenance and an

essential assumption of computational systems biology [15,16,17].

In performing this type of small perturbation experiment, timing

and dosage are critical. In principle, different perturbation time

periods would lead to the discovery of different sets of steady-state

genes since recovery time—the time between perturbation and

return to steady state—varies according to the type of gene. In

order to induce detectable biological responses, the UVB doses

used previously are usually higher than 80 J/m2 [18,19,20,21].

However, such intense stimuli usually cause exaggerated results,

leading to an irreversible transition of biological states. In contrast,

perturbations that are too small may result in insignificant

responses that are below the detection limit of the measurement

systems used. Besides perturbation time periods, we believe that

different doses of small perturbations would lead to the discovery

of different sets of steady-state genes that in turn correspond to

different physiological processes.

To the best of our knowledge, steady-state characteristics at the

transcription level have not been systemically studied and

experimentally proven. One important effect of this lack of

experimental proof is that the external stimuli applied to biological

models usually cause irreversible outcomes. Also, the high noise in

gene expression profiles [22,23] could hamper the detection of

transcriptional steady state. Here, we adapted the concepts of

small perturbation and steady state from quantum physics to the

current study and experimentally proved the existence of

transcriptomic steady states. A reliable cDNA microarray system,

loop-designed statistical calculation, and computer modelling also

played important roles in this study.

In this study, we demonstrated that repeated small-dose UVB

exposure affects the expression of genes functionally related to

proliferation and apoptosis in a cyclic pattern. In addition, for other

groups of genes, cumulative effects following UVB exposure are

evident. This may indicate that an eight-hour time period is not

enough for these genes to relax to their basal level. Alternatively, the

UVB dosage 10 J/m2 may be beyond the steady-state threshold for

these genes. Therefore, whether a perturbation is sufficiently small

could be depend on genes, pathways, and model organisms. From

these observations, we conclude that experiments that use only one

exposure duration and one dosage may be insufficient for revealing

all UVB-regulated genes having steady-state phenomena. However,

for the first time, we did observe that critical genes governing

Figure 2. Results of steady-state model-fitting algorithm and the corresponding expression profiles of single large dose
treatments. A) The profile of the fitting model. r and s are both arbitrary constants. Only genes with profiles of gene expression which changes
significantly over time points (SD .0.21) were applied model-fitting algorithm. B and C) The expression profiles of genes with correlation coefficient,
R, more than 0.75 (positive correlation) and less than 20.75 (negative correlation), respectively. Genes with correlation coefficient absolute value, |R|,
greater than 0.75, as shown in (B) and (C) were considered to have a steady-state response. D and E) Steady-state genes that correlated positively (D)
and negatively (E) with the model were randomly permuted in these two cases. Up and down regulation are presented by yellow and blue boxes,
respectively; grey boxes indicate missing data. The gene expression profiles of the two groups of genes with small perturbation exhibit steady-state
characteristics. For single large dose I (233 J/m2 of UVB) or single large dose II (582.5 J/m2 of UVB), the steady-state characteristics of the gene
expression disappeared.
doi:10.1371/journal.pone.0029241.g002
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proliferation and apoptosis exhibit steady-state characteristics of

gene expression.

The approach presented in this study provides a non-destructive

means to investigate the biological black box. Therefore, in vivo

experiments could be performed using this approach. Small

perturbation experiments could potentially be applied to assess drug

response by monitoring state transitions. Because such experiments

better mimic real physiological responses, they can be used to reveal

the mechanism of interest in a less ambiguous manner.

Materials and Methods

UVB Source and Irradiation
The light source was a 6 W UVB lamp assembled with a filter

(EN-160, Spectronics Corporation, USA). The uniformity of the

illumination field was well controlled. The coefficient of variation

(CV) of intensities in the 55 cm2 illumination field was 2.15%.

UVB dosage was measured with an IL-1400A radiometer

(International light, USA) equipped with a wide band UV detector

(SED005/WBS320/W, International light, USA). Before cells

were exposed to UVB radiation, the culture media were collected

in centrifuge tubes and cells were rinsed twice with pre-warmed

PBS. HaCaT cells were then irradiated with 10 J/m2 (dose rate:

3.8 W/m2) UVB in 100 mm uncovered dishes (#430167,

Corning, USA) with a thin layer of PBS at each indicated time

point (Figure 1A). PBS was removed immediately after UVB

irradiation. Cells were replenished with the previously collected

medium and incubated at 37uC. A control set of cells was treated

identically at each time point, except for UVB radiation.

Microarray Fabrication
The microarray data of this work is MIAME compliant and has

been deposited in GEO of NCBI (accession number: GSE7060).

Incyte Genomics supplied 9,600 human cDNA clones. After

sequence verification, 7,334 clones were further amplified by PCR

and purified by isopropanol precipitation in 96-well plates. The

purified DNAs were re-suspended in 3X SSC for spotting. A single

microarray slide (CMT-GAPsII, Corning Inc., USA) contains 7,334

human cDNA probes in quadruplicate, 10 spike-in genes (Spot-

ReportTM-10 Array Validation System, Stratagene, USA) and one

housekeeping gene, b-actin, in 96 replicates. Microarray slides were

fabricated in a well-controlled environment (2862uC and 4861%

humidity) and stored under desiccation until use. The arrayer

system was assembled according to M-Guide (Patrick O. Brown

laboratory, Stanford University, USA) and controlled by Array-

Maker version 2.5.1 (Joseph DeRisi laboratory, UCSF, USA) [24].

Data Filtering and Normalization
The following three criteria were used to validate spots: 1) SNR

[(signal-background)/SD of background] of Cy3 and Cy5 both

greater than five, 2) Diameter of spot greater than 75 mm, and 3)

CV (coefficient of variation) of pixels within a spot in the Cy3 and

Cy5 channels both less than 100%. After this filtering process, on

average about 45% of the spots were identified as valid.

Table 1. The steady-state characteristic genes that tease out using the steady-state model-fitting algorithm are listed with gene
name, referenced function(s), model classification, and corresponding source.

Model-fitting classification Gene name Functional annotation

up-regulated TGFB1I4 proapoptosis [27]

up-regulated ZFP36L2 development [28]

up-regulated SEMA3B proapoptosis [29]

up-regulated C10orf11 unknown

up-regulated ID2 proliferation [30]

up-regulated MGC61598 unknown

up-regulated GADD45A cell cycle arrest, DNA repair, and cell death [31]

up-regulated TOB1 antiproliferation [32]

up-regulated PMAIP1 proapoptosis [33]

up-regulated DSIPI antiproliferation [34]

down-regulated SUZ12 proliferation, antiapoptosis [35]

down-regulated KCNK1 ion channel [36]

down-regulated CNN3 cytoskeleton [37]

down-regulated SMAD7 an antagonist of TGFb signaling [38]

down-regulated UGCG differentiation, development [39]

down-regulated EGFL5 development [40]

down-regulated TGFBR2 TGFb signaling [41]

down-regulated IVNS1ABP RNA splicing [42]

down-regulated unknown

down-regulated MCM7 DNA replication [43]

down-regulated ARL6IP2 unknown

down-regulated EMP1 proliferation, differentiation [44]

down-regulated SLC38A1 glutamine transporter [45]

down-regulated XPO1 nuclear export factor [46]

doi:10.1371/journal.pone.0029241.t001
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Figure 3. Pathway analysis of genes with steady-state response to repeated small UVB perturbations created using PathwayAssist.
A) Up-regulated genes are primarily associated with the functions of anti-proliferation, anti-mitogenesis, and apoptosis. B) Down-regulated genes are
mainly related to the functions of proliferation, mitogenesis, and anti-apoptosis. The plus and the minus symbols mark positive and negative
regulations, respectively. Yellow boxes mark biological functions. Purple circles mark genes teased out by the steady-state model-fitting algorithm.
Genes without data connection in the PathwayAssist database are pictured on the left without connection.
doi:10.1371/journal.pone.0029241.g003
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We used MAANOVA [25], provided by Churchill’s group, to

perform normalization. To reduce the variation caused by printing

pin and location on a slide, we used the within-print tip group

normalization [26].

Statistical Model of Microarray Loop Design
The normalized log ratios of the cDNAs were subsequently

processed by using a log linear model (see Text S1). This algorithm

assumes that the normalized log ratio of a clone is a sum of the

three variables, c, l, and s. These three variables are being

evaluated for each clone. The variable c is the dye bias correction

of a clone among the sixteen arrays. The variable l is an estimated

relative expression level of a clone of twelve samples. The variable

s is the estimated value of random error of a clone among twelve

samples. After the data were processed by the log linear model, a

total of 2,019 genes are non-singular in the loop calculation.

Steady-state Model-fitting Algorithm
In order to systematically tease out genes having characteristic

steady-state expression patterns (quick response to the perturba-

tion followed by relaxation), we developed a steady-state model-

fitting algorithm. In the algorithm, the ideal pattern of a gene with

steady-state response to the perturbation was defined as the vector

v = (r,s,r,s,r,s), where r represents the response status to UVB

irradiation and s represents the steady-state status (Figure 2A). At

time point Ti, the response of a gene to UVB irradiation, denoted

by xi, is the logarithm of ratio of the true expression level of UVi to

that of Ci. We call the vector x = (x1,x2,x3,x4,x5,x6) the gene

Figure 4. Comparison of microarray data with real-time PCR data. A and B) Seven genes were chosen randomly from the set of genes with
steady-state characteristics for this comparison. egfl5, cnn3, and bcar3 (A) exhibit immediate down-regulated responses, while pmaip1, jun, id2, and
gadd45a (B) exhibit immediate up-regulated responses followed by relaxation. Solid and dash lines represent real-time PCR data and microarray data,
respectively. The error bar of the microarray data indicates standard deviation estimated by the log linear model. The error bar of real-time PCR data is
the standard deviation derived from three sets of CTs. C) Scatter plot of real-time PCR results versus microarray data. The correlation coefficient, R is
0.93. The red line is a linear fit through all points. These results clearly demonstrate that even at the small fold change data points, these two sets of
data agree very well. It also demonstrates the high reliability and resolution of our cDNA microarray system, which makes this kind of small
perturbation study possible.
doi:10.1371/journal.pone.0029241.g004
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expression profile. Using the data from the 17 slides (Figure 1), the

expression profile can be estimated via a log linear model and the

least squares method (see Text S1). For a given expression profile,

x = (x1,x2,x3,x4,x5,x6), of a gene, the correlation coefficient (R)

between x and the ideal pattern v is

R~
1

N

XN

i~1

(
vi{�vv

sv

)(
xi{�xx

sx

) ð1Þ

where �XX and sX are the mean and the standard deviation of x,

respectively. R can be deduced to

R~+
1

6sx

(x1zx3zx5{x2{x4{x6) ð2Þ

Its absolute value, |R|, is a measure of similarity between the

expression profile x and the ideal steady-state pattern v. From

Equation 1, which is equivalent to Equation 2, we see that R is the

correlation coefficient of V and X. A correlation coefficient is

always between 21 and 1. Figure 2 in the Text S1 shows the

relative frequency histogram (red line) of the one million

simulated, under the null hypothesis, R values and its smoothed

approximation (blue line), f(x) = 0.75 (12x2).

Real-time PCR
The microarray data were verified by real-time PCR (TaqMan

gene expression assays, Applied Biosystems, USA). All the real-

time PCR results presented in this study were performed by an

independent genomic core facility, National Research Program for

Genomic Medicine, Taipei, Taiwan (http://genome.ym.edu.tw).

Probes and primers for the interested genes (bcar3, cnn3, egfl5,

gadd45a, id2, jun, and pmaip1) were chosen from the commercial

database (Applied Biosystems, USA). The assay ID of correspond-

ing probe sets and primers in the ABI’s database are

Hs00182488_m1, Hs00156565_m1, Hs00323519_m1, Hs00169255_

m1, Hs00747379_m1, Hs01103582_s1, and Hs00382168_m1,

respectively. All real-time PCR assays were performed in triplicate.

Real-time PCR results were calculated by comparing UVB-

irradiated experimental sets against control sets. Amplification of

b-actin (ACTB, Hs99999903_m1) and glyceraldhyde-3-phosphate

dehydrogenase (GAPDH, Hs99999905_m1) was used as an internal

loading control for each individual amplification reaction. The

quantity of target mRNAs was normalized to a housekeeping gene

in each sample. Relative expression data are similar for two internal

loading controls (b-actin and GAPDH) of real-time PCR. The

results are shown in Figure 4 and only the data based on b-actin

normalization are presented.
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