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Abstract

Accurate prediction of protein secondary structure is essential for accurate sequence alignment,
three-dimensional structure modeling, and function prediction. The accuracy of ab initio
secondary structure prediction from sequence, however, has only increased from around 77% to
80% over the past decade. Here, we developed a multi-step neural-network algorithm by coupling
secondary structure prediction with prediction of solvent accessibility and backbone torsion angles
in an iterative manner. Our method called SPINE X was applied to a dataset of 2640 proteins
(25% sequence identity cutoff) previously built for the first version of SPINE and achieved a
82.0% accuracy based on ten-fold cross validation (Q3). Surpassing 81% accuracy by SPINE X is
further confirmed by employing an independently built test dataset of 1833 protein chains, a
recently built dataset of 1975 proteins and 117 CASP 9 targets (Critical Assessment of Structure
Prediction techniques) with an accuracy of 81.3%, 82.3% and 81.8%, respectively. The prediction
accuracy is further improved to 83.8% for the dataset of 2640 proteins if the DSSP assignment
employed above is replaced by a more consistent consensus secondary structure assignment
method. Comparison to the popular PSIPRED and CASP-winning structure-prediction techniques
is made. SPINE X predicts number of helices and sheets correctly for 21.0% of 1833 proteins,
compared to 17.6% by PSIPRED. It further shows that SPINE X consistently makes more
accurate prediction in helical residues (6%) without over prediction while PSIPRED makes more
accurate prediction in coil residues (3-5%) and over predicts them by 7%. SPINE X Server and its
training/test datasets are available at http://sparks.informatics.iupui.edu/

To materialize the benefits of genome projects, the structure and function of millions of
protein sequences generated from these projects need to be fully characterized. However,
this massive number of proteins, which continues to increase exponentially every year,
makes it practically impossible to do detailed experimental studies for each protein due to
high cost and low efficiency. As a result, a necessary step of protein studies is to make
theoretical prediction of protein structure and function.

Accurate protein structure and function prediction relies, in part, on the accuracy of
secondary structure prediction [For reviews, see Refs. 1:2:3. 4.5, Protein secondary
structure refers to the local conformation of the polypeptide backbone of proteins that is
often discretely classified into a few states. Clearly, the definition of secondary structure,
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i.e., the methods for making secondary structure assignment, will have a direct impact on the
accuracy of secondary structure prediction. The discrepancy among different automatic
assignment techniques, as large as 15-25%5: 7, and inconsistency among assigned secondary
structures within a single method” are among the reasons for the slow progress in improving
secondary structure prediction in recent yearsl: 8 4.9 A recent critical assessment® suggests
that the three-state accuracy for the best ab-initio single methods is around 80.5% based on a
benchmark of 1975 proteins uploaded to the PDB 10 between 2004 and 2008.

One way to avoid the above-described assignment problem is to predict real values of
backbone torsion angles instead. We have developed several neural-network-based
techniques that systematically improved the accuracy of torsion angle prediction [for
example, the mean absolute error in w angle was successively reduced from 54° (Real-
SPINELL), to 38° (Real-SPINE 212), to 36° (Real-SPINE 313) and finally to 33° (SPINE
X114)]. The latest improvement is due to combined discrete and continuous real-value
prediction of torsion angles and multi-step training and prediction. Though the secondary
structure prediction embedded in SPINE X was based on a modified version of the
consensus assignment SKSP’: 14 and was used for improving torsion angle prediction, its
accuracy (80.7%) evaluated based on DSSP assignment!® was ranked first among 10 stand-
alone ab-initio methods assessed [80.7%, SPINE X14; 80.1%, PSIPRED 2.56; 79.2%,
SPINE?7; 78.8%, PORTER8; 78.0, SABLE®; 76.5%, YASPINZC; 74.5%, OSSHMM?L,
74.3%, INT?2; 68.5%, P.S.HMM?23 and 68.0%, PHD?4]°. This assessment raised our interest
to build a new secondary structure prediction server based on the DSSP assignment by
employing iteratively predicted torsion angles from SPINE X. We found that the new
method yields a 82.0% ten-fold-cross-validated accuracy on our previous dataset of 2640
proteins, 82.1% on a 2479 subset with proteins of length less than 500 residues, 82.3% for a
benchmark of 1975 proteins 9, 81.3% for a completely independent test dataset of 1833
proteins and 81.8% for CASP 9 targets. We find that SPINE X outperforms the newest
version of PSIPRED?® by an average of one percent in all large databases and produces
much more accurate distribution of secondary structure elements (secondary structure
content). Interesting differences between predicted secondary structures of different methods
highlight significant room for further improvement of secondary structure prediction.

1.1 Iterative multi-step algorithm

Our secondary structure prediction consists of six steps of iterative prediction of secondary
structure (SS), real-value residue solvent accessibility (RSA), and torsion angles (z) as
demonstrated in Fig. 1. The first five steps constitute the SPINE X method for predicting
real value torsion angles (both ¢ and ) published recently4. It begins with generating the
Position Specific Scoring Matrix (PSSM) using the PSIBLAST mutation profile 2% 14 and
seven representative physical parameters (PP) including a steric parameter (graph shape
index), hydrophobicity, volume, polarizability, isoelectric point, helix probability, and sheet
probability. These parameters are introduced and investigated in Ref. 26 and their values for
our application here are given in Ref. 4. In the first step, a neural network is set up to predict
secondary structure (SS0) employing PSSM and PP as input. The secondary structure was
defined according to SKSP, a consensus assignment of four methods [STRIDEZ/,
KAKSI?8, SECSR29, and P-SEA3], plus a further modification for those helical and sheet
residues that are located in incorrect sheet or helical torsional angle regions, respectively
(labeled as SKSP+) 14, The SKSP+ modification affects about 7% of the residues as
compared to the original DSSP assignment. The consensus assignment SKSP, instead of
commonly used DSSP assignment, was employed because the former is about 3% more
consistent in assigning the same secondary structure to residues in structurally aligned
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positions 7. Both changes were employed with the aim of improving torsion angle
prediction 14,

In the second step, another neural network is built to predict residue solvent accessibility
(RSA) with PSSM, PP and predicted SSO as input. The first two steps correspond to Real-
SPINE 3.0 for real-value prediction of solvent accessibility!® except that the predicted
secondary structure is based on SKSP+. Then, predicted RSA and SSO0 together with PSSM
and PP are used to predict the torsion angles (z0). The fourth step is to perform a new round
of SKSP+ secondary structure prediction (SS1) based on predicted 0 and RSA with PSSM
and PP. Newly predicted secondary structure (SS1) together with PSSM, PP and predicted
RSA is then employed to perform a new round torsion angle prediction (z1). SPINE X for
real-value torsion angle prediction has produced highly accurate torsion angle prediction that
were found more useful than predicted secondary structure as restraints for tertiary structure
prediction!?,

The sixth and final step is a neural network that is trained to predict DSSP assigned
secondary structure using PSSM, PP, predicted RSA and predicted 71 as inputs. This step is
useful when comparing with other methods that use the DSSP assignment. The eight state
DSSP assignments were grouped as follows: the 3-helix (G), alpha-helix (H) and pi-helix (I)
into state H; beta-bridge (B) and extended-strand (E) into state E; and hydrogen-bonded-turn
(T), bend (S) and other () into state C.

1.2 Neural networks

In each step, the general form of the neural networks is the same. It consists of two hidden
layers with 101 hidden nodes. All weights were guided based on sequence separation. That
is, all neural network weights were multiplied by factors whose values are inversely
proportional to the sequence distance between their corresponding residues in the sliding
window. For a complete discussion of guided weights refer to Ref. 13, A 21-residue window
is employed. The values of PP are linearly normalized such that their range is [-1, 1]. Since
PSSM values are almost always in the interval [-9, 9] they were normalized by 9.0 to keep
their range mostly in the unit interval. In the case of networks for predicting secondary
structure the output and training data were coded as a 3-state probability vector and a filter
network with a single hidden layer of 21 nodes was used to refine the probability
distribution for the 21-residue window. For a given 21-residue input window the target
output is the secondary structure assignment for the central residue in the window. The
number of inputs for the six steps are 568 (21x27+1) for SSO, 631 (21x30+1) for RSA, 652
(21x31+1) for z0 and 71, and 631 (21x30+1) for SS1 and SS2. This is because PSSM, PP,
SS, RSA, r are a vector of dimension 20, 7, 3, 1, and 2, respectively. One extra input is
added to all input counts to account for the bias input neuron. In each step, five separate
neural networks were trained with different random initial weights and the results of these
predictions were averaged to produce the final result. Vacant locations in the windows
around residues near the terminals of a protein were explicitly excluded from the training by
limiting the range of the input window. We employed a bipolar activation function given by
f(x) = tanh(ax), with & = 0.2, momentum of 0.4, and the back-propagation method with a
learning rate of 0.001. These parameters were optimized in previous studies of torsion
angles and solvent accessibility12 13. 14,

1.3 Datasets for training and testing

Training and initial testing for all neural networks considered here were performed on the
SPINE dataset of 2640 protein and on its subset of 2479 proteins with length less than 500
residues. The dataset of 2640 proteins was obtained from the protein sequence culling server
PISCES 31 with sequence identity less than 25%, X-ray resolution better than 3A, and
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without unknown structural regions in early 2006 17. The subset of 2479 proteins was
employed because we are interested to know if excluding long chains would lead to an
improved secondary structure prediction as long chains will normally involve more nonlocal
interactions. The final SPINE X server was built based on the subset of 2479 proteins.

To test the accuracy of secondary structure prediction ten fold cross validation was
performed on both datasets of 2640 and 2479 proteins. That is, the sets were randomly
divided into ten equal parts. Nine were used for training and the remaining part for testing.
This process was repeated ten times, once for each of the ten parts. To prevent over-training,
a random over-fit protection set with 5% of the training set is excluded from training and is
used as a small test set for determining the stop criterion for neural weight optimization.
That is, after each epoch (cycling through all training instances) the accuracy of prediction is
tested on the over-fit protection set and weights are kept only if the accuracy is increased.
Weight optimization is stopped if 100 epochs have passed without further improving the
accuracy on the over-fit protection set.

To make a completely independent test of our method, we further obtained a new dataset
with a 25% sequence identity cutoff and resolution better than 3A from the PISCES server3!
on November 03, 2010. After removing gapped proteins and proteins with less than 32
residues, the remaining proteins were combined with our 2640 training protein dataset and
clustered with 25% sequence identity by using BLASTclust?®. Clusters containing proteins
from the 2640 set were removed and the longest protein was taken as a representative for
each of the remaining clusters. The final set contains 1833 gapless proteins with less than
25% sequence identity between themselves and between them and the original proteins used
to train the neural networks.

For comparison with other techniques, we also employed a “new protein” dataset of 1975
protein structures deposited in the Protein Data Bank between 2004 and 2008 with 25%
sequence identity cutoff, 2A or better resolution, and R-factor cutoff at 0.25°. In addition,
we downloaded 117 CASP 9 targets from http://predictioncenter.org/casp9/targetlist.cgi.
CASP 9 targets allow us to compare the accuracy of secondary structures predicted by
SPINE X with those from structure prediction techniques.

1.4 Accuracy measurement

2 Results

The Qg score is the total number of correctly predicted residue states (in all 10 test sets)
divided by the total number of residues. The accuracies for helices (Qp), sheets (Qg) and
coils (Qc) are also reported in term of the fraction of correctly predicted residues out of the
total number of residues in a given class (state).

2.1 Ten fold cross validation

Table 1 compares the ten-fold-cross validated accuracy of predicted secondary structure on
the 2479 dataset at three different iterative steps. Note that the original purpose of SPINE X
was for torsion angle prediction. Thus, SSO and SS1 were trained for and tested based on the
modified consensus prediction SKSP+. We also show the corresponding accuracy if the
DSSP assignment is used for evaluating the accuracy in parentheses. For SS2, we performed
both training and testing for both SKSP+ and DSSP assignments. It is clear that the Q3
accuracy of secondary structure prediction according to SKSP+ increases significantly by
2.3% from 81.5% to 83.8% after the first iteration. Improvement is observed more or less
evenly for all three states (helix, sheet and coil residues). As observed in Table 1, further
iteration (SS2 on SKSP+) is unable to improve Qs further, both achieving 83.8% accuracy.
This likely indicates that employing predicted angles for secondary structure prediction is
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effective only once and slight improvement in predicted torsion angles from 70 to z1 will not
lead to significant improvement in secondary structure prediction from SS1 to SS2 with the
same assignment technique. Although SSO was trained on SKSP+, its accuracy of 79.4%
based on DSSP assignment is close to 79.5% given by the original SPINE trained and tested
on the same dataset!’. For SS2 which is trained and tested in DSSP assignment, the ten fold
cross validated accuracy reaches 82.1%. This occurs at the expense of a decreased accuracy
with respect to the SKSP+ assignment, as expected. This ten fold cross-validated secondary
structure prediction is a significant improvement over our first version of SPINE where the
partial accuracy for helical residues, Qp, sheet residues, Qg, and coil residues, Q¢ for the
same dataset are 83.7%, 71.1% and 80.5%, respectively,1’, compared to 86.6%, 75.3%, and
81.5% in this work. The most significant improvement is in the accuracy of strand
prediction by 4.2% from SPINE to SPINE X (DSSP). We have also performed a ten-fold-
cross validation relative to the DSSP assignment with the original 2640 proteins. These
results are also summarized in Table 1 and are comparable to those on the 2479 dataset. We
estimated the statistical significance of the improvements in prediction accuracy using the
student t-test for the null hypothesis because the distribution of accuracies per protein is
reasonably normal without long tails. The null hypothesis in this case is that there is no
statistical difference in the distribution of accuracies per protein for the methods compared.
The p-value associated with this null hypothesis is less than 0.0001 from SSO to SS1,
regardless of the type of assignment method. The improvement is also significant from SS1
to SS2 for the DSSP assignment (p < 0.0001) but not for the SKSP+ assignment, as
discussed above.

Table 2 compares the accuracy of secondary structure prediction for 20 amino acid types
given by SPINE and multi-step SPINE X at different iterative steps in DSSP or SKSP+
assignment method. The accuracy of each amino acid type improves from SPINE to SPINE
X (DSSP) with an average improvement of 2.6% and from SPINE X SSO0 to SS1 (SKSP+)
with an average improvement of 2.3%. As found beforel’, there is a strong correlation
between residue population and the accuracy of prediction. For individual residue types, Cys
(C) consistently has the lowest prediction accuracy and the lowest population in number of
residues. The most frequent residue, Leu (L), is among the residues with the highest
prediction accuracy. Interestingly, the improvement in accuracy from SPINE to SPINE X
(DSSP) or from SS0 to SS1 (SKSP+) slightly decreases the correlation coefficient between
amino acid population and prediction accuracy, from 0.517 to 0.508 or 0.517 to 0.512,
respectively. This suggests that improved accuracy is not caused by repeated learning
according to the population of a given residue type in the database.

Fig. 2 indicates the relation between surface exposure and the accuracy of prediction. The
X-axis is the native accessible surface area as a fraction of the maximum value given by the
residue accessible surface area in a glycine tripeptide 32. The points on the X-axis represent
the center of equally sized bins partitioning it. The Y-axis of the figure gives the average
percent accuracy for the corresponding bin. SSO of SPINE X in SKSP+ assignment has the
highest prediction accuracy for the most exposed residues (>88%). This can be attributed to
the fact that mostly exposed residues (>90% exposed) have minimal nonlocal interactions. It
is also likely due to the fact that coil residues are disproportionately higher on the fully
exposed surface. Indeed, the fraction of coil residues is 58.0% for >90% exposure, compared
to 38.8% for the entire dataset of 2640 proteins. Interestingly, after iteration, the accuracy
for the mostly exposed residues decreases somewhat from SSO to SS1 while the prediction
accuracy of intermediate exposed residues from 10% to 70% exposure increases by about
2%. The same trend is observed from SSO to SS2 according to the DSSP assignment. The
behavior of SSO is essentially the same as the result from the first version of SPINE on
secondary structure predictionl. This significant improvement in secondary structure
prediction at intermediate solvent exposure significantly reduces the correlation coefficient
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between the accuracy and solvent accessible surface area (from 0.65 to 0.38 according to
DSSP assignment). SPINE X significantly improves the secondary structure prediction on
the majority of residues that are partially buried or partially exposed, at a cost of a slight
decrease on a small number of exposed residues.

One can also examine prediction accuracy based on misidentification errors between
different secondary structure types. Compared to our previous method SPINE,
misclassification errors are reduced in every category as shown in Table 3. The overall miss-
classifications between H and C residues, between H and E residues and between E and C
residues decrease from 9.4% to 8.2%, 1.9% to 1.2% and 9.2% to 8.4%, respectively. The
reduction in error is most significant for the most severe misclassification, that between
helical and strand states. In this case the error rate is cut by about a third.

2.2 Test datasets of 1833 and 1975 proteins

We examine whether or not we have an over training issue by employing multi-step
repeated learning from the same database. We built a SPINE X server by using 95% of 2479
proteins for training and 5% as the over-fit protection. The SPINE X server was then tested
on three separate datasets of 2640, 1833 and 1975 proteins. As Table 4 shows, even if 95%
of the proteins were used in training, the overall accuracy of trained and testing proteins is
only 0.7% (82.7%) higher than the ten-fold cross-validated result (82.0%) with a
redistribution of accuracy for helical (+1%), coil (+1%), and strand (—1%) residues. This
indicates that over training is not a significant problem in our SPINE X server. Indeed, the
application of this server to the completely independent set of 1833 proteins leads to an
accuracy of 81.3%. It is interesting to note that the distribution of helix, coil, strand residues
in this set, 38.0%, 38.8%, 23.2% respectively, is very similar to the one found in the 2640
set, 38.2%, 38.8%, 23.0%, respectively. For the dataset of 1975 proteins, Q3 = 82.3%.

For comparison, we downloaded the latest version of PSIPRED (Version 3.2) 16 and applied
it to our datasets with default parameters. We compare to PSIPRED because a recent review
paper 2 suggests it is one of the best non-homologous (ab initio) predictors. PSIPRED6 was
trained on a dataset of 1999 proteins and it is unclear how many proteins in our datasets are
employed in training PSIPRED. Our SPINE X prediction consistently outperform PSIPRED
in all three datasets. For the DSSP assignment these differences range from 0.7% to 1.8%.
For the SKSP+ assignment these differences range from 1.7% to 2.6%. The improved
accuracies are significant. The p-values for the improvement from PSIPRED to SPINE X
are < 0.0001, 0.01, 0.02 for 2640, 1975, and 1833 sets, respectively, according to the DSSP
assignment. For all other cases in Table 4 we find p < 0.0001. The consistent low p-value for
all three datasets indicates the significance of the performance difference between PSIPRED
and SPINE X, considering the fact that these three datasets are not independent test sets for
PSIPRED. The difference between the two methods is even more significant when
predicting secondary structure content as we shall see below.

Interestingly, PSIPRED makes the most accurate prediction for coil residues while the most
accurate prediction in SPINE X is for helical residues. The accuracy of helical residues
predicted by SPINE X is 6% higher than the prediction by PSIPRED for all three datasets
while the accuracy of strand residues is similar for the two methods and prediction of coil
residues is 4% less accurate for SPINE X. As we shall see below, the higher accuracy in
predicting coil residues by PSIPRED is accompanied by a significant over-prediction of this
type of secondary structure.
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2.3 CASP 9 targets

We have also investigated the accuracy of secondary structure prediction for target proteins
in the recent CASP 9 competition (Summer, 2010). A total of 117 proteins are included in
this set. We also defined a set of free-modeling (FM) hard targets according to the Z-Score
of our SPARKS X server 34, This is because SPARKS X server relies on the first iteration
result of SPINE X for the secondary structure prediction (SS1). A difficult target for
SPARKS X is likely a difficult target for SPINE X as well. Results for the official CASP 9
FM targets are qualitatively similar. There are a total of 43 such free modeling target
proteins. Predicted top-1 structures from top performing server groups were analyzed with
the DSSP program and secondary structure was extracted and compared to secondary
structure extracted from the native structure using the DSSP program.

Table 5 summarizes the results given by various modeling techniques and secondary
structure prediction programs. It is clear that there is a reduction of secondary structure
accuracy for those servers dedicated to tertiary structure prediction from dedicated
secondary structure prediction, either PSIPRED or this work. Both our method and
PSIPRED make about 2% improvement over the best tertiary server for all targets and about
8% improvement for the free modeling targets. For this small dataset the overall accuracy of
SPINE X and PSIPRED are comparable.

What is more revealing is the individual accuracy of the three different states. For all targets,
our method outperforms all other methods in the accuracy of predicting helical and strand
residues but behind most methods in coil prediction. For FM targets, the accuracy of
predicted strand residues given by the modeling techniques are significantly lower (about
20% or more) than PSIPRED or SPINE X. This highlights the difficulty of existing
modeling methods to predict free-modeling targets whose structures contain £ strands.
Although the overall accuracy is similar, SPINE X is significantly more accurate in
predicting helical residues while PSIPRED is more accurate in coil residues, consistent with
the results from large datasets of 2640, 1833 and 1975 proteins.

2.4 Composition and content prediction of secondary structure states

It is important to examine the compositions of secondary structure types predicted by
different methods. Table 6 shows that for CASP 9 targets, various methods can over or
under predict helical residues but all consistently under predict strand residues and over
predict coil residues. The most significant deviation from the native distribution of
secondary structure states occurs for HHPREDB which predicts 14% more coils than native
fractions and significantly under predicts helical (7%) and strand residues (7%). Also
interesting is that ROSETTA 3° has the best composition of secondary structure states in all
the tertiary-structure servers compared. Our work provides the correct amount of helical
residues, the highest amount of sheet residues (although still under predicted by 3%), and
the lowest amount of over predicted coil residues (although still over predicted by 3%). By
comparison, PSIPRED under predicts helical residues by 4%, strand residues by 3% and
over predicts coil residues by 7%.

The difference between predicted secondary structure types of PSIPRED and that of this
work for CASP 9 targets is further observed in results for large datasets as shown in Table 7.
Among three large datasets, PSIPRED consistently under predicts helical residues by 5%,
sheet residues by 3% and over predicts coil residues by 7% while our method predicts nearly
correct amount of helical residues, under predicts sheet residues by 3% and over predicts
coil residues by 3%.

The above results led to our further interest in calculating the secondary structure contents
from the secondary structure predictions for a given protein. Secondary structure content is
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the basic step for structure classification (helical, strand, or mixed helical and strand
proteins). We measure the performance of PSIPRED or our technique by calculating the
mean error (ME) and the mean absolute error (MAE) between predicted and actual
secondary structural contents of individual proteins. The MAE allows us to examine the
absolute magnitude of the error in content prediction while the ME reveals overall
systematic deviations from the corresponding native content.

Results of secondary structure content prediction on the dataset of 1833 proteins and CASP
9 targets are shown in Table 8. It shows that PSIPRED and our technique comparably under
predict 2% of strand residues with an MAE of about 4%. However, our method consistently
has smaller errors in magnitude as well as in systematic deviation for helical and coil states
than PSIPRED. For example, our method essentially predicts right helical contents within
0.5% while PSIPRED under predicts by 4% for both datasets. In terms of MAE, the error
obtained from SPINE X content prediction is approximately 25% lower relative to the error
from PSIPRED prediction for both helix and coil. The most significant difference between
the two methads is in coil content prediction. PSIPRED over predicts significantly more coil
contents (3—4%) than our method. The magnitude of the error given by PSIPRED is also 2%
higher. These results are consistent with the overall compositions for the prediction of the
three secondary structure states shown in Tables 6 and 7.

For tertiary structure prediction, a correct prediction of the number of helical and sheet
segments is very important for making a correct prediction of the overall structural fold. In
Table 9, we compare the fraction of proteins whose number of predicted helical, sheet, and
coil segments is the same as, or differs by at most one or two from the corresponding native
number of segments, based on the independent set of 1833 proteins and using DSSP
assignments. Here, a helical, sheet, or coil segment is defined as a segment of three or more
sequence-neighboring residues having the same secondary structure type. It is clear that our
method is consistently better in helical (5%—-9%) and coil (3%—-11%) segments than
PSIPRED and has the similar performance as PSIPRED in sheet segments (—1.1%-0.5%).
One can define helical proteins as proteins with zero sheet segment and one or more helices,
sheet proteins with zero helix and one or more sheets, and other proteins. We found that
there are 434 helical, 53 sheet, and 1346 other proteins. This small number of “pure” sheet
proteins is because of our strict definition of sheet proteins and because our database is made
of protein chains instead of domains. The latter reason significantly increases the number of
other proteins. Table 9 further shows the fraction of proteins with correctly predicted
number of secondary structure segments (exact match of helical and/or sheet segments).
SPINE X improves over PSIPRED by 4.4% and 3.3% for helical and other proteins
respectively. While PSIPRED improves over SPINE X by 1.7% for sheet proteins, the small
number of these proteins (53), similar accuracy in sheet segment prediction, and the small
difference point in the direction of a similar accuracy for this case. Overall, SPINE X makes
3.4% improvement in fraction of proteins with correctly predicted number of helices and
sheets. It is clear that it is most difficult to predict the number of secondary structure
segments for proteins with mixed helical and sheet segments.

Another measure that assesses segment level accuracy is called the segment overlap (SOV)
for secondary structure as defined by Zemla et al. 33, We calculated SOV for the dataset of
1833 proteins. We find that the overall SOV is 78.5% for PSIPRED and 79.0% for SPINE
X. The SOV of helical, sheet, and coil segments are 74.9%, 75.9%, and 73.9%, respectively,
for PSIPRED; and 79.3%, 76.5%, and 73.9%, respectively, for SPINE X. The most
significant improvement is 6% for helical segments from PSIPRED to SPINE X.
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3 Discussion

We have developed a new secondary structure prediction method that achieves 82% ten-
fold-cross validated accuracy. Application of this method to a completely independent
database of 1833 proteins maintains its accuracy at 81.3%. Additional datasets of 1975
proteins and CASP 9 targets confirms this finding. This result marks a small but significant
step toward the theoretical limit for the prediction accuracy of secondary structure of 88—
90% as a result of nonlocal interactions and inconsistent assignments?: 8.

One important feature of SPINE X is its ability to produce a distribution of three secondary
structure states that is very close to the native distribution. Compared to PSIPRED, SPINE
X has higher accuracy in predicting helical residues (6—7%) without over predicting them.
On the other hand PSIPRED makes a more accurate prediction in coil residues (3—4% better
than SPINE X) but also over predicts them by 7% (4% over predicts them compared to
SPINE X)./home/faraggi/dloads/16.psipredserver/ The two methods have a similar
performance on strand residues. Interestingly, another predictor called YASPIN 20 did well
on predicting strand (E) residues, according to a recent assessment 9. One might argue that
identification of helical and strand residues is more important than identification of coil
residues because the former provides clear structural information for many applications such
as constraints in tertiary structure prediction. However, other applications may put
importance for example on the delineation of the secondary structure motifs along the chain
and hence may benefit from better prediction of coil locations. Also, coil locations allow for
more flexibility and hence increase the sampling space in tertiary structure prediction. Such
distinctions between different techniques should be considered in applications. These
differences further indicate the potential of a consensus method as a consensus based
predictor was found to add about 2% to Q3°. Certainly, another potential area of
improvement is to incorporate homologous sequences and/or structural fragments
(templates) such as HYPROSP36: 37 PROTEUS38, MUpred3?, DISTILL4Y, a combination
of GOR V and fragment database mining*!, and a profile-profile alignment to rank
fragments for secondary structure prediction 42.

This work also indicates that a more consistent consensus assignment (SKSP+) will lead to
improved accuracy of secondary structure prediction (82—-83% in Q3). Comparing to DSSP,
SKSP+ has a slight increase in helical (39.7% versus 38.3%) and strand assignment (23.8%
versus 23.4%) and a slight decrease in coil assignment (36.5% versus 38.3%) in the database
of 2479 proteins. This change in composition of secondary structural types from DSSP to
SKSP+ leads to a slight reduction in the diversity of secondary structure types. The diversity
can be measured by d = 1 — (|fy — fg| + |fq — fc| + [fe — fc|)/2, where fy, fz and ¢ are
fractions of helix, strand and coil residues, respectively. d = 0 if there is only one state, d =
0.5 if there are only two equally distributed states, and d = 1, the largest diversity, if the
three states are equally distributed (fy = fg = fc). The diversity d changes from 0.851 in
DSSP to 0.841 in SKSP+. Although in general the less diverse an assignment the easier it is
to predict it, one simple way to measure if an assignment method would be easier for
secondary structure prediction than the other is to calculate random prediction accuracy. We
found that it is 34.9% for DSSP assignment and 34.8% for SKSP+ assignment. Thus, DSSP
and SKSP+ are equally difficult to predict. The fact that SKSP+ is more accurately predicted
is likely because SKSP+ is about 3% more consistent in assigning secondary structures of
structurally aligned proteins than DSSP’, which affects the ability of the neural networks to
learn and generalize.

The high accuracy achieved by this study is not due to expanded sequence library in
PSIBLAST that produces sequence profiles because “the rate of novel sequence discovery is
in a sustained period of decline” since 2004 43. We put forth that the improved accuracy can

J Comput Chem. Author manuscript; available in PMC 2013 January 30.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Faraggi et al.

Page 10

be attributed to multi-step learning coupled with prediction of several one-dimensional
structural properties including solvent accessibility, torsion angles, and secondary structures.
This iterative technique represents a more sophisticated version of a two-step iterative
learning between y torsion angles and secondary structure proposed by Wood and Hirst44
and between solvent accessibility and secondary structure by Adamczak et al.1°. Here, we
include both solvent accessibility and both w and ¢ prediction. Our prediction of solvent
accessibility!® (with a correlation coefficient of 0.74) and w14 (with a mean absolute error of
35° by SPINE X) are notably more accurate than previous work 1944, This improvement in
accuracy for solvent accessibility and torsion angles likely plays a significant role in
achieving the high accuracy for final secondary structure prediction.

Over prediction of coil residues by structure prediction servers except ROSETTAS® revealed
in Table 6 is likely due in part to modeling of gap regions as a coil in most structural
modeling techniques. We come to this conclusion because SPARKS X 34 also has the over
prediction problem although it has employed SPINE X (SS1) as a part of fold recognition
scoring function. Thus, it will be potentially beneficial to employ predicted secondary
structure or torsion angles as restraints for ab initio prediction* of gapped regions.

To avoid over training with multiple-step learning on the same database, we have used a
proven strategy of over-fit protection with 5% of the training data set aside and used as a
stop criterion during training of the neural network weightsl’ 11. 4, The consistent high
accuracy of secondary structure prediction for three additional datasets confirms the
applicability of our method for the sequences that are not in the original training set.

Finally, it is of interest to note that the fraction of proteins with correctly predicted number
of helical and sheet segments is low. SPINE X achieved 21.0% while PSIPRED achieved
17.6%. There are about half of helical proteins (47.7% by SPINE X) with correctly predicted
helical segments but only 12.2% for proteins with mixed helices and sheets. This low
accuracy result calls for methods dedicated for helical and sheet segment prediction.
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associated with SS and z refers to the iterative step.
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Secondary structure prediction accuracy as a function of the surface accessibility by
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according to DSSP assignment. Error bars are estimated from standard deviations obtained
from 10 folds.
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Table 3

Errors contributed by misclassification of residue states based on the dataset of 2640 proteins

Error (%)

Native Predicted SPINE2 SPINE XP

E C 5.61 5.06
E H 1.03 0.65
C E 3.54 3.36
C H 4.16 3.58
H E 0.85 0.59
H C 5.27 461
HeC 9.43 8.19
HeE 1.88 1.24
E«C 9.15 8.36

aFrom Ref. 17,

bSSZ in SPINE X trained and tested in DSSP assignment (10-fold cross validation).
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Compositions of predicted and actual secondary structure types for the CASP9 set

Method %H %E %C
QUARK 382 157 46.1
RaptorX-MSA 327 186 480
HHPREDB 298 169 53.2
Chunk-TASSER  36.3 145 49.2
MULTICOM-R 359 193 448
ROSETTA 387 195 418
SPARKS-X 344 20.0 456
PSIPRED 33.0 207 463
This work 37.3 209 417
Native 373 236 391
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