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Abstract
The coupling of protein energetics and sequence changes is a critical aspect of computational
protein design, as well as for the understanding of protein evolution, human disease, and drug
resistance. In order to study the molecular basis for this coupling, computational tools must be
sufficiently accurate and computationally inexpensive enough to handle large amounts of
sequence data. We have developed a computational approach based on the linear interaction
energy (LIE) approximation to predict the changes in the free energy of the native state induced by
a single mutation. This approach was applied to a set of 822 mutations in 10 proteins which
resulted in an average unsigned error of 0.82 kcal/mol and a correlation coefficient of 0.72
between the calculated and experimental ΔΔG values. The method is able to accurately identify
destabilizing hot spot mutations however it has difficulty in distinguishing between stabilizing and
destabilizing mutations due to the distribution of stability changes for the set of mutations used to
parameterize the model. In addition, the model also performs quite well in initial tests on a small
set of double mutations. Based on these promising results, we can begin to examine the
relationship between protein stability and fitness, correlated mutations, and drug resistance.

Keywords
LIE; protein stability; ΔΔG prediction; PLOP; AGBNP; free energy

Introduction
Proteins are molecular machines whose thermodynamic stability and fitness are encoded in
their amino acid sequence. Mutations can change the energetic landscape of a protein and
thereby alter its structure and function. The coupling of sequence changes to protein
energetics is a critical aspect of computational protein design, and is necessary for a
complete understanding of protein evolution, human disease, and drug resistance. The
computational protein design field employs sequence modifications to design novel protein
folds, to modify thermostability and enzymatic activity, and to redesign protein-protein
interfaces.1–5 On the other hand, studies of sequence evolution have focused on examining
the balance between stability and fitness of proteins found in nature6, for example, the role
of the “stability/activity” tradeoff mechanism for residues located in protein active sites.7–9.
Furthermore, directed evolution experiments have designed proteins with novel functions
through a series of functional but destabilizing replacements accompanied by a series of
compensatory mutations highlighting the crucial role that stabilizing mutations play in the
“evolvability” of a protein.6,10,11 This compensatory stabilizing mechanism is also quite
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prevalent in the evolution of drug resistance.12,13 The acquisition of drug resistance has been
linked to primary mutations which cause the resistance at the cost of stability and are
correlated with accessory mutations which restore activity and stability, as for example in
HIV protease.14 Additional work by Ishikita and Warshel has shown how effective drug
resistant mutations maintain catalytic efficiency and hence the local instability within the
active site while weakening the binding affinity to a target drug.15 Therefore, it is important
to understand how sequence changes can alter the thermodynamic stability and fitness of
proteins to relate these effects to drug resistance and disease6,16,17.

In order to tackle these problems, computational approaches must be sufficiently accurate to
capture the underlying energetics and capable of handling large amounts of sequence data.
Methods such as free energy perturbation and thermodynamic integration are in principle the
most accurate of these approaches but are limited to a small number of mutations.18–20 More
efficient computational mutagenesis methods based on approximations to the free energy
change, are used to predict protein stabilities for large databases of proteins. These methods
are differentiated by their free energy function which can be categorized as knowledge-
based/statistical21, empirical22,23 or physics-based24,25 potentials. These methods also vary
in the extent of the conformational sampling used to model the structural changes induced
by the mutation. Some approaches only model the mutated residue using a fixed
backbone22,23 while other methods include flexibility either through side chain repacking
and backbone relaxation26,27 or the generation of an ensemble of structures.25 Lastly, the
unfolded state is treated differently by these free energy methods; unfolded state effects have
been included implicitly in the coefficients of the energy function22, explicitly represented
by a specific term in the energy potential23,26,28 or modeled as a short peptide of the original
structure.24,25

Many of these approximate methods, however, demonstrate limited accuracy according to a
recent survey by Potapov et al.29 In this report, they claim that these methods are “good on
average and not in the details.” It is reported that the best method only achieved a correlation
coefficient between experimental (ΔΔGexp) and calculated (ΔΔGcalc) relative free energies
of folding (compared to wild type) of 0.59 on a large set of single point mutations.1 Since
many of the most relevant biological problems involve multiple mutations, limitations with
single point mutations may translate into large errors, especially since these methods are not
typically tested with more than one mutation. Therefore, there is a need for further
development of protein stability models with greater predictive accuracy.

A possible alternative to rigorous free energy methods on one hand and purely empirical
approaches in the other are linear interaction energy models.30,31 LIE approaches have a
foundation in linear response theory32–34 and the linear response approximation35;
physically motivated interaction energy estimators which only require the knowledge of the
endpoints of a particular process are used to estimate the free energy change. This approach
has been mainly applied to protein-ligand binding problems.30,35–41 Typically, the LIE
formulations use the following functional form to calculate the free energy of binding
(ΔGb), 30,31

(1)

1The validity of this study was recently questioned by Kellogg et al,27 who noted that an improper sampling technique lead to the
poor results for the Rosetta program (r = 0.26 for the data set). Using an optimized protocol, the results were comparable with the best
programs (r = 0.62) in the original survey of protein stability methods.
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where ΔVvdw, ΔVelec and ΔA are differences between the quantities measured for the ligand
complexed with the receptor and ligand free in solution. ΔVvdw and ΔVelec are the van der
Waals and electrostatic interaction energies of the ligand with its environment. ΔA is the
change in surface area between the receptor-ligand complex and the free ligand. Typically,
these energies have been obtained from Molecular Dynamics or Monte Carlo simulations of
the receptor-ligand complex and free ligand in explicit solvent. Recent studies in our lab and
elsewhere have applied this formalism to studies in implicit solvent with approximate and
more rigorous derivations.39–41 α, β, γ, and δ are adjustable parameters which are obtained
by fitting to experimental binding data.

Linear response has also been used to study protein stability and protein-protein
interactions.42–45 Previously, Warshel applied the linear response approximation to the
calculation of absolute protein stabilities using an electrostatic energy function scaled with
“focused” dielectric constants.42,43 In addition, the LIE method has been used to calculate
the absolute and relative binding affinities of protein-protein interfaces that contained
different mutations to a crucial residue for binding (treating the mutated residue as a
ligand).44,45 Building on these ideas and our earlier work with LIE models, we have devised
a LIE approach to calculate relative protein stabilities between wild type and single point
mutations using the LIE method. For the protein stability problem, we consider the free
energy change for replacing one protein residue with another in the folded and unfolded
states (Figure 1). The difference between the corresponding wild-type and mutant energetic
estimators can be used to construct a linear interaction energy model for the free energy of
folding analogous to the LIE equation for the binding free energy.

In this work, we have developed a computational approach based on the LIE method using
the protein local optimization program46 (PLOP) for conformational sampling, together with
the Analytical Generalized Born plus Nonpolar (AGBNP) implicit solvent model47 and
OPLS force field48,49 to predict the changes in the free energy of the native state induced by
single point mutations. In the following section, we derive the LIE equations used to
calculate protein stability. For the initial tests of this method, we performed side chain
prediction for the structural models of the wild type and mutant structures and applied the
LIE protein stability formulation on 822 mutations from 10 proteins. We found that a
separate model based on mutation residue types (e.g. charged vs uncharged) showed
improved results compared to a model which did not distinguish between residue types. All
models were validated with jack-knife prediction tests. This approach has resulted in a
correlation coefficient and an average unsigned error between the ΔΔGexp and ΔΔGcalc of
0.72 and 0.82 kcal/mol respectively, which are among the best results reported to date for
current protein stability prediction methods.

Materials and Methods
This section describes the methodology used to develop the LIE protein stability protocol.
This involved the selection of single point mutations for our benchmark set, structure
prediction for the wild-type and mutant structures, and derivation of the LIE equations for
the calculation of relative protein stabilities. We also summarize in this section the analysis
procedures used to evaluate the results of the LIE protein stability approach.

Selection of Mutations
A benchmark set of single point mutations was created from available ΔΔGexp data in the
Protherm database50 and from Guerois et al.22 Mutations were selected if the wild type
residue had a larger van der Waals volume than the mutant residue, the ΔΔGexp
measurement was performed between a pH of 5 and 9 and an X-ray structure existed for the
wild-type protein; this was based on criteria applied by Guerois et al.22 Lastly, we required
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that the stability measurements were made within a relatively narrow temperature range
(between 17°C and 37°C ) since we neglect effects of temperature variation in the LIE
function.

From the filtered set, the 10 proteins with the largest number of mutations were selected for
our current study (822 mutations) (Table 1). The proteins included in this study are:
staphyloccal nuclease (PDB ID:1STN51), barnase (PDB ID:1BNI52), FK506 binding protein
(PDB ID:1FKJ53), chymotrypsin inhibitor 2 (PDB ID:2CI254), protein L (PDB ID: 1HZ655),
human tyrosine-protein kinase c-Src (PDB ID:1FMK56), human lysozyme (PDB ID:
1REX57), bovine pancreatic inhibitor (PDB ID: 1BPI58), fibronection (PDB ID: 1TEN59)
and T4-lysozyme (PDB ID:2LZM60).

Structure preparation
Structural models of the single point mutants were built using the torsional angle sampling
implementation in the protein local optimization program (PLOP)46. PLOP is typically used
for its side chain and loop prediction capabilities in homology modeling problems46,61,62,
force field/implicit solvent evaluation studies 63–66 and protein-ligand binding problems
involving the modeling of receptor-induced fit effects67. We have performed a side chain
prediction test on a database of approximately 2190 polar side chains found in 30 proteins
using the AGBNP implicit solvent model47 with the OPLS-AA force field48,49 and
measured the accuracy of the predictions by calculating the heavy atom root mean squared
deviation (RMSD) of the side chain of each predicted rotamer state relative to its
corresponding minimized X-ray side chain rotamer. Using a RMSD cutoff of 1.5 Å, the side
chain prediction accuracy was 79% and 75% with and without the crystal environment
respectively. These results provide further evidence that the PLOP program can be
employed with the OPLS-AA/AGBNP force field to predict the side chain rotamer
geometries of the wild-type and mutant residue with good fidelity.

1) Minimization of structures—Minimizations were performed on all of the proteins
using PLOP with the OPLS-AA/AGBNP force field. The Truncated Newton algorithm68

was employed with a RMS tolerance of 0.5 kcal/mol Å using the default settings in PLOP.

2) Wild-type and mutant folded structure—The side chain conformations for both the
wild-type and mutant forms were built using the side chain prediction algorithm in PLOP.
Mutant structures were based on the wild-type structure and only differed at the mutated
residue position. There are several steps involved in this algorithm incorporated into PLOP.
The native backbone of the protein is held fixed while a conformational search is performed
using a highly detailed rotamer library developed by Xiang and Honig69. Rotamers are
eliminated based on an adjustable overlap factor which is a measure of the extent of the
“clash” of the rotamer with the residues of the protein which are held fixed. The remaining
structures are scored based on a reduced non-bonded energy and clustered in torsional space
using the K-means algorithm70. The lowest energy rotamer is selected from the clustering
procedure and the side chain rotamer is minimized using the TN algorithm68. This procedure
can be performed with or without the crystal packing environment. Side chain prediction
was performed on the wild type and mutated residue of interest without crystal packing
which should result in the preferred rotamer conformation in solution.

3) Unfolded state—The unfolded state was represented using a tetrapeptide model of the
local environment of the residue of interest. This peptide contained the two neighboring
residues on either side and was capped with an acetyl (ACE) and n-methyl amino group
(NME). The peptide was modeled with the wild-type or mutated residues fixed in the folded
state conformation. If the mutated residue was close to the N-terminus or C-terminus (1–2
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residues away), the charge was maintained on the corresponding terminus of the unfolded
state model.

Scoring
Energies were calculated using the OPLS AA/AGBNP force field. The AGBNP model
contains the analytical pairwise descreening implementation of the Generalized Born (GB)
model71 and a non-polar hydration term (Gnp).47

The polar solvation energy (Gel) is estimated using the GB equation

(2)

where εin is the dielectric constant of the interior of the solute, εw is the dielectric constant
for water, qi and qj are the charges on atom i and j and

(3)

where Bi and Bj are the Born radii of atoms i and j and rij is the distance between atoms i
and j. The non-polar term contains two components: Gcav and Gvdw.72,73

(4)

Gcav accounts for the work required to make a cavity in solution and Gvdw accounts for the
solute-solvent dispersive vdw forces. In Equation 5, the cavity component is a function of
the surface area of atom i (Ai) and the surface tension parameter assigned to atom i (γi)
while the van der Waals dispersionterm is expressed as a function of an adjustable van der
Waals dispersion parameter (αi)47, the Born radii of atom i (Bi), the radius is of a water
molecule (Rw) and

(5)

where ρw = 0.033428 Å3 is the number density of water at standard conditions and εiw and
σiw are OPLSforce field Lennard Jones parameters for solute-solvent interactions with
oxygen atom of TIP4P water.74

LIE formulation for Protein Stability
The concepts behind the LIE protein stability model are derived from the ideas of linear
response theory and the linear response approximation.32–35 Protein stability is a measure of
the free energy difference between the folded and the unfolded state (Figure 1). In this case,
we are interested in determining the protein stability of the wild type (ΔGwildtype) and the
mutant (ΔGmutant) in order to calculate the relative stability (ΔΔG). As illustrated in Figure
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1, ΔΔG is equal to the differences of the alchemical free energies of transforming the wild-
type residue into the mutated residue within the unfolded (ΔGu) and folded (ΔGf) states.

According to the LIE formalism, the free energy change at each step can be expressed as:

(6)

where Δ<V> is the change in the residue-environment average interaction energy in going
from wild-type to mutant corresponding to the step of interest (for example, the electrostatic
interaction energy for the transformation of the electrostatic interactions from those of the
wild-type residue to those of the mutant).

We can write for the free energy of mutation in the folded state (ΔGf) :

(7)

where Δ<VLJ> is the change in the van der Waals interaction energy for intramolecular
interactions within the protein, Δ<Vel> is the change in the electrostatic interaction energy,
Δ<Gel> is the change in the polar solvation interaction energy, Δ<Gcav> is the change in the
non-polar energetic component for cavity formation and Δ<Gvdw> is the change in the non-
polar van der Waals dispersion energy between solvent and the solute. α, β, γ, δ, and ε are
the corresponding LIE coefficients for the energetic estimators.

A similar equation applies to ΔGu yielding the following expression for the change in
folding energy:

(8)

where ΔΔGcalc is the free energy difference between the stability of the mutant and wild-
type protein. ΔΔ<VLJ> and ΔΔ<Vel> are the intramolecular interaction energy contributions
to the stability change and ΔΔ<Gel>, ΔΔ<Gcav> and ΔΔ<Gvdw> are the solute-solvent
interaction energy contributions to the stability change.

We define the interaction energy between a given residue and its environment as the
difference between the total energy of the protein and the total energy of the protein without
the residue of interest. This definition, which for pairwise decomposable potentials, reduces
to the sum of pairwise interactions between the atoms of the residue and the other protein
atoms, is a generalization of the interaction energy which is applicable for non-pairwise
decomposable potentials such as the implicit solvent solvation free energy. The goal is to
estimate the side chain’s contribution to the (free) energy of each (folded/unfolded) state.
The energy of state-1 was first calculated for the structure with all of the solute-solute and
solute-solvent interactions present. The second step was to eliminate interactions of the side
chain for the second state in the calculation. The non-bonded and polar solvation energy
terms were turned off by setting the partial charges and the well depth of the Lennard
Jones’s equation to zero for side chain atoms (starting with Cβ atom). The non-polar
hydration was turned off by settng γi and αi to zero. The difference between state-1 and
state-2 represents the side chain’s interaction energy with the other residues of the protein
and the solvent. Since the same structure is used for the state 1 and state 2, the covalent
energy terms cancel out. This was done for both the folded and unfolded state model.
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The LIE calculation for mutations involving glycine and proline is different since the partial
charges of the backbone are different from the other residues. When the partial charges of
the HA3 atom of the glycine or the side chain of the proline are set to zero, the backbone is
left with an excess charge. For all other residues, the backbone remains neutral after the
charges are turned off. For the second state corresponding to glycine and proline, we created
a model where the partial charges of all the atoms in the residue were set to zero. Hence, the
difference between state-1 and state-2 includes the electrostatic and reaction field interaction
energy for the side chain and backbone of the residue in both the folded and unfolded state
model. By taking the difference between the folded and unfolded state, the effect of turning
off the charges on the backbone is eliminated.

The LIE equation requires five LIE coefficients for the energy terms. This fitting was
performed using the multiple linear regression module in the statistical analysis program R.
The whole set of 822 single point mutations was used for training and testing. Jack knife
tests as described below were performed by iteratively training on 95 % of the data and
testing on the remaining 5 % of the data set. We have developed two models for ΔΔG
prediction (Table 2 and Table 3). For Model-1, five coefficients were obtained while for
Model-2, five coefficients were obtained for each of the three mutation residue types
(neutral, charged and glycine/proline). Coefficients were eliminated on the basis of p-values
(p < 0.05 to reject the null hypothesis for a particular coefficient). If coefficients of terms
with complimentary physical effects (e.g. electrostatic and reaction field interaction energies
or intramolecular and solute-solvent van der Waals interaction energies) were of the same
magnitude, their corresponding energy estimators were combined and refit. In this work,
most of the models were fit to two coefficients except for the neutral residue model
(Model-2).

We evaluated the predictive value of each of the models in this study (Table 2). We
employed a jack knife approach where the corresponding jack knife Pearson correlation
coefficient (rjack) and average absolute error (<|error|jack>) are reported. For Model-1 and
Model-2, fitting resulted in rjack and <|error|jack> values that were very close to their values
for the entire data set (Table 1) which suggests that these models are not biased by particular
points in their training sets; this was not the case for Model-2(charged). For
Model-2(charged), the corresponding rjack and <|error|jack > were slightly worse than the
values reported for the entire data set which is indicative of some type of bias in our training
set (Table 1). Nevertheless, Model-2 demonstrates more accuracy and precision than
Model-1 even though Model-2 has more parameters (Model-1 has 2 parameters while
Model-2 has 9 parameters).

Multiple Mutations
A small set of double mutations from serine protease inhibitor was taken from the Protherm
database. These mutations were previously tested with the Eris program;26 this approach
uses a hybrid knowledge-based/physical energy function and allows for backbone flexibility.
Our structural models for the wild-type and mutant state were built using the multiple side
chain prediction module in PLOP. LIE calculations were performed using LIE equations and
coefficients developed for Model-2. In 16 of the 17 cases, the double mutant was composed
of two mutations of the same residue type so the coefficients for that specific residue type
were selected for that ΔΔG calculation. For the double mutant with different mutations types
(T58AE60A), we employed the coefficients developed for the charged residue model in the
LIE equation for protein stability since electrostatic interactions are likely to dominate the
effect of the double mutation.
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Analysis
Both Pearson correlation coefficients and average absolute errors between the calculated and
experimental ΔΔG were the statistical measures used to evaluate the different models and
groups of mutations in this study. Nevertheless, we note that the Pearson correlation
coefficient is the gold standard used to evaluate the quality of the stability change
calculations since the absolute error is highly influenced by the relatively small range of the
ΔΔG data.

In Table 3, we summarize the performance of the LIE algorithm at identifying two different
types of mutations: stabilizing/destabilizing and hot-spot mutations similar to Potopov et
al..29 Stabilizing mutants had ΔΔGexp < 0 kcal/mol while destabilizing mutants had ΔΔGexp
> 0 kcal/mol. Hot spot mutations had |ΔΔGexp| > 2 kcal/mol while non-hot spot mutations
had |ΔΔGexp| < 2 kcal/mol. The stability ranges of the ΔΔGcalc and ΔΔGexp values were
compared using the following measures: accuracy, sensitivity and specificity, which were
functions of the number of true positives (TP), true negatives (TN), false positives (FP) and
false negatives (FN). Accuracy is calculated using the following expression:

(9)

which evaluates the number of correct predictions relative to the total number of predictions.
Sensitivity evaluates the number of correctly identified true positives relative to the total
number of positives. Sensitivity is calculated with the following expression:

(10)

Specificity evaluates the number of correctly identified true negatives relative to the total
number negatives. Specificity is calculated with the following expression:

(11)

In the analysis summarized in Table 4, hot spot residues are defined as positives while non-
hot spot residues are defined as negatives.

DSSP 75 was used to classify the secondary structure of the wild type residues of each
protein. Surface areas were calculated using the Shrake-Rupley algorithm76. The fraction of
the surface area exposed for each wild type residue (SAres) was calculated with this
expression

(12)

where SAf is the surface area of the wild-type residue and the SAexp is the surface area of
the completely solvent exposed residue. We approximated SAexp by calculating the surface
area of the wild-type residue in a tetrapeptide (GXG where the X represents the wild-type
residue) capped with an acetyl (ACE) and n-methyl amino group (NME). Buried residues
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were defined as having less than 10% of their side chain exposed and exposed residues were
characterized as having more than 50% of their side chain exposed.

Results
Calculation of Stability Changes Using Model-1 and Model-2

In this work, we tested the LIE protein stability approach on 822 single point mutations and
compared the calculated results with corresponding experimental results. This set contained
large to small mutations from 10 different proteins which contained varying secondary
structural content. The first LIE protein stability model (Model-1) was parameterized using
the data from all of the mutations (Table 1). The correlation coefficient and the average
absolute error between the calculated and experimental ΔΔG were 0.61 and 0.94 kcal/mol,
respectively (Table 3 and Figure 2a). These results are comparable with the best performing
programs available today as reported by Potopov et al. 29

The second LIE protein stability model (Model-2) was parameterized to treat different types
of mutations. We divided our mutations into three groups: neutral, charged and glycine/
proline mutations. The neutral group training set contained mutations where the side chain
of the wild-type and the mutant residue had a zero net charge. The charged group training
set contained mutations involving ionizable residues (R,K,D,E) for the wild-type or mutant
residue. The rationale behind separating the charged and neutral mutations is that the
magnitude of the electrostatic and reaction field energies are much larger for charged groups
and will dominate the fit of the electrostatic and polar solvation LIE coefficients. Secondly,
for the Generalized Born type implicit solvent models the polarization of charged residues is
underestimated within the protein compared to neutral residues resulting in the
overstabilization of salt bridges. As a result, implicit solvent models have treated charged
and neutral residues separately using different internal dielectric constants.43,65 The
remaining residue group contains mutations where the wild type residue is being mutated to
a glycine or where proline is the wild type residue being mutated to a smaller residue. These
mutations typically cause the largest changes to the structure and conformational entropy of
the protein backbone and therefore should be treated differently than other mutations.

The three residue-type models exhibited correlation coefficients ranging from 0.45 to 0.77
and absolute errors ranging from 0.80 to 0.94 kcal/mol (Table 3 and Figure 3). The lowest
correlation coefficient was from the prediction of mutations of or to charged groups (r =
0.45) however the absolute error of these mutants was quite low (0.72 kcal/mol). The largest
absolute error was from predicting mutations to glycine (0.92 kcal/mol); it may be harder to
reproduce the destabilizing effects of a glycine mutation since our sampling protocol is
limited to side chain prediction in this work and the remainder of the protein is not allowed
to relax. Nevertheless, these residue sub-types demonstrated an improvement in the
correlation coefficient and absolute error between 7 and 18% with respect to an overall fit of
LIE coefficients without respect to residue type (Table 3). With respect to predictions for the
whole set of 822 mutations, the correlation coefficient and absolute error between the
ΔΔGcalc and the ΔΔGexp is 0.72 and 0.82 kcal/mol respectively, which is superior to
Model-1 (0.61 and 0.94 kcal/mol) but the real advantage/improvement of Model-2 over
Model-1 is the prediction of experimental outliers as described in the following section.

Why does Model-2 perform better than Model-1?
The main difference between the performance of Model-1 and Model-2 is the improvement
in the predictions of hot spot mutations (|ΔΔGexp| > 2 kcal/mol). The sensitivity measure
quantifies how many hot spot mutations were correctly identified (true positive) compared
to the total number of hot spot mutations predicted (true positive + false negative) and
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improved by 12% using Model-2 over Model-1 (Table 4). Furthermore, 80% of the
calculated outliers in Model-1 are hot-spot mutations (an outlier is defined as having an
absolute error larger than two standard deviations above the average absolute error of
Model-1). Figure 4 shows the performance of Model-2 with the outliers of Model-1. By
fitting individual mutation types (neutral, charged and Gly/Pro), 90% of these mutations
demonstrate improved absolute errors relative to the results for Model-1. A notable example
is E75V from Staph nuclease which had a predicted ΔΔGcalc of 6.33 and 2.70 kcal/mol with
Model-1 and Model-2 respectively, relative to the ΔΔGexp value of 2.30 kcal/mol. Model-2
is able to decrease the range of the ΔΔGcalc and the number of outliers which increases the
correlation between ΔΔGcalc and ΔΔGexp. The rest of the results section will focus on the
analysis of results using Model-2.

Performance of Model-2 with different types of mutations
Model-2 exhibits a very good correlation and a low average absolute error between
experimental and calculated ΔΔG values (Table 3); values which are superior to those
reported by Potapov et al..29 In order to further understand the predictive abilities of
Model-2, we evaluated the performance of mutations categorized by the surface area
exposure and secondary structure of the wild-type residue and mutation type (alanine or
non-alanine mutagenesis) (Table 5). Alanine (mutagenesis) and non-alanine mutations had
similar correlation coefficients but non-alanine mutations had a higher average absolute
error; this group contained all of the mutations involving glycine which demonstrated the
highest absolute error of all three residue types in Model-2 (Table 3). Mutations categorized
by secondary structure had correlation coefficients which ranged from 0.54 to 0.75. The turn
population was the smallest population of mutations which appeared to affect the value of
the correlation coefficient. The greatest variation in the results was seen amongst the groups
divided up based on surface area exposure. Mutations involving highly exposed residues had
the lowest correlation coefficient of all the different groups (r = 0.35). The poor performance
of surface exposed mutations may be due to the ΔΔG range for mutations of this type; the
ΔΔG range is very small which reflects the high dielectric solvent screening of these mostly
polar and charged residues. Previous studies have also reported higher correlation
coefficients for mutations involving buried residues compared to exposed residues.22,25–27

In contrast, the mutations involving buried residues had the highest absolute error of all
groups of mutations (average absolute error = 1.01 kcal/mol). Buried residues tend to be
more sensitive to sequence changes. In this case, 57% of the buried mutations are
destabilizing hot spot mutations (<|ΔΔGexp|> = 2.52 kcal/mol, Table 6) with an average
absolute error of 1.12 kcal/mol.

One of the apparent shortcomings of the LIE protein stability approach is distinguishing
between stabilizing and destabilizing mutations. According to Table 4, Model-2 is quite
successful at predicting whether a mutation is stabilizing or destabilizing (89% accuracy).
Nevertheless, the sensitivity was quite different for the prediction of destabilizing and
stabilizing mutations. Mutations with ΔΔGexp values greater than 0 kcal/mol were predicted
with a sensitivity of 95%, in contrast, mutations with ΔΔGexp values less than 0 kcal/mol
were predicted with a sensitivity of 23%. Hence, Model-2 performs poorly at correctly
identifying stabilizing mutations. This is likely an effect of the distribution of ΔΔGexp values
in our benchmark set used to parameterize the LIE model. It is composed of mainly
destabilizing mutations (91 %); and the range of ΔΔG values for stabilizing mutations which
is very small.

What effect does structure prediction have on energy prediction?
We turn next to examine how the accuracy of the structure predictions affect stability
change predictions. We evaluated the accuracy of the structural predictions using the
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criterion for a correct structure prediction that all χ dihedrals deviated from the X-ray
rotamer geometry by less than +/− 30° and an energy criterion that the absolute error
between the ΔΔGcalc and ΔΔGexp was less than 1.5 kcal/mol (Table 6). Complete structural
data, including both wild-type and mutant PDB structures, was available for 39 of the
mutations. The distribution of mutation residue-types is different in this small set of
mutations (67% neutral/18% charged/15% glycine/proline) with structural data compared to
the larger benchmark set of 822 mutations (55% neutral/21% charged/24% glycine/proline).
Correspondingly, the accuracy of the stability change calculations varies between these two
sets; 72% of the stability changes were correctly predicted in the set where the structure of
wild-type and mutant was known, in contrast, 86% of the stability changes were predicted
correctly for the benchmark set of 822 mutations. Therefore, the small set includes a large
percentage of mutations from the benchmark set that were challenging stability change
predictions. For this set, the percentage of correct stability change predictions is reduced
from 76% to 60% when the predicted side chain deviates by more than +/− 30° from the X-
ray rotamer geometry (Table 6). In the cases of correct structure and incorrect stability
change predictions (24%), all the mutations are from large residues (K,F, L, or Y) to alanine
or glycine. Modeling additional structural reorganization and relaxation may be needed to
capture the real effect of the mutation on the surrounding residues. Nevertheless, our results
indicate that accurate structural models of wild-type and mutant enhance the ability to
predict stability changes.

The accuracy of the stability change predictions is also affected by the range of possible
energies that are sampled by a residue; this is highly dependent on the amino acid type,
location of the residue and the energy function. For 60% of the incorrect structure
predictions, ΔΔGcalc was predicted within +/− 1.5 kcal/mol. An explanation for this effect is
that for these cases the X-ray and the incorrectly predicted rotamer state are approximately
isoenergetic which results in very similar ΔΔGcalc values. For example, this effect is
observed for the stability calculation of the S44A mutant in T4-Lysozyme (2LZM) where
the wild-type rotamer was predicted incorrectly (Figure 5). In the X-ray structure, the
hydroxyl group of the S44 side chain is solvent exposed and relatively close to a crystal
water, in contrast, the S44 side chain is forming a hydrogen bond with backbone carbonyl
group of N55 for the predicted rotamer (Figure 5). For the S44A mutant, the ΔΔGcalc values
are 0.46 and −0.07 kcal/mol (relative to ΔΔGexp = −0.34 kcal/mol) using the minimized
wild type and the predicted rotamer as the wild-type model. In both cases, this method is
robust enough to predict the correct stability changes despite the different side chain
geometries. Nevertheless, stability change predictions are more sensitive to the side chain
conformations of charged residues which are susceptible to forming salt bridges. For the
stability calculation of the K116A mutant in staphylococcal nuclease (1STN), the wild type
side chain geometry was predicted incorrectly and the absolute error of the stability change
was greater than 1.5 kcal/mol. In the X-ray structure, the K116 side chain is solvent exposed
and distant from most residues of the protein except from a crystal water (Figure 6). In
contrast, the predicted rotamer state of K116 side chain forms an ion pair with the D122 side
chain. If the correct wild type rotamer state is used, the ΔΔGcalc changes from 1.02 kcal/mol
to 0.24 kcal/mol which is in better agreement with experimental measurements (ΔΔGexp =
−0.70 kcal/mol). The error in the ΔΔGcalc prediction of the K116G mutation appears to be a
result of the erroneous salt bridge conformation formed by K116.

Discussion
Physical interpretation of the LIE models

The LIE model approximates the free energy change with an empirical scoring function
motivated by linear response theory which employs physically motivated energy estimators.
In the protein stability LIE model, these estimators capture the differences between the
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energetic interactions of the mutant and the wild-type protein in the folded and unfolded
state. For our calculations of the unfolded state, we use a local tetrapeptide model of the
residue of interest with its two N- and C-termini neighboring residues. The role of this
model is to capture possible residual structure in the unfolded state compared to a random
coil model. By using the folded and unfolded state in our calculations, we see a significant
increase in the accuracy of the stability calculations relative to only using the folded state
(data not shown). Therefore, the unfolded state model does play a role in the stability
calculation by screening the short range folded state interactions.

Based on Equation 6, the relative free energy change (ΔΔG) can be expressed as the
difference between the residue-environment interaction energy in the folded (Δ <Vf>) and
unfolded state (Δ <Vu>) in going from the wild-type to the mutant where i is one of the
components of the energy.

(13)

The sign of ΔΔ<Vi> determines whether a mutation is stabilizing or destabilizing relative to
the wild-type protein. If the ΔΔ< Vi > is positive, the wild-type is contributing more
favorably to the folding free energy than the mutant (ΔΔGi > 0), in contrast, if the ΔΔ<Vi>
is negative, the mutant is contributing more favorably to the folding free energy than the
wild-type. The magnitude of ΔΔ<Vi> indicates how important a particular energy estimator
is to determining the relative free energy change of the mutant compared to the wild-type. In
order to maintain the physical interpretation of the sign in Equation 13, the LIE coefficients
should be positive. This is the case for all of the models except the neutral residue model
(Model-2) (Supplemental Figure 1A). Here, the ΔΔVLJ energies are shifted to more positive
values since a large number of mutations in this group are buried hydrophobic residues that
are mutated to smaller residues which results in an unfavorable loss of vdw contacts. ΔΔVel
and ΔΔGel values are smaller but have more outliers because of the mutations involving
surface exposed polar residues. All of the energies have positive coefficients except for the
coefficients for the ΔΔGvdw and ΔΔGcav terms. The negative coefficient for the ΔΔGvdw
term is a result of fitting coefficients for the ΔΔVLJ and ΔΔGvdw energy estimators
separately; these estimators are typically fit with the same coefficient which is positive.41

Separate fitting of each energy estimator improves the results relative to a model where the
ΔΔVLJ and ΔΔGvdw energy estimators are combined however the physical meaning behind
each of the coefficients is lost since both estimators are highly correlated. We hypothesize
that the negative value for the coefficient of the ΔΔGcav energy estimator reflects
conformational reorganization effects which are not treated explicitly in our model. The
corresponding coefficient absorbs the reorganization free energy difference between the
wild-type and the single point mutant; this is always inversely correlated to the change in the
side chain size during the mutation, as absorbed by its change in exposed surface area. In a
previous protein-ligand binding study based on LIE models, negative coefficients were also
observed for the surface area cavity free energy estimator41 and it was suggested that this
energy term was statistically correlated with reorganization effects as well.

The model for mutations involving charged residues was originally fit using all five
energetic descriptors but only required two coefficients after statistical refitting
(Supplemental Figure 2). The driving force behind this model appears to be the electrostatic
(ΔVele) and polar solvation (ΔGel ) energies that span the broadest ranges of all the five
energies. As a result, coefficients for these energetic descriptors are smaller than the
corresponding values for the neutral residue model. The resulting energy distribution range
decreases dramatically when these energies are combined. This effect is well known; it
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results from the fact that ΔGel is a reaction field, which largely cancels the direct
electrostatic energy term, ΔVele. The ΔΔGcav and ΔΔGvdw terms are less significant for
fitting the charged residues since most of the charged residues are located on the surface
(89%). These terms may become more significant as we add more mutation types to the
model (small to large mutations).

The model for glycine/proline mutations was also originally fit with five coefficients but
only required two coefficients during refitting (Supplemental Figure 3). ΔΔVLJ makes the
largest contribution to this model since the mutation involves the removal of the whole side
chain and the loss of the most contacts. The coefficients for the ΔΔVLJ and ΔΔGvdw energy
estimators are similar for this model; this is consistent with the previous LIE derivation for
protein-ligand interactions in implicit solvent41 as well as previous derivations in explicit
solvent where the vdw estimator includes solute-solute and solute-solvent vdw forces scaled
by one coefficient.30 Since the training set included charged residue to glycine mutations,
the distributions and coefficients of the ΔΔVel and ΔΔGel energy estimators were similar to
those observed for mutations involving charged residues.

Performance of Mutations involving Charged Residues
The mutations involving charged residues demonstrated the worst fit of the mutation
residue-type models. Fitting was affected by the ΔΔGexp range. The ΔΔGexp range was the
smallest for the mutations involving charged residues and largest for the mutations involving
glycine/proline; this was similar to the trend in the corresponding correlation coefficients
(Table 3 and Figure 3). The ΔΔG range (both experiment and calculation) is the largest for
mutations involving glycine and proline since they typically involve large structural changes
to the native state of the protein, in contrast, the smallest range is observed experimentally
for mutations involving charged residues. Mutations involving charged residues are usually
located in solvent exposed positions and because of solvent screening have a smaller effect
on stability. Furthermore, the charged residue model training set constituted 40% of the
stabilizing mutations in our data set which are the most difficult type of mutations to predict.
ΔΔG predictions of stabilizing mutations were challenging because the LIE model was
trained on a benchmark set containing mostly destabilizing mutations. Unfortunately, this
bias is difficult to avoid since there are many more destabilizing than stabilizing
mutations.77,78

Comparison with previous methods
We compared the results for single point mutations from the LIE protein stability model
(Model-2) to previous results from Potapov et al.29 For the six different approaches,
correlation coefficients ranged from 0.26 to 0.59 and the average absolute errors ranged
from 1.00 to 1.69 kcal/mol. Based on these results, the LIE protein stability model is
superior to these other approaches (r=0.72; <|error|> =0.82). Nevertheless, the original
studies report significantly higher correlation coefficients for these methods, ranging from
0.62 to 0.75.22,24,25,27,79 The results from the protein survey were worse because the testing
sets were larger and more diverse than in the original studies and unbiased through the
removal of mutations used in the original training sets for each method. In addition, these
programs may be optimized by the labs that developed them, and the comparison studies
may not be using the programs in the optimum way.27

Effects of Sampling for the Mutant Structural Model
The LIE protein stability approach appears to be among the best programs available to
calculate stability changes despite the lack of structural relaxation in the current version of
the LIE models. In our calculations, the protein-protein interactions are on average
underestimated for the folded mutant because surrounding side chains do not repack to
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optimize the interactions with the smaller mutant residue. Nevertheless, the reorganizational
cost for repacking the side chains around the mutated residue is also not accounted for and
these two effects tend to cancel. Secondly, structural relaxation may only be beneficial for
certain types of mutations. Yin et al.26 and Kellogg et al27 noted that using a flexible
backbone sampling improved the correlation between the calculation and experiment for
mutations where the wild-type residue was smaller than the mutant residue. Lastly,
structural relaxation may also cause errors in the stability change calculation if the sampling
approach introduces erroneous structural changes into the mutant structures. Kellogg et al.
noted that using backbone relaxation actually degraded the results for the entire set of
mutations.27

Treatment of Conformational and Solvation Entropy
We note that the LIE protein stability equations are missing explicit terms for the treatment
of entropy. Free energy changes produced by linear response models, such as the one
employed here, implicitly include conformational entropy effects through the linear response
expressions which relate potential energy differences to free energy differences. Moreover,
the target of our calculations is relative stabilities resulting from the net contributions of the
differences between the unfolded and folded states of the wild-type and mutant protein. The
LIE models capture these relative entropic effects only in an average way. Solvent entropic
effects are implicitly included in the solvation free energies modeled in this work by
AGBNP effective potential, although important structural waters may not be correctly
modeled under the continuum approximation on which the model is based.

Multiple mutations
Our broader interest is to apply this method to proteins with multiple mutations. We applied
the LIE protein stability approach to a small group of double mutations from serine protease
inhibitor using Model-2. This subset of 17 mutations is included in the Protherm database
and has also been tested with the Eris approach.26 Figure 7 shows a scatter plot of calculated
vs experimental ΔΔG values for this subset of 17 mutations. Surprisingly, the correlation
coefficient and average absolute error (r = 0.80 and <|error|> = 0.69 kcal/mol) improve
compared to the single point mutation set. Using a fixed backbone approach, a correlation
coefficient between experimental and calculated ΔΔG values of 0.69 (compared to 0.64 with
single point mutations on a larger set) was reported for the Eris method, which is similar to
the trend in our results. The improvement of double mutations over single point mutations is
probably due to a cancellation of errors. In this test set, the positive cooperativity of the
ΔΔGexp for the double mutations compensates for the errors from the original model of
single point mutations which underestimate ΔΔGcalc relative to ΔΔGexp. Based on these
results, it appears that the LIE protein stability approach is a potentially useful tool for
calculating protein stability changes caused by multiple mutations that will be improved by
incorporating structural relaxation in order to accurately capture the effects of cooperativity
between mutated residues.

Conclusions
In this work, we have presented an approach to calculate relative protein stabilities based on
the Linear Interaction Energy model to estimate free energies and the protein local
optimization program (PLOP) to sample side chain rotamer states. On a large set of single
point mutations, this method leads to results that are comparable to or better than results
reported for existing methods even without including structural relaxation in the
calculations. Future work will focus on using a better sampling approach to allow for more
extensive relaxation of the protein structure following mutations and a revised version of the
AGBNP implicit solvent model80 which includes a first shell solute-solvent term and an
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improved model for protein salt bridge formation. With further development of this
approach to model multiple mutations, we can begin to integrate sequence data and
energetic information to examine the relationship between protein stability, fitness and drug
resistance.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Thermodynamic cycle for calculating the relative changes in protein stability (ΔΔG). The
ΔGwild-type and ΔGmutant are the free energy difference between the folded and unfolded
state for the wild-type and mutant, respectively. The ΔGf and ΔGu is the free energy
difference between mutant and wild-type in the folded and unfolded state, respectively. The
relative free energy can be expressed as either the difference between ΔGwild-type and
ΔGmutant or as the difference between ΔGf and ΔGu.
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Figure 2.
Calculated ΔΔG (ΔΔGcalc) versus experimental ΔΔG (ΔΔGexp) for Model-1 (A) and
Model-2 (B). Model-1 was trained on all mutation types and Model 2 was trained on
separate mutation types (Model-2) (B). The dotted black line corresponds to the x=y line and
the solid black line corresponds to the least squared fit line between ΔΔGexp and ΔΔGcalc.
The correlation coefficients were 0.61 and 0.72, for Model 1 and Model 2, respectively (See
Table 1).
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Figure 3.
Calculated ΔΔG (ΔΔGcalc) versus experimental ΔΔG (ΔΔGexp) for Model-2. Model-2
involved separate fitting on mutations involving neutral (A), charged (B) and glycine/proline
residues (C). The dotted black line corresponds to the x=y line and the solid black line
corresponds to the least squared fit line between ΔΔGexp and ΔΔGcalc. The correlation
coefficients for the neutral, charged and glycine/proline residue models were 0.69, 0.45 and
0.77, respectively (See Table 1).
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Figure 4.
Absolute errors for Model 1 outliers using Model 2. All of the outliers had an absolute error
higher than 2.5 kcal/mol using Model 1 (42 outliers). The dotted line is the x=y line. Any
points below this line represent the outliers which had lower absolute errors for Model 2
compared to Model 1 (approximately 90 % in this case).
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Figure 5.
Incorrect structural predictions with accurate energy predictions. In each case, the wild-type
rotamer geometry deviated from the crystal structure reference state by more than 30° for
the ΔΔGcalc of the S44A mutant in T4-Lysozyme (2LZM). The X-ray model is shown in
blue and the predicted models is shown in green. All of the atoms in licorice are heavy
atoms except for the hydrogen of the hydroxyl group of S43.
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Figure 6.
Incorrect structural predictions with incorrect energy predictions. In this case, the wild-type
rotamer geometry deviated from the crystal structure reference state by more than 30° for
the ΔΔGcalc of the K116A mutant (A) in staphylococcal nuclease (1STN). The X-ray model
is shown in blue and the predicted model is shown in green.
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Figure 7.
Calculated ΔΔG (ΔΔGcalc) versus experimental ΔΔG (ΔΔGexp) for a set of serine protease
inhibitor (2CI2) double mutants. The dotted black line corresponds to the x=y line and the
solid black line corresponds to the least squared fit line between ΔΔGexp and ΔΔGcalc. The
correlation coefficient is 0.80 using Model 2.
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Table 1

Proteins used for LIE protein stability calculations

Protein %α %β Nmut

1stn 24 30 391

1bni 22 23 91

1fkj 14 37 31

2ci2 22 28 58

1hz6 35 48 57

1fmk 5 41 49

1rex 40 12 41

1bpi 21 26 40

1ten 0 51 39

2lzm 7 66 25

%α = percentage residues in an α-helical conformation in the whole protein; % β = percentage of residues in β-sheet conformation in the whole
protein; Nmut= number of single point mutations;
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Table 3

Comparison of the results for different mutation residue types using Model 1 and Model 2.

Residue-type # of Mutations Model-1 Model-2

All 822 0.61 (0.94) 0.72 (0.82)

Neutral 448 0.60 (0.88) 0.69 (0.80)

Charged 175 0.38 (0.84) 0.45 (0.72)

Glycine/Proline 199 0.72 (1.15) 0.77 (0.94)

The correlation coefficient is listed with the average absolute error in parenthesis (in units of kcal/mol).
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Table 4

Prediction of stabilizing/destabilizing and hot spot mutations

Stabilizing/Destabilizing Mutations Hot spot Mutations

Model Accuracy (%) Accuracy (%) Sensitivity (%) Specificity (%)

1 87 79 54 90

2 89 82 66 90

Stabilizing mutations had ΔΔGexp < 0 and destabilizing mutations had ΔΔGexp > 0.

Hot spot mutations had |ΔΔGexp|> 2 and non-hot spot mutations had |ΔΔGexp|< 2. Accuracy measures how many ΔΔGcalc have been predicted to
be in the same direction of stability as the ΔΔGexp.

Sensitivity measures how many hot spot mutations were identified correctly relative to the total amount of hot spots. Specificity measures how
many non-hot spots were correctly identified relative to the total number of non-hot spots. There are 727 destabilizing mutations, 71 stabilizing
mutations and 255 hot spot mutations
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Table 6

The Effect of Correct Structural Predictions on Energetic Predictions

Structural Predictions Energetic Predictions Count Conditional probability

Correct Correct 22 0.76

Correct Incorrect 7 0.24

Incorrect Correct 6 0.60

Incorrect Incorrect 4 0.40

In the training set, there were 39 mutations which had corresponding structural information for the wild-type and mutant structures according to the
Protherm database.
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