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ABSTRACT
Objective Adverse drug events (ADEs) are common and
account for 770 000 injuries and deaths each year and
drug interactions account for as much as 30% of these
ADEs. Spontaneous reporting systems routinely collect
ADEs from patients on complex combinations of
medications and provide an opportunity to discover
unexpected drug interactions. Unfortunately, current
algorithms for such “signal detection” are limited by
underreporting of interactions that are not expected. We
present a novel method to identify latent drug interaction
signals in the case of underreporting.
Materials and Methods We identified eight clinically
significant adverse events. We used the FDA’s Adverse
Event Reporting System to build profiles for these
adverse events based on the side effects of drugs known
to produce them. We then looked for pairs of drugs that
match these single-drug profiles in order to predict
potential interactions. We evaluated these interactions in
two independent data sets and also through
a retrospective analysis of the Stanford Hospital
electronic medical records.
Results We identified 171 novel drug interactions (for
eight adverse event categories) that are significantly
enriched for known drug interactions (p¼0.0009) and
used the electronic medical record for independently
testing drug interaction hypotheses using multivariate
statistical models with covariates.
Conclusion Our method provides an option for detecting
hidden interactions in spontaneous reporting systems by
using side effect profiles to infer the presence of
unreported adverse events.

BACKGROUND AND SIGNIFICANCE
Drug-drug interactions (DDIs) may account for up
to 30% of unexpected adverse drug events.1 The
National Health and Nutrition Examination Survey
reports that over 76% of elderly Americans are on
two or more drugs today. Unfortunately, the
interactions between drugs are difficult to study,
and there are few predictive methods for discov-
ering novel DDIs. Clinical trials focus on estab-
lishing the safety and efficacy of single drugs, and
do not typically investigate DDIs.2 Even when
DDIs are suspected, sample sizes and cohort biases
limit the ability to discovery rare adverse effects.3

Some DDIs can be predicted through careful eval-
uation of molecular targets and metabolizing
enzymes, such as when two drugs are both
metabolized by the same enzyme (eg, CYP3A4),
resulting in unexpected blood levels.4e7 Drugs may
also interact with proteins that are not their
primary therapeutic target, resulting in unexpected
side effects.8 These side effects are not necessarily

adverse; sildenafil (Viagra) was developed to treat
angina but is now used to treat erectile dysfunc-
tion.9 Some computational algorithms take advan-
tage of these pleiotropic interactions of drugs for
predicting off target effects and discovering novel
protein targets.10e15 Nonetheless, discovering the
off target interactions of drugs remains an active
area of research. Large clinical data sets offer the
potential for a more systematic evaluation of drug
effects. Thus, predictive pharmacoepidemiological
methods represent a significant opportunity to
discovery and validate novel DDIs.
The Food and Drug Administration (FDA) has

been collecting adverse drug event reports from
clinicians, patients, and drug companies for over
30 years. Over two million of these reports describe
patients with adverse events who are on two or
more drugs. Health Canada and the WHO also
maintain large databases of adverse drug effects.16

These data represent a significant opportunity to
study the effects of drug combinations in vivo.
Quantitative signal detection methods aim to
unravel complex drug-event signals from sponta-
neous reporting systems such as the FDA’s Adverse
Event Reporting System (AERS).17 The primary
goal of these methods is to flag potentially
dangerous adverse drug effects rapidly and with as
few reports as possible. Unfortunately, low
reporting numbers are known to inflate the risk
estimates for these drugs, making them less reli-
able.17 Some methods control for this by
computing the confidence of the risk ratios and use
shrinkage to remove noisy signals.17 18 While these
methods are effective at reducing the false positive
rate, their ability to detect adverse events early is
concomitantly reduced.19 Thus, there is an inherent
tradeoff between detecting adverse effects based on
a small number of reports and the chance of false
positive detections. The difficulty of detecting
associations in these spontaneous report systems is
compounded by underreporting of unexpected
events for which there is no a priori physiological or
molecular explanation. This difficulty is exacer-
bated for DDIs where the number of reports is even
lower than for an individual drug.2 These two
sources of signal loss limit the utility of published
DDI signal detection methods.20e22 At the extreme,
an adverse event that is, never directly and explic-
itly reported can never be detected by these
methods.
In this study, we present a framework for iden-

tifying adverse DDIs that addresses the primary
limitation of previous methods, namely under-
reporting of adverse events. We use a novel signal
detection algorithm to identify hidden (or latent)
DDIs signals, and then use independent data sets to
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screen putative interactions for further follow-up. We use EMR
data to validate one such prediction23 and invalidate another. We
evaluated the overall performance of the method in two inde-
pendent data sets.

MATERIALS AND METHODS
Data sources
In total 1 764 724 adverse event reports (through April 2009)
were downloaded from the FDA’s publicly available AERS. We
used only reports that listed exactly one or two drugs in this
analysis (N¼877 188). 675 372 of those reports listed exactly one
drug and 201 816 reports listed exactly two drugs. We then
created frequency tables where each row lists a drug and the
proportion of reports of each adverse event with that drug
(figure 1B). To ensure reasonable reporting frequency estimates
we only included drugs that had at least 10 (N¼1481) reports for
single drugs and at least 5 (N¼4239) reports for pairs of drugs.
We included all adverse events (N¼8558). We obtained Institu-
tional Review Board approval for a structured data extraction
from the clinical records which included diagnoses codes,
prescription orders, and laboratory reports. In addition, we used
a list of drug interactions identified by the Veterans Association
hospital in Arizona as significant or critical as a silver standard
for evaluation.3

Training predictive models for adverse events
We chose to investigate drug interactions related to eight
distinct severe adverse event (SAE) classes, because of their
clinical significance; cholesterol, renal impairment, diabetes, liver
dysfunction, hepatotoxicity, hypertension, depression, and
suicide. These SAE classes do not group adverse events but
instead group the drugs that are associated with the adverse
events (as determined by manual curation). Thus, for example,
the SAE class “hepatotoxicity” is made up of drugs such as
hydrochlorothiazide, acetaminophen, simvastatin, and others
(table S17). To build predictive models for these events, we first
divided the AERS data into two independent sets: reports that
listed exactly one drug and reports that listed exactly two drugs.
We used the first for training and the second for validation and
prediction. We built eight separate models using supervised
machine learning methods. Each model discovers latent signals
for one of the eight adverse events. Supervised machine learning
algorithms require two variables for each example: the
measurements (also called “independent variables” or “features”)
and responses (also called “dependent variables”). In our model
the examples are drugs in the SAE class and the measurements
are the adverse event frequencies derived from AERS (ie, a row
from figure 1B). The response, or dependent variable, is a discrete
variable which indicates whether or not that drug is known to
cause the adverse event by manual curation (ie, the last column
in figure 1B). For each SAE class, we divided all drugs into two
sub-classes: those known to be associated with the SAE,
according to manual curation, and those with no known asso-
ciation. We used the former as the positive examples and the
latter as the negative examples to train a logistic regression
classifier. We had a total of 1481 training examples, one for each
drug, and the exact number of positive and negative examples
varies for each adverse event (table 1).

Overfitting is a concern in machine learning when the number
of measurements exceeds the number of training examples. A
model that is, overfit to the training data will not be general-
izable to other data sets and thus have limited predictive power.
In our model the number of measurements is the number of
adverse events (ie, the columns of figure 1B). Overfitting was

a concern because we had 8558 measurements and only 1481
training examples. We used forward feature selection to identify
a subset of the measurements for use in training. To select
features we sorted the measurements by their enrichment with
the response variable. To determine enrichment we used
a Fisher ’s exact test. To perform the test we discretized the drug-
event frequencies by whether or not the frequency was >0.01.
Note that this is an arbitrary cut-off that can be adjusted. Then
we added the most enriched (by significance) features one at
a time, and computed the testing error in 10-fold cross valida-
tion. We stopped adding features when we found evidence of
overfitting. Note that the feature selection was performed before
the cross-validation and so is “biased” slightly and likely to
produce an optimistic estimate of the generalization error.
Instead of using the cross validation to estimate the general-
ization error we used two independent data sets, the drug pair
data and a list of drug interactions highlighted as significant or
critical by the VA.3 Neither of these data sets were used in the
feature selection or cross-validation (figure 2, table 1). In the first
data set each example is a drug-pair (ie, a row from figure 1D). In
validation, as in training, a response variable for each example is
required. Since there is no recognized gold standard for drug
interaction adverse events we used two strategies to define the
response variables. In the first strategy we labeled drug-pairs as
“positive” if at least one of the drugs in the pair was known to be
associated with the adverse event (ie, the single drug-event
associations). These pairs of drugs may not represent drug
interactions, but the examples serve to build confidence that the
model is identifying true adverse event signals. In the second
strategy we labeled drug-pairs as “positive” if the pair is known
to interact according to a list of clinically significant interactions
from the Department of Veterans Affairs.3 Note that these are
simply drugs that are known to interact and do not necessarily
cause the predicted phenotype. In both cases we evaluated the
enrichment of the predicted drug-pairs (ie, drug-pairs with
logistic regression scores >0) for drug-pairs labeled as “positive”
using a Fisher ’s exact test (table 1). In addition, we constructed
eight ROC curves (figure 2).

Applying the predictive models to pairs of drugs
We applied the validated model to the adverse events reported
with pairs of drugs. We constructed a drug-pair adverse event
frequency matrix (figure 1D). This matrix has the same form as
the training matrix (ie, the single-drug matrix, figure 1B). This
enables the application of the machine learning models trained
on the single-drug matrix to be directly applied to the drug-pair
matrix. For example, in the model trained to identify drugs with
cholesterol-related effects we used a logistic regression model
trained on three features, myalgia, rhabdomyolysis, and amyo-
trophic lateral sclerosis (eg, the columns in figure 1B). We learned
the coefficients for each of these features and then applied those
coefficients to the drug-pair matrix. We can do this since the
drug-pair matrix also has these three features (columns in figure
1D). The result of applying the regression coefficients to the data
in the drug-pair matrix is a “score” that represents the likelihood
of that pair be associated with cholesterol-related effects. This
association can then be explained in one of two ways: (1) one of
the drugs in the pair has an association with cholesterol-related
effects (ie, one of the drugs in the pair was used as a positive
training example), or (2) there is a interaction between the two
drugs in the pair that results in a cholesterol-related effect. The
latter type are the drug-interaction predictions produced by the
method. These predictions represent a drug pair where neither
drug alone is known to have a relationship with the adverse
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event. We observed that some drug-pairs were more likely to
have higher logistic regression scores, on average, than others. To
account for this variation we built logistic regression models on
random features for each of the eight adverse events. We
repeated this 100 times to estimate an “empirical” p Value. We
pruned any drug-pairs with a p Value $0.01.

Manual curation of the eight serious adverse event classes
Our method relies on predefined drug effects. Essentially, we
grouped drugs into the eight SAE classes by their known effects,
as determined through manual expert curation. For example, the
drugs that are in the “cholesterol” event class are drugs that are
expected to cause perturbations in cholesterol related pathways
(ie, treat or are contraindicated for hypercholestermia). Similarly
for the “diabetes” event class the drugs are expected to cause
perturbations in glucose homeostasis. For the hypertension, liver
dysfunction, and renal impairment event classes we identified
drugs that had known adverse effects related to these pheno-
types. For the depression class we included drugs known to
cause depression or known to worsen the effects of depression.
For the suicide class we included drugs that have been shown to
cause suicidal ideation and suicidal behaviors. Finally, for the
hepatotoxicity event class we included drugs known to have
severe liver toxicity in some patients according to their drug
labels. A complete list of the drugs in each class is available in
the supplemental materials.

Screening putative interactions for follow-up analysis using
electronic medical records
EMR data present us with the opportunity to screen the DDI
predictions produced from the signal detection analysis on the
FDA database. We performed this screening in two stages. For
each model we identified ICD 9 billing codes for the predicted
adverse event. We identified these ICD 9 billing codes by
searching for terms related to the phenotype (eg, “cholesterol”).
We then moved up the hierarchy to find the most general term
encompassing all relevant adverse eventsdin the case of
cholesterol, it is the entire 272.* tree. In some cases it was
necessary to move up distinct branches of the tree (eg, diabetes).
A list of the ICD 9 codes used for each event class is available in
table 1. We then compared the proportion of patients diagnosed
with one of the ICD 9 codes after start of combination therapy
to the proportion of patients diagnosed after start of either drug
alone. We assume that the presence of one of the pre-defined
ICD 9 codes indicates the presence of the phenotype. Violations
of our assumption will only dampen our signal, not create false
positive associations. We believe this is an acceptable charac-
teristic of a screening method. We considered patients prescribed
both drugs within a 36 day period as “on the combination.” Our
data do not contain verification that the patients were actually
taking the drugs. However, again, this would only weaken the
signal leading to an increase in false negatives. We calculated two
estimates of RR: (1) the RR between combination and one of the
drugs and (2) the RR between the combination and the other
drug. We flagged any combinations where both of these ratios
were significant for follow-up analysis. A list of all novel puta-
tive drug interactions is available in (tables S1e8).

All drug “classes”

drugs

drugs

im

class

class

events

Selected adverse events from (C)

Figure 1 Methodological overview. (A) Each drug is assigned a label
according to their adverse event class, so that each element of the
matrix indicates drug i’s membership in class j. The fields of this matrix
are filled by the user and each column is used as the response variables
to train a supervised machine learning algorithm. In this paper we built
eight such algorithms for renal impairment, cholesterol, suicide,
depression, liver dysfunction, hypertension, hepatotoxicity, and
diabetes. (B) Given a particular drug class from (A) (ie, a column), we
construct an N by M adverse event frequency matrix, where N is the
number of drugs and M is the number of adverse events. Each element
of the matrix represents the proportion of reports for drug i which list
adverse event j. (C) Since M >> N overfitting the logistic regression
model to the training data is a concern. We use feature selection to
identify the L most informative adverse events to be used in fitting the
logistic regression model. (D) A second adverse event frequency matrix
is constructed. The key difference here is that each row represents
a drug-pair as opposed to a single drug, as in (B). Note that no data is

(continued)
shared between these two matrices to ensure they are independent.
Therefore each element of this matrix is the proportion of reports for
both drugs i and j that list adverse event l. This matrix takes on the same
form as the matrix used for fitting the model. This allows us to apply the
model and make drug-drug interaction predictions.
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Evaluation of the putative interaction between moxifloxacin and
warfarin
The putative interaction between moxifloxacin and warfarin and
increased risk of renal impairment passed initial screening using
the EMR. However, as a retrospective data analysis the EMRmay
contain many confounding factors which could better explain
the putative relationship. We used an analysis of covariance
(ANCOVA) to test for differences between three groups of
patients: (1) patients on warfarin and moxifloxacin, (2) patients
on warfarin and another fluoroquinolone, and (3) patients on
another antithrombotic and moxifloxacin. In our model the
dependent variable was the presence an ICD9 code between 580
and 589, inclusive, after the start of combination therapy. We
modeled incidence of one of the ICD9 billing codes (0 if none
were present, 1 if one or more was present) as a function of the
treatment conditions. In addition, we included age, sex, race,
baseline creatine (at first prescription) as covariates in the model.

Clinical analysis of putative drug-drug interaction between
paroxetine and pravastatin
Direct laboratory measurements relevant to adverse events are
better than diagnosis codes when available. They allow for
a more sensitive quantitative analysis. We used lab measure-
ments to assess the presence of a drug interaction associated
with the diabetes drug class. As described in Tatonetti et al, we
compared random glucose measurements from before and after
patients started combination therapy with paroxetine and
pravastatin, and then compared that to the individual effects of
the drugs alone.23

RESULTS
Predicted drug interactions are significantly enriched for known
effects
We trained eight logistic regression models for cholesterol, renal
impairment, diabetes, liver dysfunction, hepatotoxicity,

Figure 2 Receiver Operating Characteristic curves for the eight logistic regression models on two independent validation data sets. The KE data set
was paired drug data from AERS, not used in training, where at least one of the drugs of the pair is known to be associated with the adverse event
(according to FDA drug labels). The second validation data set (VA) was a list of critical and significant DDIs from the Veterans Affairs Hospital in
Arizona provided by Olvey, et al CHOL, Cholesterol; DEPR, Depression; DIAB, Diabetes; HEPTOX, Hepatotoxicity; HTN, Hypertension; LIVDYS, Liver
Dysfunction; RENIMP, renal impairment; SUIC, Suicide.

Table 1 Logistic regression model characteristics and performance statistics for eight adverse event “classes”

Event class
Clinical ICD 9
codes

Positive training
examples

# Model
parameters

# DDI
predictions
(p<0.01)

Known effects*
OR (95% CI)

Known effects
p Value

Known DDIy
OR (95% CI)

Known DDI
p Value

Cholesterol 272 37 3 79 44.8 (28.2 to 72.5) 3.90E-67 4.0 (1.9 to 7.7) 1.57E-04

Renal impairment 580e589 99 17 114 12.5 (9.0 to 17.4) 1.66E-49 2.6 (1.3 to 4.9) 0.004

Diabetes 790.2, 250% 52 15 31 85.2 (56.9 to 129.2) 2.13E-135 3.1 (1.0 to 7.7) 0.02

Liver dysfunction 570e573 107 27 42 4.4 (3.0 to 6.2) 5.31E-15 2.3 (1.0 to 4.6) 0.03

Hepatotoxicity 570e573 112 31 17 2.3 (1.4 to 3.6) 4.50E-04 1.7 (0.5 to 4.4) 0.24

Depression 296 71 19 19 9.9 (7.6 to 13.0) 1.83E-67 0.5 (0.17 to 1.4) 0.26

Hypertension 401e402, 404e405 141 28 45 10.7 (6.9 to 16.4) 7.40E-23 1.3 (0.4 to 3.1) 0.47

Suicide E950eE959 30 3 60 24.5 (16.6 to 36.7) 4.21E-69 0.8 (0.1 to 2.4) 0.79

*Known effects defined as one (or both) of the drugs having a known relationship with the “Event Class.” Enrichment was tested using a Fisher’s exact test.
yKnown DDIs are from a list maintained by the VA in Arizona provided by Olvey, et al Enrichment was tested using a Fisher’s exact test.
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depression, and suicide. Each model significantly identified drugs
from the positive examples in validation data sets (table 1). In
addition, four of the models produced DDI predictions which
were significantly enriched for a list of known clinically impor-
tant drug interactions (table 1). The ORs for these models were
4.0 (p<0.0001), 2.6 (p¼0.004), 3.1 (p¼0.02), and 2.3 (p¼0.03) for
cholesterol, renal impairment, diabetes, and liver dysfunction,
respectively. 95% CIs are given in table 1.

Each adverse event model produced between 17 and 114 DDI
predictions with empirical p Values (from randomization)
<0.01, with renal impairment producing the most (114 DDIs)
and hepatotoxicity producing the fewest (17 DDIs). Figure 3
and table 2 show the breakdown of the DDI predictions
between known single drug effects, established DDIs, and novel
predictions.

Example interaction: paroxetine and pravastatin are associated
with increased blood glucose
The diabetes model produces eight DDI predictions that cannot
be explained by single drug effects alone. The top ranked pair of
drugs is paroxetine, a selective serotonin reuptake inhibitor, and
pravastatin, a cholesterol lowering agent. These two drugs are
some of the most widely used in the world and so we chose to

follow-up with a clinical analysis. We present the discovery and
validation of this interaction elsewhere, but briefly highlight the
results here. We found that paroxetine and pravastatin were
associated with a significant increase in blood glucose (22.6 mg/
dl, p¼0.001) in eight patients taking both drugs (figure 4). This
change was not observed in patients taking either drug without
the other nor in patients taking alternative combinations of
SSRIs and statins. We validated this interaction in two addi-
tional EMR systems.23

Example interaction: warfarin and moxifloxacin are falsely
associated with increased incidence of renal impairment
We found that the combination of warfarin and moxifloxacin
was associated with a significant increase in the incidence of
renal impairment in a preliminary analysis. A review of the EMR
revealed that 22 of 187 (12%) of patients taking the combination
of warfarin and moxifloxacin went on to be diagnosed with an
ICD 9 code associated with kidney dysfunction (KD). In
comparison, only 135 of 2711 (5%) patients on moxifloxacin and
353 of 8243 (4%) patients on warfarin went on to be diagnosed
with KD. Additionally, a review of patients taking warfarin and
an alternative fluoroquinolone showed that 101 of 1441 (7%)
patients were diagnosed with KD. This corresponds to an OR of
1.7 (95% CI: 1.0 to 2.9, p¼0.03) of being diagnosed with KD
when comparing the warfarin-moxifloxacin to the warfarin-
other fluoroquinolones groups directly. However, moxifloxacin is
known to be preferred over other fluoroquinolones in patients
with recent renal transplants or renal impairment because it is
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Adverse event model

Figure 3 Putative drug-drug interactions. We predicted drug-drug
interactions for eight adverse event classes: renal impairment (RI),
cholesterol (CHOL), suicide (SUI), hypertension (HTN), liver dysfunction
(LD), diabetes (DM), depression (DEP), and hepatotoxicity (HEP). This
plot shows the breakdown of these interactions into three groups: (1)
pairs of drugs where the effect can be explained by known single drug
effects (filled), (2) pairs of drugs already known to be involved in
a clinically significant interactions (shaded), and (3) completely novel
interactions (unfilled).

Table 2 Breakdown of drug-pair predictions for the eight logistic
regression models

Drug “class”
Total
predictions

Novel
DDI

Known
interactions

Known
single
effects

Cholesterol 79 18 16 45

Renal impairment 114 51 9 54

Diabetes 31 7 1 23

Liver dysfunction 42 23 1 18

Hepatotoxicity 17 12 0 5

Depression 19 14 0 5

Hypertension 45 35 1 9

Suicide 61 11 1 49

Blood glucose for 

patients on combination therapy
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Figure 4 Novel putative drug interaction prediction between parox-
etine and pravastatin. Paroxetine and Pravastatin in combination are
associated with elevated blood glucose. Mean non-fasting blood glucose
levels in eight patients before and after starting combination treatment
with paroxetine and pravastatin. The mean increase in blood glucose
was 22 mg/dl (p¼0.001). We observed no significant change in patients
on paroxetine and not pravastatin and vice versa.
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not cleared renally. We therefore included additional covariates
to account for the interactions. We conducted an analysis of
covariance between three treatment groups: (1) patients on
warfarin and moxifloxacin, (2) patients on warfarin and another
fluoroquinolone, and (3) patients on moxifloxacin and another
antithrombotic. We included age, race, sex, baseline creatine, and
treatment conditions in the model. We found that when we
included baseline creatine the treatment condition was no longer
significant. Patients with higher baseline creatine levels, as
expected, were being preferentially prescribed with moxifloxacin
over other fluoroquinolones causing a false association in the
observational databases.

DISCUSSION
The accurate and early prediction of drug interactions remains
a challenging area with great potential impact as polypharmacy
becomes more common. Spontaneous AERSs represent the
largest collection of population-based clinical data on drug
interactions. Unfortunately, underreporting makes identifying
true interactions difficult. In this paper, we presented a novel
signal detection algorithm that addresses underreporting of
adverse events by inferring the presence of latent or hidden
signals in adverse event report databases. These latent signals
represent combinations of other adverse events that together
suggest the presence of the adverse event of interest. For
example, we found that in the diabetes model the key features
were hyperglycemia, paresthesia, and nausea and for renal
impairment the key features were angioneurotic edema and
hypersensitivity. These key features enable us to detect adverse
events by their secondary effects even when the primary effects
are not recognized or recorded explicitly. We demonstrate that
evaluating putative drug interactions with clinical EMR data can
prune the predictions and identify potentially important drug
interactions for further study. We built eight logistic regression
models to predict drug interactions related to cholesterol, renal
impairment, diabetes, liver dysfunction, hepatotoxicity, hyper-
tension, depression, and suicide. In our initial validation, we
found that in an independent data set each model significantly
identified drug pairs where at least one of the drugs had known
related effects. We also found that four of the sets of DDI
predictions were enriched for known clinically important drug
interactions. Finally, our analysis identified drug interactions for
which there are very few or no reports. For example, there was
not a single report for a patient on paroxetine and pravastatin
that listed elevated blood glucose as an adverse event, yet the
algorithm identified this interaction by the presence of a collec-
tion of other adverse events associated with diabetes. We used an
EMR system to validate an interaction between paroxetine and
pravastatin and to explain a synthetic association between
warfarin and moxifloxacin. This demonstrates the need of
careful follow-up analysis when using observational data and
the consideration of important clinical covariates in the statis-
tical model. We believe this represents the first example of
integrating the AERS with a hospital’s EMR to discover and
validate putative drug interactions.

These methods address one of the main criticisms posed of
analysis of spontaneous reporting system data: underreporting.
The effects of underreporting on signal detection analysis are
exacerbated when considering multi-drug effects. These methods
will aid drug safety professionals in two significant ways. First,
they will identify potentially dangerous drug interactions that
could not have been found with previous methods due to
underreporting. Second, since they focus on the discovery of drug

interactions with severe adverse effects they focus attention on
DDIs with the highest potential clinical impact.

Limitations
The analysis we presented here has limitations. First, in order to
identify latent signals in spontaneous reporting data, the algo-
rithm must be supplied with predefined drug classes. For
example, the user must supply a list of drugs which are known
to be associated with the target adverse event (eg, all drugs
known to cause renal impairment). Learning drug sets compu-
tationally from an independent data set, such as the FDA drug
labels, would address this limitation. Second, the method only
uses those reports with exactly one or two drugs listed. We do
this to avoid confounding drug signals and to isolate the effect of
the single drug or a pair of drugs. However, it is reasonable to
assume that using more reports will increase the predictive
power of this method. To address this issue, future work should
focus on methods to extract high quality drug-effect relation-
ships from spontaneous adverse event reporting data which
accounts for these confounding variables and indication biases.
Third, the follow-up analysis requires access to an EMR system.
EMRs are becoming more common, but access to these data for
research purposes can be difficult and restrictive. Methods to
facilitate the movement of clinical data from the hospital into
research will speed the evaluation of pharmacoepidemiological
methods and improve the effectiveness of their predictions.
Finally, we do not normalize the drug names used in AERS. In
fact, many drugs are listed under different names (eg, Tylenol
and acetaminophen). Normalization of these drug names could
improve the overall performance of the algorithm and limit any
biases that may exist toward drugs with many synonyms.

CONCLUSION
We developed a novel signal detection algorithm that identifies
latent adverse event signals from spontaneous reporting
systems. We applied this method to the FDA’s AERS and trained
models to predict drug interactions. In all, we trained models for
eight distinct types of adverse events and made 171 novel drug
interaction predictions. We evaluated the performance of the
method in two independent data sets. In addition, we demon-
strated the use of the EMR at Stanford Hospital to validate one
drug interaction hypothesis, paroxetine and pravastatin, and to
explain another synthetic interaction, moxifloxacin and
warfarin. Our method addresses the issue of underreporting in
spontaneous reporting systems, one of the primary limitations
faced by previous signal detection methods, and identifies
hundreds of novel interactions for further study.
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