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ABSTRACT

Objective Systematic analysis of observational medical
databases for active safety surveillance is hindered by
the variation in data models and coding systems. Data
analysts often find robust clinical data models difficult to
understand and ill suited to support their analytic
approaches. Further, some models do not facilitate the
computations required for systematic analysis across
many interventions and outcomes for large datasets.
Translating the data from these idiosyncratic data
models to a common data model (CDM) could facilitate
both the analysts” understanding and the suitability for
large-scale systematic analysis. In addition to facilitating
analysis, a suitable CDM has to faithfully represent the
source observational database. Before beginning to use
the Observational Medical Outcomes Partnership
(OMOP) CDM and a related dictionary of standardized
terminologies for a study of large-scale systematic active
safety surveillance, the authors validated the model’s
suitability for this use by example.

Validation by example To validate the OMOP CDM,
the model was instantiated into a relational database,
data from 10 different observational healthcare
databases were loaded into separate instances,

a comprehensive array of analytic methods that operate
on the data model was created, and these methods
were executed against the databases to measure
performance.

Conclusion There was acceptable representation of the
data from 10 observational databases in the OMOP CDM
using the standardized terminologies selected, and

a range of analytic methods was developed and
executed with sufficient performance to be useful for
active safety surveillance.

BACKGROUND AND SIGNIFICANCE
Observational (non-experimental) studies have
several potential advantages over experimental
studies (eg, randomized controlled trials), including
lower cost, better generalizability, and greater
timeliness' % however, they also have important
limitations, including the potential for bias.® *
Studies that use observational databases are already
a mainstay of drug safety and health-services
research, and are viewed as a key resource for
comparative effectiveness research. The increasing
availability of large, observational, structured
healthcare data sets is rapidly increasing the
potential for well-designed, observational studies,
which can provide valuable insights.

These healthcare data sets are stored in databases
that are built using a wide variety of data models
and, often, local terminologies. Each of these data

models organizes data in a different way, often
making it difficult to characterize or analyze the
data from disparate healthcare systems in the same
way or using the same tools. Not surprisingly, most
analyses have focused on data from a single data-
base using a single analysis method customized to
the underlying data model and local terminologies.
An analysis across multiple disparate databases
must either tailor the analysis to accommodate
each of the underlying data models and terminol-
ogies or convert the databases to a common data
model (CDM).

Converting multiple disparate databases to
a CDM would allow researchers to write and test
the analyses once and then run them on all of the
databases with minimal modification. The initial
mapping of local codes from each database to
standard concepts in a CDM requires detailed
knowledge of the local data, but once local codes
are converted to the common representation, the
requirement for detailed knowledge is minimal. A
potential limitation of mapping these individual
databases to a CDM is that the CDM may not
allow some of the relationships or data contained in
a local database to be fully represented. As long as
all of the relevant relationships and data required
for anticipated uses of the data (drug safety
surveillance in our case) are represented, this limi-
tation is not too severe. Terminologies used in
various databases vary widely, and selecting
a common terminology or set of terminologies is
a critical step for implementing a CDM.

Although CDMs have some limitations,
conducting studies in disparate databases not
converted to a CDM presents substantial challenges.
For example, local expertise for each database would
be required for each analysis, and the chance for error
is increased. In the absence of a common terminology,
analyses would have to be customized for each
database and would require specific local analytic and
database expertise as well as a means to arrive at
a rational summary measure across databases.

A CDM, combined with a method for standard-
izing the terminologies, ensures that analytic
methods can be systematically applied to produce
meaningfully comparable results, recognizing that
differences in the underlying data may produce
different results. The prospects for this approach
are extremely promising, not only for active safety
surveillance but also for other uses such as
comparative effectiveness research.

The Observational Medical Outcomes Partner-
ship (OMOP) is empirically assessing the feasibility
and utility of using observational data to identify
and evaluate associations between medications and
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health-related conditions.” To facilitate this methodological
research, OMOP is evaluating the performance of numerous
analytic methods for identifying drug—outcome associations
across multiple disparate observational data sources using
a CDM?’ and associated standardized terminologies.” The
OMOP CDM was designed to accommodate data from the
observational medical databases that are generally considered
necessary for active safety analysis, defining both the format
(data model) and the content (standardized terminologies). The
OMOP CDM design is intended to serve the purposes of active
drug-safety surveillance and to be intuitive, not overly complex,
and otherwise ‘analyst-friendly.” Before beginning to use the
OMOP CDM and a related dictionary of standardized termi-
nologies for a study of large-scale systematic active safety
surveillance, we validated the model’s suitability for this use by
example. To do this, we converted 10 different observational
datasets into the OMOP CDM, implemented a number of
analytic methods against the OMOP CDM, and executed the
methods across all of the databases.

METHODS

Model formulation

A set of guiding principles was established to draft a CDM based
on expert opinion and previous analyses® '* of existing data
models.'*® The OMOP CDM is a person-centric relational
model, with domains inclusive of demographics, observation
periods, drug exposure, condition occurrence, procedures, visits,
and clinical observations. Reisinger et a/ described the develop-
ment and initial evaluation of the OMOP CDM."*

Validation through examples

To validate the OMOP CDM'’s usefulness for active drug-safety
surveillance, we examined its ability to represent real-world
observational data sets, to provide a convenient conceptual
model that facilitates analytic methods development, and to
allow the analytic methods to execute quickly enough to be
practical. Ten different observational databases (table 1) were
used to validate the ability of the OMOP CDM and dictionary
of standardized terminologies to represent the diverse data
likely to be encountered in drug safety analyses across similar
networks of databases. These databases were selected for the
validation exercise based on their general appropriateness for
drug safety surveillance in terms of the types of data they
contain, variability in size, geographic scope, primary purpose
for which the data were collected (eg, payment, clinical care,
or research), and underlying data models. By converting each
of these observational medical databases to the OMOP CDM,
we assessed the feasibility, fidelity, and resources required, then
subjectively assessed the appropriateness of the CDM to
support methods development and executed the methods
across all of the observational databases to determine execution
time. We validated the suitability of the standardized termi-
nologies to represent the data in the databases (1) by having
the medical coders and informaticists performing the mappings
identify any fidelity issues they encountered (eg, concepts
that could not be represented, concepts that were narrower
or broader than the original concepts); (2) by having the
analysts identify any fidelity issues they encountered while
implementing the analytic methods across a range of medi-
cation—outcome pairs; and (3) by examining the effect of
alternative standardized terminologies (using the Medical
Dictionary for Regulatory Activities (MedDRA), International
Classification of Diseases, Ninth Revision, Clinical Modifica-
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tion (ICD-9-CM), or Systematized Nomenclature of Medi-
cine—Clinical Terms (SNOMED CT) for conditions and
National Drug File-Reference Terminology (NDE-RT) or
RxNorm for medications) on the results of the analytic
methods.

OMQOP staff performed the conversion of the five commercially
available datasets (GE and the four MarketScan research data-
bases) into the OMOP CDM. For data sources within the
distributed network, local teams performed the conversions
utilizing their detailed knowledge of the local data structures and
coding. All necessary precautions and security measures were
implemented to ensure that personal health information was not
accessed by non-authorized personnel, including OMOP staff and
collaborators. To convert local codes to the standardized termi-
nologies selected for the OMOP CDM, mapping tables from
a variety of sources were utilized including publicly available
mapping tables (eg, Unified Medical Language System (UMLS)
between ICD-9 and SNOMED); mapping tables that are part of
the terminology distribution (eg, various drug terminologies and
RxNorm); and commercially available mapping tables (eg, Generic
Product Identifier and RxNorm). Conversion of local terminolo-
gles in the source systems to standardized terminologies repre-
sented a challenge. In particular, observations and clinical findings
in electronic health records were sometimes identified with local
‘codes’ that were little more than free text; therefore, string
matching of descriptions (eg, Veteran’s Administration Product
and RxNorm) and manual coding (performed and validated by
Health Language) were employed.

OMOP created two software programs, the Observational
Source Characteristics Analysis Report (OSCAR)" and the
Generalized Review of OSCAR Unified Checking (GROUCH),'¢
to characterize the data once they were converted to the OMOP
CDM and to identify potential issues across all OMOP CDM
tables, including potential concerns with all drug exposures and
conditions. These programs allow the data to be compared
across databases and with local knowledge about the data
sources to validate the conversion process.

OSCAR allows the creation of summary statistics about the
data that could be compared with similar summary statistics
generated from the source data and other data sets. These
summary statistics include the number of persons, number of
conditions, number of medications, and duration of data
capture, each broken down by age and gender; proportions of
medications and conditions per patient; and others.

GROUCH identifies potential data anomalies across all
OMOP CDM tables, including potential concerns with all drug
exposures and all conditions, by testing for statistically
significant variations across a large number of relationships and
for clinically unexpected findings such as prostate cancer in
females and pregnancy in males. This allows for data-quality
review of specific medications (such as the OMOP medications
of interest) or specific conditions (including population-level
prevalence of the health outcomes of interest and gender-
stratified rates).

GROUCH organizes potential data anomalies into three
categories: concept, boundary, and temporal warnings.
Concept issues are related to the observed proportion of
patients with which a concept appears in a data source
compared with the observed proportions in other data sources.
Boundary issues include the appearance of unusual (suspicious
or implausible) values such as a year of birth greater than the
current year, an age >110 years, a number of days of medica-
tion supply less than zero, or a length of drug era (period of
time a patient is inferred to be continuously exposed to
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Table 1 Summary of the 10 observational databases used to validate the Observational Medical Outcomes Partnership common data model and
dictionary of standardized terminologies, including a brief description, the approximate population size, and the terminologies used

Population size
(M) used

Terminologies

Name General database description for validation* Claims Clinical
GE centricity EMR Derived from data pooled by providers using 1.2 ICD-9
database GE Centricity Office (an ambulatory electronic CPT-4
health record) into a data warehouse in a local
HIPAA-compliant manner
MarketScan research MarketScan Lab Database—represents privately 15 ICD-9 LOINC
databases from Thomson insured population, with administrative claims from CPT-4
Reuters inpatient, outpatient, and pharmacy services HCPCS
supplemented by laboratory results NDC
MarketScan Medicaid Multi-State Database—contains 1.1 ICD-9
administrative claims data for Medicaid enrollees from CPT-4
multiple states HCPCS
NDC
MarketScan Medicare Supplemental and Coordination of 4.4 ICD-9
Benefits Database—captures administrative claims for retirees CPT-4
with Medicare supplemental insurance paid by employers, HCPCS
including services provided under Medicare-covered payment, NDC
employer-paid portion, and any out-of-pocket expenses
MarketScan Commercial Claims and Encounters—represents 58 ICD-9
privately insured population and captures administrative claims CPT-4
with patient-level de-identified data from inpatient and outpatient HCPCS
visits and pharmacy claims of multiple insurance plans NDC
Humana Contains medical (inpatient, outpatient, and emergency room), 6.5 ICD-9 Local
pharmacy, and laboratory data (including test results) from CPT-4
Humana’s administrative claims database of medical members HCPCS
NDC
i3 Drug safety, ingenix Contains healthcare claims from across the USA with medical and 1 ICD-9 LOINC
normative health pharmacy benefit coverage where available CPT-4
information HCPCS
NDC
Partners healthcare Includes data from the partner’s clinical transaction-based data 3 ICD-9
system repository as well as inpatient and outpatient billing feeds being CPT-4
collected in the research patient data registry, an analytic-structured local
database
Regenstrief Institute/ Includes healthcare data from the Indiana Network for Patient Care 2 ICD-9 ICD-9
Indiana containing population-based, longitudinal, and structured coded and CPT-4 CPT-4
Network for patient care text data captured from hospitals, physician practices, public health HCPCS LOINC
departments, laboratories, radiology centers, pharmacies, pharmacy NDC SNOMED
benefit managers, and payers RxNorm
NDC
local
SDI health Contains HIPAA-compliant, deidentified, encrypted patient-level data 90 ICD-9
from hospitals, clinics, physician offices, and retail and specialty CPT-4
pharmacies from all 50 US states HCPCS
NDC

*For some data sources, data from a subset of patients available in the source were incorporated into the Observational Medical Outcomes Partnership common data model instance.
CPT-4, Current Procedural Terminology, 4th edn; EMR, electronic medical record; HCPCS, Healthcare Common Procedure Coding System; HIPAA, Health Insurance Portability and Accountability
Act; ICD-9, International Classification of Diseases, Ninth Revision; LOINC, Logical Observation Identifiers Names and Codes; NDC, National Drug Code; SNOMED, Systematized Nomenclature of

Medicine.

a medical product) longer than the period of time for which the
patient was observed. Temporal issues include anomalies in
patterns such as unusual spikes in the monthly rate of drug
records per person over time or a significant change at
a particular year of birth within the age distribution. Together,
these categories cover the types of anomalies (incomplete,
implausible, and suspicious) at all levels and across all tables
within the OMOP CDM. Any anomaly-detection approach
identifies potential concerns, but not all issues identified
represent legitimate anomalies. Instead, many of the potential
issues will be determined to be true artifacts of the data that
require no action beyond additional specification to clearly
acknowledge and communicate the justification for why the
observed anomaly is acceptable.
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OMQOP staff, methods collaborators, and participants in the
OMOP Cup (a methods competition)!” developed analytic
methods to be executed across all databases to assess whether
the OMOP CDM sufficiently supports efficient and feasible
analysis. The OMOP staff created analyses based on methods
that have been described for active safety surveillance and
epidemiological studies; methods collaborators developed novel
methods or extensions to established methods; and OMOP Cup
participants developed innovative and exploratory methods.
These methods represent a broad array of known approaches
that might be used for active safety surveillance, including
dozens of variations. The methods took advantage of the
semantic network that is part of the dictionary to aggregate
both medications and outcomes.
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RESULTS

The multiple disparate data sources were all successfully
converted to the OMOP CDM, including all observational data
elements that are relevant to identifying drug exposures and
defining condition occurrences. In part, this was because the
observations table allows almost any data to be represented in
a generic fashion using the Entity-Attribute-Value (EAV) model
which is found frequently in large clinical data repositories.'®

In fewer than 10 cases, the experts creating the mapping felt
that the concepts available in the standardized terminologies
that are part of the OMOP CDM were more specific than the
concept from the source terminology that they were trying
to map. This mismatch in specificity raised the question of how
best to map these data elements, particularly since mapping to
a ‘higher level’ or more general code in the standardized
terminologies may result in ‘lumping’ the result with other
results. These differences in specificity are a predictable result of
variation in the granularity of the source data.

Not all available patients were included in the OMOP CDM
instantiation created by each distributed research partner.
Several factors contributed to the choice of patients to include,
including time and computing-resource constraints, exclusion of
certain data from military and other large clients, exclusion of
dental and supplemental insurance claims, and the completeness
of longitudinal data available.

As noted earlier, the five data sources within the distributed
network were transformed by the corresponding distributed
research partner. On average, converting a database to the
OMOP CDM, including mapping terminologies, required the
equivalent of four full-time employees for 6 months and signif-
icant computational resources for each distributed research
partner. Each partner utilized a number of people with a wide
range of expertise and skills to complete the project, including
project managers, medical informaticists, epidemiologists, data-
base administrators, database developers, system analysts/
programmers, research assistants, statisticians, and hardware
technicians. Knowledge of clinical medicine was critical to
correctly map data to the proper OMOP CDM tables. The five

Figure 1 Database characteristics.
Rates of conditions, medications, 0
procedures, and observations per
person varied widely across databases.
CCAE, Commercial Claims and
Encounters; MDCD, MarketScan
Medicaid Multi-State Database; MDCR,
Medicare Supplemental and
Coordination of Benefits Database;
MSLR, MarketScan Lab Database.

commercial databases were transformed by the same OMOP
team, which required knowledge of a broader set of data but also
gained efficiencies in establishing shared processes that could be
applied across sources. In addition, the commercial databases
were more fully normalized.

Computing resource requirements for converting the data-
bases varied widely, in part because of the amount of data
available to each distributed research partner. The size and
complexity of the data transformation meant that the proce-
dures had to run for long periods of time. Load and run times for
conversion ranged from 4 to 11 days, and conversions typically
ran on a quad-core server.

After OMOP CDM conversion, the characterizations of the
databases produced by OSCAR and GROUCH compared well
with expectations, suggesting that the conversion process
performed as expected. For the five commercial databases,
detailed examination of summary statistics derived from
OSCAR and from the source observational databases initially
identified a few issues, most of which were corrected in subse-
quent conversions. These issues included zip codes 00001
through 00009 being handled incorrectly; a few procedure codes
that were not correctly mapped to medications; a rounding error
for drug quantities less than one; the drug exposure length being
incorrectly programmed, which resulted in erroneous values in
8.72% of cases; and the condition era length being incorrectly
programmed, which resulted in a small number of erroneous
values. The distributed partners also reviewed the database
characterizations and identified a number of issues, some of
which were attributable to anomalies in the original data
sources but only a few of which represented errors in data
handling. Most represented explainable phenomenon based on
local practices or idiosyncrasies.

We corrected errors in the conversion process in the few cases
where they were identified. For data anomalies identified by
GROUCH that were not determined to be the result of
programming errors, we did not apply additional rules for data
manipulation. Instead, we preserve source data in the CDM
(even if they may contain potentially erroneous values), and

Database (Number of Individuals)

Records per Individual
20 40 60 80 100 120 140 160 180 200
cone .av (B,
GE (11.2M) E
Humana (10.0M) %
]
B OugsSafety(  1M) E:v
—
MDCD (11.2M) ﬁ:
MDGR (47v) ——
Partners{ 3M) E
Regenstrief( 2M) E
DICondition Occurrence  EDrug Exposure  [lProcedure Occurrence B Observation
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defer additional data cleaning to the analysis phase, since we
believe more informed and context-specific decisions can be
made at that point.

To examine the suitability of the standardized terminologies
chosen for the OMOP CDM, we characterized the number of
concepts and the number of database records that the system
could map. Figure 1 summarizes the approximate size of the
data tables created from each database. For the five commercial
databases, the percentage of concepts mapped ranged from
91.8% to 99.6% for conditions and 56.1% to 74.8% for medica-
tions, and the percentage of database records mapped ranged
from 93.2% to 99.7% for conditions and 88.8% to 97.6% for
medications (figure 2). Figure 3 shows the frequency, as
a percentage of total records, of concepts that appear in a data-
base at a rate more than three standard deviations from the
mean rate across all databases, ie, are a lot more frequent in
comparison to the community of databases. Only two concepts
were used in more than 0.10% of records.

58

[ mapped ICD9 codees  m all codes |

Eleven different statistical methods with dozens of parame-
terized variations were created and executed against 10 different
OMOP CDM instantiations for several hundred different
drug—outcome pairs. In addition, OMOP Cup participants
created methods that analyzed the data in OMOP CDM format.
In total, more than 75 individuals were involved in creating the
methods, and although they asked clarifying questions about the
data model, none found the model confusing or limiting in their
work. In fact, subjectively they found that the model directly
facilitated development of the methods. All methods developers,
for example, took advantage of drug and condition eras rather
than deriving their own. None of the developers encountered
any limitations as a result of the standardized terminologies
chosen for the OMOP CDM. The methods were executed
without modification (although the configuration of the
execution environment and availability of specific software
packages limited which methods a distributed research partner
could execute). Table 2 provides the means and standard
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Figure 3 Graph showing the frequency, as a percentage of records,
with which concepts that appear in a database at a rate more than three
deviations from the mean frequency computed across all databases.
Only two concepts (the RxNorm code for amlodipine 10 mg/benazepril
20 mg oral capsule and the Systematized Nomenclature of Medicine
code for large liver) appeared in more than 0.10% of the records in

a database. CCAE, Commercial Claims and Encounters; GPI, generic
product identifier; ICD9, International Classification of Diseases, Ninth
Revision; MDCD, MarketScan Medicaid Multi-State Database; MDCR,
Medicare Supplemental and Coordination of Benefits Database; MSLR,
MarketScan Lab Database; NDC, National Drug Code.

deviations of execution times of the 11 statistical methods
across all databases (excluding i3 Drug Safety). The maximum
mean execution time was 34.39+37.16 h, and the minimum was
0.81+0.91 h. Executing the methods using alternative stan-
dardized terminologies to aggregate concepts or medications did
not significantly affect the point estimates (data not shown).

DISCUSSION

We were able to validate the OMOP CDM and standardized
terminologies, demonstrating that they accommodated a broad
range of observational data (both administrative claims and
electronic health records) and supported the development of
analytic methods and that these analyses executed in a manner
efficient enough to be useful for active drug safety surveillance
and other, similar analyses.

Table 2 Execution time of the 11 standardized methods across nine
databases (results were not available from Ingenix Normative Health
Information database)

No of parameter Execution time

Method name* combinations (mean=SD in hours)

Observational screening 162 0.81+0.91
Univariate self-controlled case 64 1.83+2.24
series

High-throughput Safety screening 6 2.72+3.07
Indiana University population-based

method

Multi-set case control estimation 32 2.73x25
Information Component-based measure 84 3.16+5.28
of disproportionality temporal pattern

Bayesian logistic regression 24 6.64+8.77
Disproportionality analysis 12 9.63+8.88
High-dimensional propensity score 144 10.16+12.89
Case-crossover 48 11.41:12.72
Maximized sequential probability ratio 144 21.3+16.67
test

Conditional sequential sampling procedure 144 34.39+37.16

Time represents one run of the method, averaged across all parameter combinations and
across 235 drug—outcome pairs.
*More details available at http://omop.fnih.org/Methods library (accessed 1 Aug 2011).

J Am Med Inform Assoc 2012;19:54—60. doi:10.1136/amiajnl-2011-000376

Several strengths were identified in the CDM approach and the
OMOP CDM in particular. The creation of a CDM allowed
geographically dispersed, collaborating researchers to understand
the data and minimized confusion about how the data were
organized. Similar analyses carried out by different organizations
in their distinct databases may allow researchers to begin to
understand how analysis results depend on the data used. Given
that the analysis methods, terminologies, and data model are
identical, differences are more likely to be due to the underlying
patient populations and the data captured about them which, as
illustrated in figure 1, can be quite significant. This improved
consistency should improve the power of synthetic methods such
as meta-analysis to extract additional insights. Based on the
experience of methods developers, inferred observation periods for
creation of medication or condition eras seem to be an appropriate
approach and simplify both characterizing the data and devel-
opment of analysis methods. In addition, several potential
weaknesses were identified. We purposely chose a ‘least common
denominator’ data model that accommodated all of the data and
was relatively easy to translate a variety of data models into, but
at the expense of some loss of richness. Aggregation of clinical
observations by encounter that might exist in a source database,
for example, would be lost. We did not find in any of our vali-
dation examples that reducing the complexity of the data limited
its use for drug-safety surveillance.

Advantageously, the model provides clear and explicit speci-
fication for a standard terminology for each database table in the
OMOP CDM,, including SNOMED for condition occurrences,
RxNorm for medications, and Logical Observation Identifiers
Names and Codes (LOINC) for results/clinical observations.
Despite this benefit, we remained concerned about the impact of
the evolution of terminologies over time and recommend that
careful attention be devoted to version management to avoid the
situation in which a source code could be mapped incorrectly if
it was an older code, and ‘current’ mappings were used.

Another important problem was encountered when dealing
with lab values. Different units may be used for the same
laboratory test, not all of which are reflected in the Unified
Codes for Units of Measure (UCUM) terminology; similarly,
some results codes for highly specialized laboratory tests are not
represented by LOINC. These issues do not occur very often, but
they could have an impact on particular analyses because these
highly specialized lab tests would not be stored in the OMOP
CDM using the chosen terminologies.

The OMOP CDM and dictionary required that related data be
represented in a common location in the database. In an obser-
vational database, data about medication exposure, for example,
might be found in billing codes (eg, Healthcare Common
Procedure Coding System) for chemotherapy administration, as
drug-dispensing events from claims data, or in medication-order
records. When the data were converted to the OMOP CDM, all
drug exposures were aggregated in a single table, no matter what
data in the source database identified the exposure.

An important consideration with the use of the OMOP CDM
is the possible loss of granularity of data by forcing disparate
sources into one common model. In particular, when mapping
between concepts in different terminologies, various types of
complexities may be encountered. First, the source concept may
not map to amy target concept, such as when the source
terminology has a broader concept coverage than the target
terminology. This would result in more than one target code and
ambiguous mappings that are not one-to-one translations. For
example, the ICD-9-CM code 284 (aplastic anemia and other
bone marrow failure syndromes) was explicitly excluded from
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a definition of aplastic anemia created for analysis, but when
utilizing mappings to the MedDRA term marrow depression and
hypoplastic anemias (HLT), code 284 was included.

Second, a standardized approach using a generic data model
may obscure some of the details that could potentially make an
analysis richer. Specifically, if terminology is used slightly
differently across different databases, then nuances in mapping
to standardized terminologies may imply unwarranted
assumptions. The OMOP CDM anticipated this issue, allowing
the original codes to be stored along with the standardized codes
so that subsequent analyses could take these codes into account.

As a final point, researchers often create ‘purpose built,’
handcrafted databases for each study, after thinking carefully
about database content and structure. Analytic criteria applied
may be study-specific, and it might not be possible to replicate
this specificity using a systematic analysis approach based on
a CDM. OMOP CDM structural limitations were expected to
possibly inhibit adequate representation of the observational
data; however, we did not find any examples in which this
happened, though we did not attempt to represent encounter-
level organization of the data. This constraint did not inhibit
any methods developers, and ensuing methods did not draw on
encounter-level organization of the data.

Converting data to the OMOP CDM required significant effort,
a broad range of expertise, and extensive computational resources.
We underestimated the level of effort and the breadth of skill sets
(especially data mapping) required by the OMOP distributed
research partners to convert their data to the OMOP CDM. There
were several reasons why additional effort and skills were
required, including the partners having to understand the OMOP
CDM and to conceptualize how to rationalize the OMOP CDM
with their data model or models (some partners had data in more
than one system). Also, there were a myriad of issues related to
mapping local terminologies to the standardized terminologies. In
addition, the broad range of expertise and knowledge necessary to
successfully convert the data required the participation of indi-
viduals from different parts of the organization, increasing the
effort required for coordination. We believe that this level of effort
will only be required for the initial conversion effort for a data
source and that subsequent conversions will require significantly
fewer resources, since most of the effort is reusable. While there is
some potential to reduce the effort required for mapping termi-
nologies, particularly as standards are more broadly adopted, there
is little opportunity to reduce the overall effort, as much of the
necessary work required involved externalizing knowledge about
local systems. The complexity of this task is demonstrated, in
part, through the diversity of skill sets required to perform the
conversion to the OMOP CDM.

Some individuals found that representing their data in the
OMOP CDM challenged some of the assumptions that they
usually made for traditional epidemiologic studies, such as
focusing on a previously specified medication exposure—health
outcome of interest pair and the need for customized data
cleaning programs. Often, these types of tacit knowledge are
stored only in the minds of frequent users of the data. For
example, the reliability of data in one table or from one source
may be very different than the reliability of data from another
table or source, but this knowledge is not represented in the data
model. An additional benefit of converting data sources to the
OMOP CDM and generating detailed descriptive statistics for
each of them is that these statistics provided insights into
differences in the data facilitated subsequent identification of
problems in the data sources or in the conversion process
including mapping.
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CONCLUSION

We validated the OMOP CDM and integrated standardized
terminologies for active safety surveillance using 10 example
databases and 11 analytical methods. Using a CDM creates
a basis for broad collaboration among researchers and practi-
tioners, and, in particular, allows methods and database devel-
opers to work with a high degree of autonomy based on a shared
conceptual model. The combination of data represented in
a CDM and tools designed and tested against the CDM offers
compelling potential for enhancing the rate of development and
application of an active safety-surveillance system.
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