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Summary
Protein-peptide interactions play important roles in many cellular processes, including signal
transduction, trafficking, and immune recognition. Protein conformational changes upon binding,
an ill-defined peptide binding surface, and the large number of peptide degrees of freedom make
the prediction of protein-peptide interactions particularly challenging. To address these challenges,
we perform rapid molecular dynamics simulations in order to examine the energetic and dynamic
aspects of protein-peptide binding. We find that, in most cases, we recapitulate the native binding
sites and native-like poses of protein-peptide complexes. Inclusion of electrostatic interactions in
simulations significantly improves the prediction accuracy. Our results also highlight the
importance of protein conformational flexibility, especially side-chain movement, which allows
the peptide to optimize its conformation. Our findings not only demonstrate the importance of
sufficient sampling of the protein and peptide conformations, but also reveal the possible effects of
electrostatics and conformational flexibility on peptide recognition.

Introduction
Protein-peptide interactions play a key role in many cellular processes, such as signaling,
regulation, and the formation of protein networks. Peptides are the substrates of many
physiological macromolecules, including major histocompatibility complex, insulin
degrading enzyme, and HIV protease. They also mediate immune recognition and the
induction of immune response (Neduva et al., 2005). Protein-peptide interactions have been
exploited in various biotechnological and pharmaceutical applications, such as peptide-
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based therapeutics (Vlieghe et al., 2010), biosensors, biomarkers (Hao et al., 2008), and
functional modulators of proteins (Karanicolas and Kuhlman, 2009). Therefore,
understanding the molecular mechanism of protein-peptide recognition and having the
ability to predict, manipulate, and design novel protein-peptide interactions will have broad
applications in the fields of biology, medicine, and pharmaceutical sciences.

High-resolution structure determination methods such as x-ray crystallography and nuclear
magnetic resonance have offered atomic insight into the formation of the protein-peptide
complex. Based on available structures, both hydrophobic and hydrophilic interactions,
including hydrogen bonds and salt-bridges, are important for stability of the protein-peptide
complex. Upon peptide binding, many receptor proteins change their conformations, known
as induced fit (Koshland et al., 1958). Furthermore, peptides also experience ordering
transitions upon binding to their receptors (London et al., 2010). However, the molecular
mechanism of the recognition and binding events that occur between the bound and unbound
states remains elusive. Computational modeling offers the opportunity to directly observe
the binding event and deconstruct the determinants of protein-peptide recognition.

The modeling of protein-peptide complexes is most often approached in two steps: (i)
identification of the peptide binding sites on a protein, and (ii) determination of the native
pose of the peptide. A number of methods have been developed to address the first step of
modeling, based on sequence (Lopez et al., 2007), structure (Brady and Stouten, 2000;
Huang and Schroeder, 2006; Liang et al., 1998), or both (Capra et al., 2009). However, most
structure-based methods do not consider binding-induced conformational changes of the
receptor. Only a very limited number of blind docking (docking without any prior
information about the binding site) studies exist for peptide binding in the literature.
Autodock is a docking method commonly used for blind peptide docking; however, the
length of the peptide is limited up to four residues (Hetenyi and van der Spoel, 2002). In
another blind docking study, coarse-grained modeling and four-body statistical pseudo-
potentials are implemented (Aita et al., 2010), however, the binding sites in the selected
complexes are also usually the largest or second-largest pockets in the protein (Aita et al.,
2010). However, in some cases, the peptide-unbound protein structures do not have a well-
defined pocket or the binding site is not one of the largest pockets on the protein (Coleman
and Sharp, 2010). In addition, it has been suggested that electrostatic interactions play an
important role in the formation of the “encounter complex,” which is the meta-stable state
prior to optimization of the binding pose in the formation of the final complex (Sheinerman
et al., 2000; Suh et al., 2007; Tang et al., 2006). Considering the net charge variation on
protein and peptide surfaces, the electrostatic contribution to peptide recognition can vary
from case to case; for example, electrostatics is the major determinant in Calmodulin-
peptide recognition (Andre et al., 2004), whereas it has been proposed that electrostatic
interactions have no role in PDZ domain-peptide interaction (Harris et al., 2003). The
questions remain as to what degree electrostatic interactions contribute to peptide
recognition and how the binding site is identified without prior knowledge of peptide-
binding-induced conformational changes.

The second step of the protein-peptide recognition problem is often referred to as the
docking problem. Flexible docking methods considering both ligand and receptor
conformational flexibilities are believed to increase the accuracy of predicting the native
pose of small molecules and peptides (Anderson et al., 2001; Antes, 2010; Davis and Baker,
2009; Ding et al., 2010). However, the conformational space of peptides is significantly
larger than that of small molecules, due to a larger number of rotatable bonds. As a result,
most flexible docking methods developed for small molecules are not applicable in
determining protein-peptide binding poses. Moreover, the modeling of protein
conformational flexibility, including side-chain and/or backbone flexibility, is
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computationally expensive (Carlson and McCammon, 2000). Hence, a crucial step in the
efficient modeling of protein-peptide interactions is to determine the optimal level of protein
conformational flexibility required in order to accurately define the correct binding pose. In
order to address these issues, we conduct systematic studies of peptide binding to the
peptide-unbound receptor state, at various levels of receptor flexibility.

Molecular dynamics (MD), with its accurate description of atomic interactions, can be
employed to study protein-peptide binding. However, the time scale accessible to traditional
MD simulations limits their broad applications in MD-based peptide binding prediction
(Shan et al., 2011). On the other hand, all-atom discrete molecular dynamics (DMD) can
accurately and efficiently fold small, fast-folding proteins (Ding et al., 2008) and sample the
conformational dynamics of protein complexes (Karginov et al., 2010; Proctor et al., 2011).
We use replica exchange all-atom DMD simulations (Ding et al., 2008) to study protein-
peptide binding in a set of ten protein-peptide systems. We perform a set of replica
simulations for each system, where the receptors initially are in the unbound state, with
varying levels of protein side- and main-chain conformational flexibility. In order to study
the effect of long-range electrostatics on peptide binding site recognition, we conduct sets of
simulations in both the presence and absence of these interactions. Our computational
studies reveal the important contributions of electrostatics and conformational flexibility in
protein-peptide binding. Our findings suggest that electrostatic interactions may be the
driving force for the formation of an energy landscape favoring the native-like structure,
independent of any conformational change of the protein. For nine out of ten complexes, we
capture the native peptide binding site area, and in several cases we also recapitulate the
near-native binding pose.

Results
We perform replica exchange DMD simulations of ten experimentally well-characterized
protein-peptide complexes (see Table S1). No prior knowledge of the binding site location
or peptide binding pose is assumed in simulations; we use the peptide-unbound structure
(i.e., the apo-structure) of the receptor, and the peptide is initially positioned randomly with
respect to the receptor (see Figure S1A). In order to evaluate the effect of conformational
flexibility on the accurate modeling of peptide binding, we vary the level of receptor
flexibility in simulations: (i) rigid receptor, where both side- and main-chain of the protein
apo-structure are fixed; (ii) flexible side-chain, where the side-chains of the apo-structure are
allowed to move; and (iii) flexible receptor, where we allow the side-chains to move freely
but assign a bias potential to the backbone α-carbons, favoring the native apo-structure
contacts. The protein backbone is therefore able to sample conformations near the apo-state.

Recapitulation of experimental binding
We first test whether our simulation methods are able to recapitulate the experimentally-
observed protein-peptide complexes. In our simulations, the peptide randomly diffuses and
forms both non-native and native contacts with the protein. We select for analysis only those
complex structures in which the peptide and the protein are in contact, which we define as
any heavy atom of the peptide being within a distance of 5.5 Å from any heavy atom of the
receptor (see Figure S1B). We then perform hierarchical clustering of the peptide binding
conformations using root-mean-square distances (RMSD) calculated over all heavy atoms of
the peptides (see Figure S1C). Finally, we select the lowest energy poses from the highly
populated clusters as the putative peptide-binding poses, and calculate the heavy-atom
RMSDs of the peptide conformation with respect to the native pose (Figure S1D).

In the case of the PDZ domain-peptide complex (PDB ID: 1BFE), we observe a significant
fraction of native-like populations in the flexible side-chain simulation. As illustrated in a
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typical trajectory starting from the unbound state (gray dots in Fig. 1A), the peptide
randomly collides with the protein and forms transient complexes (scattered solid dots in
Fig. 1A). Once the native binding-site is sampled (~30 ns), the peptide forms a metastable
“encounter-complex” (Sheinerman et al., 2000; Suh et al., 2007; Tang et al., 2006), which
allows further conformational rearrangement of the system in order to form the native-like
binding complex (~40 ns; RMSD ~ 2–3 Å). In order to identify the binding poses, we collect
all bound states from each of the eight replicas (Figure 1B). Without knowledge of the
native binding pose, we select the putative binding ensemble of the peptide in the context of
the energy landscape (Figure 1C). Here, we use MedusaScore (Yin et al., 2008) in order to
evaluate the energy of binding between the peptide and the protein. MedusaScore is based
on inter-atomic interactions, including van der Waals, solvation, hydrogen bonding, and
electrostatic interactions. The PDZ domain-peptide complex features a well-defined funnel-
like energy landscape; lower RMSD results in a more favorable binding energy. Notably, the
minimum energy peptide pose in the complex has the minimum RMSD from the native pose
(Figure 1C). Furthermore, we perform clustering analysis of the bound conformations. We
observe that peptides are present in the native binding site if their RMSD from the native
pose is lower than 10 Å. Therefore, we use 10 Å as our clustering cutoff (it is 15 Å for 1JBE
in which the peptide is 13-mer). The most highly populated clusters correspond to the low
free energy states. For these highly populated clusters, we select the pose with the lowest
MedusaScore as the representative structure, and we compare that structure with the crystal
structure. The representative structure of the most highly populated cluster of the PDZ
domain-peptide complex has a RMSD of 2.5 Å from the crystal structure pose (Figure 1D).
Thus, we obtain a native-like conformation of the PDZ domain-binding peptide without any
knowledge of the binding site, the conformation of the peptide, or the bound-state structure
of the protein.

In molecular dynamics simulations, the most-populated cluster corresponds to the lowest
free energy state, which is not always the state with the lowest potential energy. In proteins
with more than one potential binding site, the energy landscapes demonstrate different
trends from those of proteins with only one binding site (Figures 1, 2). If multiple binding
sites are identified during simulations, clustering analysis is necessary to determine the
lowest free energy binding state. In the case of Keap1-peptide complex (PDB ID: 1X2J), the
minimum energy pose from the most populated cluster is associated with the native-like
conformation, but it does not correspond to the global minimum energy, whereas the lowest
energy pose from the entire trajectory (from the second most-populated cluster) suggests a
different binding site (Figure 2). Using our clustering analysis, we are able to obtain a
conformation similar to the native pose of the peptide in the Keap1-peptide complex.

We perform similar analysis on six additional protein-peptide complexes. For each complex,
we report the clustering results (see Table S2). Except the case 2ZGC, we identify the native
binding site from within the first two most-populated clusters (Table 1, see Figure S2). In
addition, we test two more cases of longer peptides that form secondary structure in the
bound form (PDB IDs: 1RWZ, 1JBE). For these two cases, we can recapitulate the binding
sites of the protein and the helical structure of the peptides in the bound conformation (see
Figure S3). Our ability to identify the native binding site of the peptide from an arbitrary
initial position highlights the sampling efficiency of DMD simulations and the accuracy of
our all-atom force field.

Electrostatic interactions may be necessary for the identification of the native peptide-
binding site

To test the effect of electrostatics on protein-peptide recognition, we also perform
simulations without electrostatic interactions (Table 2). Here, we use the Debye-Hückel
approximation to model screened electrostatic interactions between charged residues
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(Methods). We find a significant improvement in the prediction of the binding site and
native pose of peptides with the addition of electrostatics to the force field (Tables 1 and 2).
In the absence of electrostatics, we observe decoy-binding poses that correspond to lower
energies than that of the native pose. With the addition of electrostatics, the number of
favorable decoys decreases and the size of the native-like population increases. For example,
in most simulations we observe that with the addition of electrostatics, the native-like state
becomes the most populated state, as opposed to the second most populated state when
electrostatics is not included. However, we do not observe a significant difference in the
selected binding pose between simulations with and without electrostatics in the cases of
PDZ domain and Serine proteinase K (PDB ID: 2ID8). Our observed nil effect of
electrostatic interactions in the special case of peptide recognition by PDZ domain is
consistent with experimental observation (Harris et al., 2003). We conclude that, for the
majority of protein-peptide complexes, long-range electrostatic interactions play an
important role in protein-peptide recognition in simulations by guiding the peptide toward
the binding site.

Modeling of protein side-chain flexibility is necessary for accurate peptide binding pose
prediction

To investigate the effect of protein conformational dynamics on protein-peptide recognition,
we compare binding simulations with increasing levels of receptor conformational
flexibility: fixed receptor, flexible side-chain, and flexible receptor constraints (Table 1). In
the fixed receptor simulations, we correctly identify the binding sites of all cases except for
the PUB domain of PNGase (PDB ID: 2HPJ), the Src SH3 domain (PDB ID: 1SRL), and
Granzyme M (PDB ID: 2ZGC). The accuracy of the predictions is significantly increased in
these cases if we implement a protocol featuring increased flexibility of the protein receptor
(flexible side-chain or flexible receptor). Interestingly, there is no significant difference in
the accuracy of binding site prediction between the flexible side-chain and flexible receptor
models. However, the inclusion of backbone flexibility in the flexible receptor simulations
significantly increases the computational time; including only side-chain flexibility is
sufficient to predict the peptide-binding pose. Therefore, we find that flexible side-chain
fixed backbone simulations with electrostatic interactions have the most promising results
for peptide binding determination, considering the compromise of decreased RMSD of the
predicted binding poses from the native pose (compared to fixed receptor) and the decreased
computational time required for sampling (compared to flexible receptor).

Discussion
Based on the results of our simulations (Tables 1, 2, S2), we propose a two-step peptide
binding mechanism. The binding process includes random collisions of the peptide with
various regions of the protein surface. If the peptide encounters a site with which it has
favorable interactions, thermodynamically it will remain in this site to form the meta-stable
“encounter complex” (Sheinerman et al., 2000; Suh et al., 2007; Tang et al., 2006), which
allows the system to find an energetically optimal conformation. In terms of finding the
binding site, our results suggest that electrostatic interactions may play an important role in
many cases, considering the fact that the majority of peptides contain charged residues. Even
in peptides with no charged residues, the amino and carboxyl termini are always charged,
making the peptide highly polar. Therefore, it is not surprising that even in fixed receptor
simulations, the addition of electrostatic interactions significantly improves the prediction of
the peptide-binding site on the receptor (Tables 1,2). This observation suggests that long-
range electrostatic interactions guide the peptide toward the peptide-binding surface site,
which does not require the formation of a complementary receptor surface. In the absence of
electrostatics, the energy well corresponding to the native-like pose is broad and has a higher
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energy than that of the decoy pose (Figure 3). However, when we include electrostatics in
the force field, we observe a lower energy well for the native-like states (Figure 4). Finally,
the addition of conformational flexibility provides additional definition to the energy
landscape, as well as narrows and lowers the energy well (Figure 4). Therefore, in
simulations, both electrostatics and flexibility of the protein receptor are necessary for
forming the energetic landscape of peptide binding.

According to our results, peptides are able to find the binding site in many cases with a fixed
receptor. This finding is consistent with a recent study (London et al., 2010) that
systematically compared the bound and unbound forms of protein structures upon peptide
binding. London et al. (London et al., 2010) found that, in 86% of cases, the protein does not
significantly change its conformation upon peptide binding. The peptide binds to the protein
by minimizing the conformational change of the protein, while maximizing the enthalpy
gained by hydrogen bonds and packing. Thus, the peptide, rather than the protein, undergoes
induced fit, since it adapts its conformation to the binding site of the protein. This
phenomenon is different from small-molecule binding, where proteins adopt their
conformations upon ligand binding (Mobley and Dill, 2009), because small molecules are
relatively rigid in comparison to peptides. However, there may be some exceptional cases
where a large conformational change occurs upon peptide binding. In the case of PCNA-
FEN-1-peptide complex (see Figure S3A), the C-terminal flexible loop of PCNA forms β-
strands with the N-terminus of the peptide upon binding, resulting in an average RMSD of
3.5 Å with respect to the unbound conformation, while the C-terminus of the peptide forms a
helical secondary structure. This peptide-binding-induced conformational change in the
protein is suggested as the structural basis for the allosteric control of enzyme activities in
DNA mismatch repair (Chapados et al., 2004). In our simulations, we are able to predict the
correct binding site for the peptide and its helical secondary structure (1RXZ), (see Figure
S3A-D), but the prediction of the ligand-binding-induced protein backbone changes remains
a major challenge. As an additional analysis, we also calculate the size of pockets/cavities
on the proteins using the CASTp server (Dundas et al., 2006) to check whether the peptide
always binds to the largest pockets. According to these results (see Table S5), the binding
site is located in the largest pocket only in 1CL5. The binding sites of 2PQ2 and 2ZGC are
the second-largest pockets on their surfaces, the binding sites of 1DDV and 2HPJ are in the
fourth-largest pockets, and the binding sites of 1BFE, 1SRL, 1X2J are not located in any of
the five largest pockets.

The same protein can populate multiple binding modes (Birdsall et al., 1989; Ma et al.,
2002). Conversely, a ligand can bind to a target with multiple conformations, due to
symmetries in the ligand or receptor protein (Mobley and Dill, 2009). For example, similar
amino acids on the two termini of a peptide can result in a flipped conformation relative to
the x-ray structure. Although observing multiple binding modes is rare (Constantine et al.,
2008; Lazaridis et al., 2002; Montfort et al., 1990), some studies showed multiple-mode
binding without a symmetry effect (Jayachandran et al., 2006; Lazaridis et al., 2002;
Oostenbrink and van Gunsteren, 2004); for instance, we observe multiple binding modes in
our simulations of Keap1-peptide complex (Figure 2). In the case of the Granzyme M-
peptide complex, we cannot recapitulate the crystal structure binding site, but instead the
peptide binds to a completely different region of the protein surface. Examination of the
peptide-bound structure shows that there is a large conformational change in the binding site
of Granzyme M upon binding of the peptide (Wu et al., 2009). However, the possibility
remains that the identified binding site is an alternative to the crystallographic site for
Granzyme M (Wu et al., 2009).

We also address the question of whether we can improve prediction accuracy by performing
additional sampling in the vicinity of the binding site. We initiate sampling using the
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receptor conformation from the simulation using the flexible side-chain model with
electrostatic interactions. We constrain the peptide near the binding site and perform replica
exchange simulations with two types of flexible receptor models: (i) flexible side-chain and
(ii) flexible receptor. We do not observe a significant increase in prediction accuracies; the
sampling used in the initial simulations is already sufficient to identify the binding site and
near-native pose of the peptide (see Table S3). In addition, to improve the prediction
accuracy, we perform molecular docking using MedusaDock (Ding et al., 2010) for the
seven cases in which we were able to obtain the native binding site (Table 3, Figure 4).
Interestingly, for the complexes in which we predict native-like poses with DMD simulation
alone (PDB ID: 1BFE and 2HPJ), we do not observe a decrease in RMSD values after
refining with MedusaDock. Only in the case of Phospholipase A2 (PDB ID: 1CL5) does the
MedusaDock refinement result in a significantly improved binding pose, with RMSD
decreased from 8.3 Å to 3.7 Å. In the other four cases, we observe only minor improvement
in prediction, with the top five MedusaDock predicted poses having slightly lower RMSDs
than those obtained with simulation alone (Table 3, Figure 4). To test whether another
peptide docking method will improve the optimization of the peptide pose, we perform a
similar procedure with the Flexpepdock server (Raveh et al., 2010) and PepSite (Petsalaki et
al., 2009). Flexpepdock (Raveh et al., 2010) is a freely available peptide docking protocol
that is proposed to refine peptide binding poses. According to FlexPepDock results,
compared to the initial poses, we do not observe significant improvement in terms of the
RMSD values (Table 3). The Pepsite algorithm is knowledge-based, and incorporates
information from known protein-peptide complexes based on spatial position specific
scoring matrices (S-PSSMs) to identify the binding preference of amino acids onto protein
surfaces (Petsalaki et al., 2009). The surface of the protein is then scanned using this matrix
to find potential binding sites for the peptide. Conversely, our algorithm, replica exchange
DMD, is a physical method that does not rely on any protein-peptide complex structural
information. The Pepsite server provides predictions of potential binding sites for each
individual residue in the peptide and the top nine conformations of the peptide. For 1BFE,
1CL5, 2HPJ, 2ID8, 2ZGC, 1RWZ, and 1JBE the server cannot correctly predict the binding
sites of any residues (Table S5). In 1DDW, only the location of one proline residue is
predicted correctly at the third highest rank. For 2ZGC, the binding site of Lysine is
predicted at the 7th rank. We conclude from these results that, at least for certain targets,
existing protein-peptide complex information is not sufficient to provide an adequate
knowledge base for evaluation. In addition, the accurate prediction of native-like peptide
binding poses, especially for long peptides, remains a challenging task.

Conclusion
The prediction of peptide binding poses is one of the most challenging problems in
computational structural biology, due to the large number of peptide degrees of freedom.
Here, we have developed a protein-peptide docking procedure that allows us to identify the
peptide-binding region of proteins, as well as a near-native pose of the peptides. The direct
observation of peptide binding in simulations reveals a possible two-step protein-peptide
recognition mechanism. The initial step, the route of the peptide to the binding site to form
the meta-stable “encounter complex”, is suggested to be guided by electrostatics.
Electrostatic interactions determine the formation of a funnel-like energy landscape directed
toward the native binding-site. In most cases, recognition of the binding site on the receptor
surface does not depend on whether or not the protein is in the binding-competent state. The
second step corresponds to the docking of the peptide on the protein surface, which requires
conformational change of the receptor in order to reach the native-like binding pose. Our
benchmark study suggests that the flexible receptor side-chain model is the optimal method
to identify the peptide binding site and to search for the near-native binding pose; however,
the fixed receptor approach may be sufficient to identify the approximate peptide binding
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site. The proposed method both aids in the understanding of the protein-peptide interaction
mechanism, and can also be used for various biotechnological purposes, including the
design of peptide-based drugs and protein-peptide interfaces.

Methods
We provide a flowchart of our procedure in the supplementary material (Figure S1D).

Dataset
We select proteins that have both holo (co-crystallized with a peptide) and apo (crystallized
without a peptide) structures available (Table S1). Our data set includes PDZ domain (PDB
ID: 1BFE), homer evh1 (PDB ID: 1DDW), Src SH3 domain (PDB ID: 1SRL), Keap1 (PDB
ID: 1X2J), Phospholipase A2 (PDB ID: 1CL5), p97/PNGase (PDB ID: 2HPJ), serine
proteinase K (PDB ID: 2ID8), Granzyme M (PDB ID: 2ZGC), PGNC (PDB ID: 1RXZ),
CheY (PDB ID: 1JBE). We place the peptide at a randomly selected position around the
unbound state of the protein.

All-atom replica exchange DMD
Discrete molecular dynamics (DMD) is an event-driven molecular dynamics simulation
engine in which inter-atomic interactions are approximated by square well potentials
(Dokholyan et al., 1998). We model proteins using the united atom representation, where all
heavy atoms and polar hydrogen atoms are explicitly modeled (Ding et al., 2008). We model
van der Waals interactions using the Lennard-Jones potential, and solvation interactions
using the Lazaridis-Karplus solvation effect (Lazaridis and Karplus, 1999). All of these
continuous functions are discretized by multi-step square well functions.

In addition to the previous version of the all-atom DMD force field (Ding et al., 2008), we
also incorporate electrostatic interactions between charged residues, including basic and
acidic residues (Ding et al., 2010). We assign integer charges to the central atoms of charged
groups: CZ for Arg, NZ for Lys, CG for Asp, and CD for Glu. We use the Debye-Hückel
approximation to model the screened charge-charge interactions. The Debye length is set at
10 Å by assuming a monovalent electrolyte concentration of 0.1 mM. We use 80 as the
relative permittivity of water in order to compute the screened charge-charge interaction
potential. We discretize the continuous electrostatic interaction potential with an interaction
range of 30 Å, where the screened potential approaches zero.

We employ the replica-exchange sampling scheme (Okamoto, 2004; Zhou et al., 2001) to
overcome energy barriers while maintaining conformational sampling corresponding to the
relevant free energy surface. In replica exchange computing, multiple simulations or replicas
of the same system are performed in parallel at different temperatures. The individual
simulations are coupled through Monte Carlo-based exchanges of simulation temperatures
between replicas at periodic time intervals. We perform simulation replicas with
temperatures ranging from 0.50 kcal/(mol•kB) (approximately 250 K) to 0.75 kcal/(mol•kB)
(approximately 375 K), with an increment of 0.035 kcal/(mol•kB) (approximately 17.5 K).
The length of each simulation is 106 time units, corresponding to approximately 50 ns. In
addition, wall clock and CPU hours for simulations are provided in Table S4.

Molecular Docking
For refinement, we use MedusaDock (Ding et al., 2010) which is a flexible docking method
that allows simultaneous modeling of both ligand and receptor flexibility with a set of
discrete rotamers. We employ as initial structures the predicted poses from the flexible side-
chain simulations with electrostatics. For all cases, the heavy-atom RMSD values from the
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experimentally-determine conformation decrease significantly, approaching the native-like
pose (Table 3, Figure 3).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Direct observation of protein-peptide binding in molecular dynamics
simulations

• Electrostatic interactions guide protein-peptide recognition

• Direct observation of induced-fit phenomenon in peptides

• Novel method for protein-peptide docking
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Figure 1. Analysis of flexible side-chain simulation of PDZ-peptide complex
(A) RMSD values of peptide conformations with respect to the crystallographic pose of the
peptide for peptide-bound (black) and peptide-unbound (gray) states from a representative
replica. If any atom of the peptide is within 5.5 Å of any atom of the protein in the
trajectory, then that snapshot is considered as a peptide-bound conformation. (B) The
backbone of PDZ domain is fixed during simulation, and we reconstruct all peptide-bound
states from the simulation trajectories. The positions of the peptide in each peptide-bound
frame are displayed in ribbon diagrams. The hit map of peptide interactions with the protein
corresponds to the frequency with which the peptide atoms interact with the protein atoms,
and these interactions range from very frequent (red) to very infrequent (blue). (C) Energy
landscape with the interface energy between the peptide and protein in terms of
MedusaScore. (D) The lowest energy conformation (magenta) of the peptide from the
largest cluster and its experimental pose (black). See also Figure S1.
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Figure 2. Analysis of flexible side-chain simulation of Keap1-peptide complex
Two binding sites exist for this peptide, as exhibited by two low-energy clusters in the
energy landscape. The purple ribbon is the lowest energy peptide pose from the most
populated cluster, whereas the black ribbon is the experimentally-determined pose. The
global minimum energy corresponds to the red conformation; however, that state is less
populated than the purple conformation. For the results of all complexes, see also Figure S2
and Figure S3.
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Figure 3. Proposed model for the structural and dynamic determinants of peptide recognition
The dotted line represents binding without electrostatic interactions. The dashed line
represents binding with electrostatic interactions. In the presence of electrostatics, the
number of decoy states decreases, whereas the native-like funnel becomes more populated.
The solid line represents the binding with both electrostatic interactions and conformational
flexibility. Here, the native-like funnel experiences more sampling and a decrease in its
energy.
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Figure 4. MedusaDock-refined experimental and predicted conformations
Using MedusaDock, we improve the prediction accuracy of (A) 1DDV, (B) 1PRM, (C)
1X2R, (D) 2FNX, (E) 2PQ2 complexes. The selected conformations from the simulations
with flexible side-chain constraints in the presence of electrostatics are employed as initial
conformations for docking optimization. Shown are the native binding pose (black) and the
predicted binding pose before (magenta) and after (blue) docking refinement.
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Table 3
RMSD (Å) with respect to native pose before and after molecular docking

The predicted conformations from the simulations with flexible side-chain constraints are used as initial
conformations for docking calculations. We report the lowest RMSD values from the top five lowest energy
conformations and their rank in predicted models predicted by MedusaDock and FlexPepDock. We also
compare our results with castP and PEPSITE server (see Table S5).

PDB ID Initial MedusaDock FlexPepDock

1BFE 2.51 2.85 (2) 2.49 (4)

1DDW 7.14 5.98 (5) 6.83 (3)

1CL5 8.27 3.73 (4) 7.42 (1)

2HPJ 3.26 5.05 (2) 3.02 (1)

1X2J 10.51 8.33 (4) 9.56 (4)

1SRL 7.73 5.71 (4) 6.83 (3)

2ID8 9.59 6.70 (1) 9.80 (3)
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