
Automated Prediction of Protein Association Rate Constants

Sanbo Qin, Xiaodong Pang, and Huan-Xiang Zhou*

Department of Physics and Institute of Molecular Biophysics, Tallahassee, Florida 32306, USA

SUMMARY
The association rate constants (ka) of proteins with other proteins or other macromolecular targets
are a fundamental biophysical property. Observed rate constants span over 10 orders of
magnitude, from 1 to 1010 M−1s−1. Protein association can be rate-limited either by the diffusional
approach of the subunits to form a transient complex, with near-native separation and orientation
but without short-range native interactions, or by the subsequent conformational rearrangement to
form the native complex. Our transient-complex theory showed promise in predicting ka in the
diffusion-limited regime. Here we develop it into a web server called TransComp
(http://pipe.sc.fsu.edu/transcomp/) and report on the server’s accuracy and robustness based on
applications to over 100 protein complexes. We expect this server to be a valuable tool for systems
biology applications and for kinetic characterization of protein-protein and protein-nucleic acid
association in general.

INTRODUCTION
The association between two proteins or between a protein and another macromolecular
target is at the center of many biological processes. The association rate constants (ka) often
play essential functional roles (Schreiber et al., 2009). Observed ka values span over 10
orders of magnitude, with high values reaching 1010 M−1s−1 and low values reaching 1
M−1s−1. The aim of this paper is to present a web server, TransComp, that accurately
predicts association rate constants that fall in the high half of the ka spectrum.

The association of two proteins, A and B, can be generally described by the kinetic scheme
(Janin and Chothia, 1990; Alsallaq and Zhou, 2008):

where A*B is a transient complex, in which the two proteins have near-native separation and
orientation but have yet to form the short-range specific interactions of the native complex
C. kD denotes the diffusion-limited rate constant for forming the transient complex; k–D is
the rate constant for the reverse process; and kc is the rate constant for the transition from the
transient complex to the native complex via conformational rearrangement and inter-subunit
tightening. The overall association rate constant is ka = kDkc / (k−D + kc). Both diffusion and
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conformational rearrangement can be rate-limiting. The diffusion-limited regime occurs
when kc ≫ k–D; then ka ≈ kD. The conformational rearrangement-limited regime occurs
when kc ≪ k–D, which leads to ka = kc kD / k−D.

The above mechanistic picture allows for a rationalization of the over 10 orders of
magnitude span of observed ka values (Alsallaq and Zhou, 2008). The rate constant for
forming the transient complex via unbiased diffusion is ~105 M−1s−1 (Northrup and
Erickson, 1992; Zhou, 1997; Schlosshauer and Baker, 2004), which, due to the orientational
restraints between the two subunits in the transient complex, is much lower than the often
quoted Smoluchowski result of 109 to 1010 M−1s−1. ka values higher than this “basal” rate
constant occur when proteins have long-range electrostatic attraction, which biases the
diffusional approach toward the transient complex. Thus the high half of the ka spectrum
corresponds to the diffusion-limited regime. In contrast, in the low half of the ka spectrum,
conformational rearrangement plays a rate-determining role.

A widely used method for calculating ka in the diffusion-limited regime is based on
Brownian dynamics simulations (Northrup et al., 1988; Gabdoulline and Wade, 1997;
Elcock et al., 1999; Gabdoulline and Wade, 2001, 2002; Frembgen-Kesner and Elcock,
2010). This approach has two practical limitations. The first is that it has no fixed way of
determining the reaction criteria (i.e., the specification of when the transient complex is
considered formed), which are often adjusted to achieve optimal agreement with
experimental results, thus significantly compromising the predictive power. The second
limitation is that, to account for electrostatic interactions between the associating proteins,
the simulations take enormous computational times.

These two limitations were overcome by our recently developed transient-complex theory
(Alsallaq and Zhou, 2008). The native complex is stabilized by numerous short-range
specific interactions between the subunits, but relative translation and rotation are severely
restricted. In contrast, the two subunits in the unbound state have few short-range
interactions but complete translational and rotational freedom. The boundary between these
two regimes naturally specifies the transient complex. Moreover, ka was found to be
accurately predicted as

(1)

where ka0 is the “basal” rate constant for reaching the transient complex by random
diffusion, and the Boltzmann factor captures the rate enhancement due to electrostatic
attraction. Both ka0 and  (the electrostatic interaction energy in the transient complex)
can be efficiently calculated. The transient-complex theory, without adjusting any
parameters, has been found to quantitatively rationalize experimental ka results for a number
of complexes, including that of a ribotoxin binding to an RNA loop on the ribosome
(Alsallaq and Zhou, 2008; Qin and Zhou, 2008, 2009; Pang et al., 2011).

The transient-complex theory promises to solve half of the association rate constant
problem, i.e., for the diffusion-limited regime where the association rate constants fall in the
high half of the ka spectrum. Here we show that this promise is indeed fulfilled by a web
server implementation of this theory. The server predictions agree closely with experimental
ka results (ranging from 2.1 × 104 to 1.3 × 109 M−1s−1) for a sample of 49 protein
complexes. Applications to over 100 complexes demonstrate the robustness of the
TransComp server. These applications constitute the hitherto most extensive test of any
computational method for predicting ka. While TransComp does not directly deal with
molecular flexibility during the association process, we illustrate here that, by judicially
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choosing the input structure of the protein complex, TransComp is able to treat three
important classes of association processes that couple conformational changes. In doing so
we not only predict the association rate constant but also provide mechanistic insight into
the association process.

RESULTS AND DISCUSSION
Implementation of TransComp

The TransComp server can be accessed at http://pipe.sc.fsu.edu/transcomp/. The input is the
structure of the native complex. The ka calculation has three components: generation of the
transient complex; calculation of the basal rate constant ka0, and calculation of the
electrostatic interaction energy  in the transient complex. While this overall procedure is
the same as in the original version of the transient-complex theory (Alsallaq and Zhou,
2008; Qin and Zhou, 2008), a number of new features are introduced here to achieve full
automation and significant improvement in robustness.

The transient complex is identified through mapping the interaction energy landscape in and
around the bound-state energy well. Because we focus on the diffusion-limited regime,
conformational rearrangement of the subunits is assumed to be fast and native
conformations are assumed for the subunits. The resulting interaction energy function is a
smooth surface in the six-dimensional space of relative translation and relative rotation. The
three translational degrees of freedom are represented by the vector (r) from the center of
the binding site on subunit A to the center of the binding site on subunit B. The three
rotational degrees of freedom consist of a unit vector (e) fixed on subunit B and the rotation
angle χ around e. In the native complex, the magnitude of r, denoted as r, is zero; e is
perpendicular to the least-squares plane of the interface; and χ = 0. The six-dimensional
translational/rotational space around the native complex is sampled randomly, with the sole
restriction of r < rcut, to find clash-free configurations. Instead of a fixed rcut, here an
automated procedure is used to determine rcut so that the clash-free fraction of all
configurations sampled passes a threshold.

The interaction energy is simply modeled by the number of contacts, Nc, between the two
binding sites in any clash-free configuration. Nc is calculated on “interaction-locus” atoms
across the interface, which are cross-interface “cognate” pairs of heavy atoms with < 5 Å
intra-pair separations and > 3.5 Å inter-pair separations in the native complex. Nc is the sum
of native contacts (formed between cognate pairs when distances are less than 3.5 Å plus the
separations in the native complex) and nonnative contacts (formed between noncognate
pairs when distances are less than 2.5 Å plus the separations in the native complex). As
illustrated in Figure 1, the bound-state energy well is dominated by configurations with high
Nc values but a very restricted range of accessible χ values. As the two subunits separate,
there is a sudden expansion in the accessible χ. The range of accessible χ is represented by
σχ, the standard deviation of χ for all configurations at a given Nc. Previously the transient
complex was placed at the onset of the increase in σχ (Alsallaq and Zhou, 2008). Here we fit
the dependence of σχ on Nc to a function used for modeling protein denaturation data as two-
state transition, and identify the midpoint, where Nc is designated Nc*, of this fit with the
transient complex (see Figure 1). That is, configurations with Nc = Nc* make up the
transient-complex ensemble; and configurations with Nc > Nc* fall in the bound-state well.
When either there is a significant gap in the sampled Nc values or the fitting of the
dependence of σχ on Nc to the two-state function involves an excessive error, the ka
calculation is aborted. Either scenario indicates that the association is likely not a single-step
process, and a direct application of TransComp would be inappropriate (see below for
examples of adaptive use of TransComp in dealing with such exceptional cases).
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The basal rate constant ka0 is calculated from force-free Brownian dynamics simulations.
Because no force (or torque) is calculated, these simulations are very efficient. Each
Brownian trajectory starts from the bound-state well (i.e., from a configuration with Nc >
Nc*) and is propagated in the translational/rotational space. At each time step where the
criterion Nc > Nc* is satisfied, the protein pair is given a chance to form the native complex.
If that happens, the trajectory is terminated. The survival fraction of the Brownian
trajectories as a function of time allows ka0 to be calculated.

The electrostatic interaction energy  in the transient complex is calculated by
numerically solving the Poisson-Boltzmann equation, which is widely used for modeling
biomolecular electrostatics. We randomly choose 100 configurations from the transient-
complex ensemble, calculate the electrostatic interaction energy for each, and then average
over the 100 of them to obtain . This calculation is also efficient because the solution of
the Poisson-Boltzmann equation is done only for the 100 configurations. In comparison, in
the approach of using Brownian dynamics simulations to directly obtain ka, in principle one
has to solve the Poisson-Boltzmann equation once at each time step, which amounts to
prohibitive computational cost. The electrostatic rate enhancement predicted by the
Boltzmann factor of  (Equation 1) tends to be overestimated when the magnitude of

 is large (Zhou, 1997). Based on analytical results for the overestimate (Zhou, 1997),

here we introduce a moderation factor, .

TransComp accepts the input structure of the native complex in the pqr format, one file for
each subunit, which includes coordinates, charge, and radius for each atom. The user can
instead supply the Protein Data Bank (PDB) entry name and chain IDs for the two subunits
or upload a PDB file for the complex; TransComp will take this input and generate the
appropriate pqr files. Hydrogen atoms, typically missing in PDB files, are added. The
coordinates in the pqr files are used to generate the transient complex; the charge and radius
information is additionally needed for Poisson-Boltzmann calculations. The user specifies
the ionic strength at which the Poisson-Boltzmann calculations are to be done. All
TransComp computations are passed to the High Performance Computing facility at FSU. In
a typical ka calculation, the generation of the transient complex takes ~3 hours on 8 CPUs;
the calculation of the basal rate constant takes ~2 hours on 8 CPUs; and the calculation of

 takes ~0.5 hours on 100 CPUs.

Figure 1 presents the output of a typical TransComp run. In addition to the Nc vs χ map and
the Nc vs σχ curve noted above for the purpose of locating the transient complex, the output
contains the electrostatic surfaces of the two subunits, and the values of ka0, , and ka.

As stated, the input to TransComp is the structure of the native complex. In the absence of
the native structure, one could model the structure of the native complex, e.g., by homology
or by docking. Our previous study provides an example (Qin and Zhou, 2009). A potential
problem with a modeled structure (or a low-resolution native structure) is the presence of
steric clashes between the subunits, which could ruin the configurational sampling to
determine the transient complex or the subsequent calculation of . We thus introduced a
1 Å threshold for any cross-interface atom pair in the input structure. If an atom pair with a
distance below this threshold is present, the user is notified and the job is not submitted. An
input structure in which no cross-interface atom pair has a < 5 Å separation is treated in the
same way. Once a job is successfully submitted, the user is given a web link where the status
of the job can be checked.
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Proteins that associate with rate constants at the high end of the ka spectrum inevitably
experience electrostatic rate enhancement (Schreiber et al., 2009; Pang et al., 2011). In these
cases the effects of charge mutation and ionic strength are usually of interest. Here
TransComp provides a shortcut. Instead of calculating ka for a mutant complex (or at a
different ionic strength) from scratch, we can safely make the assumption that the transient
complex is unaffected by the mutation (or change in ionic strength) (Alsallaq and Zhou,
2008). Then the only quantity that needs to be re-calculated is . That can then be
combined with the ka0 already calculated to obtain the ka for the mutant complex (or at the
new ionic strength). In the executable released at the TransComp website, we specifically
built in a command for this shortcut.

Validation on 49 Protein Complexes
We collected from the literature 49 complexes for which ka measurements were reported
(see Methods section for the sources of the collection). They are listed in Supplementary
Information Table S1, and include enzyme-inhibitor, electron transfer, regulator-effector,
and growth factor-cell receptor, and other types of complexes. The measured rate constants
range from 2.1 × 104 to 1.3 × 109 M−1s−1. The TransComp predictions show good
agreement with the measured values (Figure 2). The input structures were taken from the
PDB, with entry names given in Table S1; for three complexes, the input structures
underwent special treatment in order to treat conformational changes during association, as
described below (Figure 3). The correlation between the predicted and experimental logka
has an R2 of 0.72, and the root-mean-square-deviation is 0.73, corresponding to a 5-fold
error in ka. There are no apparent systematic calculation errors with respect to the functional
types of the protein complexes, the shapes or sizes of the structures of the complexes, or the
magnitude of ka (although it could be noted that the cases with high ka values are dominated
by enzyme-inhibitor and electron-transfer complexes). Overall the results in Figure 2
demonstrate the predictive power of TransComp for diverse protein complexes with ka
spanning a wide range.

The ka values for several of the 49 complexes were computed in previous studies. For
example, the association of barnase and barstar and of acetylcholinesterase and fasciculin
was studied by brute-force Brownian dynamics simulations (Gabdoulline and Wade, 1997;
Elcock et al., 1999; Gabdoulline and Wade, 2001; Frembgen-Kesner and Elcock, 2010). In
three of these four studies, the reaction criteria were varied to reach agreement with
experimental results, so strictly speaking ka was not predicted. In the fourth study
(Gabdoulline and Wade, 2001), the same criterion was applied to five complexes; good
agreement with the experimental result was obtained for the association of barnase and
barstar but ka for the association of acetylcholinesterase and fasciculin was overestimated by
30-fold. We also studied the two complexes by using the transient-complex theory (Alsallaq
and Zhou, 2008); the results produced here by TransComp are very similar to those reported
in our previous study. Shaul and Schreiber (2005) introduced an empirical energy function
that is similar in spirit to our  but is calculated on the native complex instead of our
transient complex. They combined this empirical energy function with an adjustable basal
rate constant to calculate ka for barnase/barstar, acetylcholinesterase/fasciculin, and other
complexes. We emphasize that no previous computational methods have been subjected to
the kind of extensive tests shown in Figure 2 against experimental data.

In addition to the predictive power (afforded by the lack of adjustable parameters) and
computational efficiency, TransComp has one more advantage over brute-force Brownian
dynamics simulations. The contributions by random diffusion and long-range electrostatic
interactions are teased out, so greater physical insight can be gained on the control of ka. For
example, the measured ka values of the Gαi1/RGS4 and elastase/elafin complexes are very
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close: 1.7 × 106 M−1s−1 (Lan et al., 2000) and 3.6×106 M−1s−1 (Ying and Simon, 1993).
However, TransComp reveals that the two complexes have very different basal rate
constants, 2.7 × 104 M−1s−1 and 2.9 × 106 M−1s−1, compensated by very different 
values, –3.1 kcal/mol and 0.3 kcal/mol, leading to similar predicted ka values, 5.0 × 106

M−1s−1 and 1.7 × 106 M−1s−1. We can thus conclude that the Gαi1/RGS4 association is
significantly enhanced by electrostatic attraction, but the elastase/elafin association is
formed mostly via random diffusion. Consistent with the latter conclusion, the measured
elastase/elafin ka was little affected by an increase in ionic strength from 0.25 M to 1.1 M
(Ying and Simon, 1993).

From Rate Constant to Association Mechanism
Among the 49 protein pairs, three (thrombin/hirudin, streptokinase/plasmin, and
ribonuclease A/inhibitor) have unusually extended interfaces in the native complexes (Rydel
et al., 1991; Wang et al., 1998; Kobe and Deisenhofer, 1995) (Figure 3), and our initial
TransComp runs were aborted due to gaps in the sampled Nc values. The Nc gaps suggested
to us that the formation of these three complexes was not a single-step process but involved
extensive conformational changes. We show below that, by judicially choosing the input
structures of the protein complexes, we can get around the limitation of TransComp in not
explicitly incorporating molecular flexibility, and compute rate constants and mechanisms
for three classes of association processes represented by the three systems displayed in
Figure 3.

Hirudin is a potent thrombin inhibitor isolated from the bloodsucking leech Hirudo
medicinalis. It consists of 65 residues and has a tadpole-like conformation with a compact
N-terminal domain and a highly acidic, disordered C-terminal tail (Szyperski et al., 1992).
The N-terminal domain binds to the active site of thrombin, while the C-terminal tail binds
to a basic exosite, the fibrinogen recognition site (Rydel et al., 1991). Neutralization of the
C-terminal acidic residues significantly reduces the binding affinity, primarily due to the
decrease in ka (Stone et al., 1989), whereas N-terminal charge mutations have little effect on
ka (Betz et al., 1992). In addition, ka is strongly dependent on ionic strength, indicating
significant electrostatic rate enhancement (Alsallaq and Zhou, 2008; Schreiber et al., 2009);
at an ionic strength of 0.175 M ka = 7.5 × 107 M−1s−1. Stone and Hofsteenge (1986)
proposed that the association of hirudin with thrombin involves two steps: binding of the C-
terminal tail followed by the binding of the N-terminal domain, with the first step rate-
limiting. Our TransComp calculation supports this proposal. Using just the C-terminal 12
residues in their native conformation (but with the diffusion constant scaled to that of full-
length hirudin), TransComp predicts a ka of 1.3 × 108 M−1s−1 (with 320-fold electrostatic
rate enhancement) at ionic strength = 0.175 M, in good agreement with the experimental ka.
The underlying assumption of this ka calculation is that the transition to the native
conformation of the C-terminal tail is rapid compared to the docking to the fibrinogen
recognition site (Figure 3a), making the docking step diffusion-limited. The docking of the
C-terminal tail then allows the N-terminal domain to rapidly coalesce around the active site
to achieve an overall tight binding. Our ka calculation based on this “dock-and-coalesce”
mechanism can explain why the C-terminal charge neutralizations significantly reduce ka
whereas the N-terminal charge mutations have little effect on ka. Hirudin is an example of
intrinsically disordered proteins (IDPs) that undergo a disorder-to-order transition upon
association, which often results in extended interfaces. Dock-and-coalesce seems to present
an attractive mechanism for the association of these IDPs with their macromolecular targets.
In particular, this mechanism allows an IDP to avoid the excessively low association rate
that it would have if it were to associate as a rigid body. (Our initial TransComp run using
the full structure of the native complex of hirudin with thrombin was based on the rigid-
body scenario. Had we ignored the significant gaps in the sampled Nc values and carried on
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the calculation, we would have defined a “transient complex” that is distant, in terms of both
relative separation and relative orientation, from the native complex. The calculated rate
constant for forming even this distant intermediate via rigid-body diffusion was 20-fold
lower than the observed ka. The rigid-body scenario thus seems very unlikely for hirudin-
thrombin association.)

Streptokinase is a thrombolytic drug that acts by binding to either plasminogen or plasmin to
form a tight stoichiometric complex, which in turn cleaves substrate plasminogen to form
plasmin. Streptokinase consists of three domains, α, β, and γ, connected by flexible linkers;
in the complex with plasmin, the three domains embrace plasmin, leading to an extended,
disjoint interface (Figure 3b). Studies with streptokinase fragments consisting of one or two
domains suggest that the binding to plasminogen or plasmin is first established by the β
domain and then reinforced by the α and γ domains (Conejero-Lara et al., 1998; Loy et al.,
2001). This is akin to the dock-and-coalesce mechanism. The β domain is distinct from the α
and γ domains by its strong charge complementarity with the binding site on plasmin. Our
TransComp calculation with the isolated β domain (but with the diffusion constant scaled to
that of full-length streptokinase) gives a ka of 8.4 × 107 M−1s−1, which compares well with
the experimental value of 5.4 × 107 M−1s−1 (Cederholm-Williams et al., 1979). Our results
thus strongly support the association mechanism shown in Figure 3b, whereby the rate-
limiting docking of the β domain of streptokinase is followed by fast coalescence of the α
and γ domains around their respective binding sites on plasmin. It seems reasonable to
suggest that, for any complex with an extended and disjointed interface, some form of the
dock-and-coalescence mechanism may be operating.

Ribonuclease inhibitor is a leucine-rich repeat protein with a horseshoe shape; upon binding,
ribonuclease A inserts deeply into the horseshoe (Kobe and Deisenhofer, 1995) (Figure 3c).
The resulting snuggle fit is responsible for a very high binding affinity. The experimental ka
value (Lee et al., 1989), 3.4 × 108 M−1s−1, is also high, consistent with the highly
complementary electrostatic surfaces of the two proteins. Compared to the unbound
structure (Kobe and Deisenhofer, 1996), the horseshoe opening (as measured by the closest
distance, between His6 Nε2 and Tyr430 Oη) in the ribonuclease A-bound structure increases
from 12.0 Å to 14.4 Å. This opening is still too narrow for rigid insertion of ribonuclease A.
We hypothesized that the horseshoe opening is flexible, and can widen further to allow for
the insertion of ribonuclease A. A normal mode analysis based on the elastic network model
by the EINemo program (Suhre and Sanejouand, 2004) identified the lowest-frequency
mode as the oscillation of the horseshoe opening. Contraction along this mode resulted in a
conformation that is very close to the unbound structure (Cα root-mean-square-deviation at
0.87 Å). Upon expansion to a horseshoe opening of 17.7 Å, the native-complex
configuration can be easily generated by rigid-body insertion; TransComp then predicts a ka
of 4.2 × 107 M−1s−1, which is comparable to the experimental value. Our calculations thus
suggest that the conformational fluctuations of ribonuclease inhibitor occasionally allow the
horseshoe opening to be wide enough for the insertion of ribonuclease A (Figure 3c). This
mechanism is reminiscent of the gated substrate access to the buried active site of
acetylcholinesterase (Zhou et al., 1998).

The three systems illustrate three important classes of association processes that couple
conformational changes. In the first, an IDP undergoes a disorder-to-order transition and
forms an extended interaction surface with the target protein. In the second, a multi-domain
protein binds to a target, with each domain occupying a separate binding site. In both cases
the association mechanism is likely to be stepwise and we specifically proposed the dock-
and-coalesce mechanism. To calculate the association rate constants of the two systems we
further assumed that the docking step is rate-limiting and the coalescing step is rapid. The
third class of association processes involves the breathing motion of the target, which we
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captured by normal mode analysis. In calculating the rate constant, we further assumed that
the breathing motion is fast and the subsequent association step is rate-limiting. In all these
cases, it would be possible to remove the further approximations on the putative non-rate-
limiting steps and calculate the overall association rate constants more rigorously.

Predictions on a Diverse Set of 132 Complexes
To test the robustness of TransComp, we applied it to a set of protein-protein complexes
originally collected as a benchmark for protein-protein docking (Hwang et al., 2010). Out of
the 176 enzyme-inhibitor, antibody-antigen, and other types of complexes, direct application
of TransComp was successful in 132 cases; among these we could find experimental ka
values for 40 cases, which are part of the 49 complexes presented above. TransComp runs
were aborted in the other 44 cases; they likely involve multi-step association processes and
were not further pursued here. Depending on the extent of conformational change upon
association, Hwang et al. (2010) grouped the docking benchmark set into a “rigid-body”
category (with 121 complexes), a “medium-difficulty” category (with 30 complexes), and a
“difficult” category (with 25 complexes). Not surprisingly, the success rate of TransComp
runs for the rigid-body category (98/121 = 81%) was significantly higher than that of the
medium-difficulty and difficult categories (34/55 = 62%).

The calculated values of the basal rate constant ka0, electrostatic interaction energy  at a
common ionic strength of 0.15 M, and association rate constant ka for the 132 complexes are
listed in Table S2. Given the large number of cases studied, these values should constitute a
good sample of the results to be expected in the diffusion-limited regime. The distribution of
ka0, ka, and  are shown in Figure 4. ka0 ranges from 3 × 103 to 4 × 106 M−1s−1, with the
distribution peaking at 2.9 × 105 M−1s−1 and spreading nearly one order of magnitude in
both directions. This range of exactly calculated ka0 values is consistent with previous
estimates (Northrup and Erickson, 1992; Zhou, 1997; Schlosshauer and Baker, 2004). On
the other hand, ka ranges from 2.6 × 103 to 4.2 × 109 M−1s−1, with the distribution peaking
at 4.6 × 105 M−1s−1 and spreading nearly two orders of magnitude in both directions. The
wider range of ka can be attributed to the wide range in , from –7.2 to 2.6 kcal/mol,
corresponding respectively to 104-fold rate enhancement and 80-fold rate retardation. The
distribution of  peaks at –0.5 kcal/mol, indicating that the association rates of the
majority of the protein-protein complexes involve only modest electrostatic enhancement.
Interestingly,  shows good correlation with the empirical function of Shaul and
Schreiber (Shaul and Schreiber, 2005) calculated on the native complex, especially for the
98 cases in the rigid-body category (Figure S1).

The modest electrostatic contributions to ka for the majority of the protein-protein
complexes leave ample room for improving electrostatic rate enhancement. This room is
illustrated by comparing the complexes of barstar with barnase (1BRS; Table S1) and with
ribonuclease Sa (1AY7; Table S2). The two nucleases are structurally similar (with a Cα
root-mean-square-deviation of 0.4 Å for 35 core residues), and their complexes with barstar
are also similar (Sevcik et al., 1998). Correspondingly the basal rate constants, 9.2 × 104 to
7.9 × 104 M−1s−1, of the two complexes are also very similar. However, the values of 
are very different: –2.9 and –0.8 kcal/mol at ionic strength = 0.15 M. Across the binding
interface, positively charged barnase strongly complements negatively charged barstar; in
general such charge segregation and complementation are required for significant
electrostatic rate enhancement (Pang et al., 2011). In contrast, the barstar-facing side of
ribonuclease Sa has a mixed charge distribution. It can be expected that, by making this
protein more positively charged, its association rate with barstar can be significantly
increased.
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CONCLUSION
We have developed the TransComp web server for automated prediction of protein
association rate constants. Application to over 100 protein complexes has demonstrated the
accuracy and robustness of the ka calculations in the diffusion-limited regime. We have
further shown that, with judicious adaptation, TransComp can also be used to study cases
where conformational change is an integral part of the association process, yielding both ka
and the association mechanism. While the applications here focused on protein-protein
association, previous studies have demonstrated the success of the underlying transient-
complex theory on protein-RNA association (Qin and Zhou, 2008, 2009), indicating that
TransComp is applicable to such systems as well.

TransComp will be useful for kinetic characterization of protein-protein and protein-nucleic
acid association in general. Particularly noteworthy is its usage in systems biology, where
association rate constants provide critical information but are missing in many cases.
TransComp can also be used to design proteins with designer ka values, through
manipulating protein charges.

Recent years have seen significant progress in the theory and calculation of protein folding
rates (Onuchic and Wolynes, 2004; Dill et al., 2008). In comparison, theoretical work on
protein association rates is lagging. With the predictive power demonstrated here for the
diffusion-limited regime, TransComp now provides a solution for half of the association
problem.

METHODS
TransComp Implementation Details

The implementation of the transient-complex theory in TransComp, outlined in the main
text, is basically as described previously (Alsallaq and Zhou, 2008; Qin and Zhou, 2008),
but a number of new features are introduced here for automation and robustness. First, the
rcut value for sampling around the native complex to generate the transient complex is
determined in an automated procedure. 105 trial configurations are randomly generated
around the native complex with the restriction r < rcut; rcut is successively increased from 6
Å with an increment of 1 Å. The minimum rcut at which the clash-free fraction of the trial
configurations reaches 10−3 is chosen. If this condition is not satisfied at rcut = 10 Å, the
threshold for the clash-free fraction is then lowered to 10−4. Second, after generating 107

clash-free configurations, the value of Nc* defining the transient complex is determined by
fitting the dependence of σχ on Nc to

[2]

which has the form used for modeling protein denaturation data as two-state transition.
Configurations with Nc at the integer closest to Nc* and |χ| ≤ 90° make up the transient-
complex ensemble. Third, we abort the ka calculation when either there is a significant gap
(≥ 8) in the sampled Nc values or the fitting of the dependence of σχ on Nc to the two-state
function involves an excessive error (root-mean-square of residuals > 0.1). Otherwise the ka
calculation continues, with ka0 obtained from 4000 force-free Brownian dynamics
trajectories started from configurations with Nc ≥ Nc*, and  obtained from solving the
nonlinear Poisson-Boltzmann equation by the APBS program (version 1.2) (Baker et al.,
2001) according to a protocol described previously (Pang et al., 2011).
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Collection of Protein Complexes with Experimental ka Results
These 49 complexes came from two sources. The Shaul and Schreiber paper (Shaul and
Schreiber, 2005) listed 18 complexes with experimental ka values. We found structures for
the native complexes in 16 of these cases, and three of these resulted in aborted TransComp
runs and were not further studied. The second source was the docking benchmark (Hwang et
al., 2010); among these 176 complexes, we found experimental ka values from the literature
for 40 cases. Combining the two sources, which have four overlapping cases, we obtained a
total of 49 complexes with experimental ka values. Among the 49 cases, initial TransComp
runs were aborted for three, but we modified the input structures in these three cases to
allow for the use of TransComp.

It should be noted that different experimental techniques can give different ka values. A case
in point is the association of CheY and CheA (1FFW; Table S1). Stopped-flow fluorescence
measurements reported ka = 6.2 × 107 M−1s−1 (Stewart and Van Bruggen, 2004), but surface
plasmon resonance (SPR) measurements reported ka = 3.68 × 102 M−1s−1 (Schuster et al.,
1993). Compared to solution-based methods, SPR may suffer from a number of technical
limitations (Schreiber et al., 2009). Whenever possible, we avoided using ka results
measured by SPR.

HIGHLIGHTS

• A method is presented for automated prediction of protein association rates.

• The prediction method is both accurate and robust, and has wide applications.

• With this method, half of the protein association problem is now solved.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
The output of a typical TransComp run. The table at the top lists the values of ka0, , and
ka. The electrostatic surfaces of the two subunits are shown in the middle; each surface is
accompanied by a ribbon representation of the other subunit in the native complex, to
indicate the binding site. The graphs at the bottom show the Nc vs χ map and the Nc vs σχ
curve, used for locating the transient complex. χ and σχ are in radians. The native complex
and the transient complex are indicated by a green circle and a blue line, respectively.
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Figure 2.
Comparison of predicted and experimental ka results for 49 complexes. The numbers refer to
entries in Table S1.
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Figure 3.
Proposed association mechanisms of three complexes. (a) Hirudin/thrombin association.
First the acidic C-terminal tail (in green) of hirudin docks to the fibrinogen recognition site
on thrombin (gray surface); then the N-terminal domain (in red) coalesces around the active
site. (b) Streptokinase/plasmin association. First the β domain (in green) of streptokinase
docks to plasmin (cyan surface); subsequently the α and γ domains (in red and blue,
respectively) coalesce around plasmin to form a tight complex. (c) Ribonuclease inhibitor/
ribonuclease A association. Ribonuclease inhibitor (in cyan) undergoes conformational
fluctuations, resulting in variations in the horseshoe opening. Small opening prevents the
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binding of ribonuclease A (in green); large opening allows deep insertion of the enzyme, and
subsequently contraction leads to a tight complex.
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Figure 4.
Distribution of ka0, ka, and  results for 132 complexes. (a) Histograms of ka0 and ka.
Gaussian fits are shown as dashed and solid curves. (b) Histogram of . The data are
listed in Table S2.
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