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Abstract
A common goal of neuroimaging research is to use imaging data to identify the mental processes
that are engaged when a subject performs a mental task. The use of reasoning from activation to
mental functions, known as “reverse inference”, has been previously criticized on the basis that it
does not take into account how selectively the area is activated by the mental process in question.
In this Perspective, I outline the critique of informal reverse inference, and describe a number of
new developments that provide the ability to more formally test the predictive power of
neuroimaging data.

Introduction
Understanding the relation between psychological processes and brain function, the ultimate
goal of cognitive neuroscience, is made particularly difficult by the fact that psychological
processes are poorly defined and not directly observable, and human brain function can only
be measured through the highly blurred and distorted lens of neuroimaging techniques.
However, the development of functional magnetic resonance imaging (fMRI) 20 years ago
afforded a new and much more powerful way to address this question in comparison to
previous methods, and the fruits of this technology are apparent in the astounding number of
publications using fMRI in recent years.

The classic strategy employed by neuroimaging researchers (established most notably by
Petersen, Posner, Fox, and Raichle in their early work using positron emission tomography;
(Petersen et al., 1988; Posner et al., 1988)) has been to manipulate a specific psychological
function and identify the localized effects of that manipulation on brain activity. This has
been referred to as “forward inference” (Henson, 2005) and is the basis for a large body of
knowledge that has derived from neuroimaging research. However, since the early days of
neuroimaging there has also been a desire to reason backwards from patterns of activation to
infer the engagement of specific mental processes. This has been called “reverse inference”
(Poldrack, 2006; Aguirre, 2003), and often forms much of the reasoning observed in the
discussion section of neuroimaging papers (under the guise of “interpreting the results”). In
some cases, reverse inference underlies the central conclusion of a paper. For example,
Takahashi et al. (2009) examined the neural correlates of the experience of envy and
schadenfreude. They found that envy was associated with activation in the anterior cingulate
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cortex, in which they note “cognitive conflicts or social pain are processed” (p. 938),
whereas schadenfreude was associated with activation in the ventral striatum, “a central
node of reward processing” (p. 938). The abstract concludes: “Our findings document
mechanisms of painful emotion, envy, and a rewarding reaction, schadenfreude”, where the
psychological states (i.e., pain or reward) are inferred primarily from activation in specific
regions (anterior cingulate or ventral striatum). This is just one of many examples of reverse
inference that are evident in the neuroimaging literature, and even the present author is not
immune.

Reverse inference is also common in public presentations of imaging research. A prime
example occurred during the US Presidential Primary elections in 2007, when the New York
Times published an Op-Ed by a group of researchers titled “ This is Your Brain on Politics”
(Iacoboni et al., 2007). This piece reported an unpublished study of potential swing voters,
who were shown a set of videos of the candidates while being scanned using fMRI. Based
on these imaging data, the authors made a number of claims about the voters’ feelings
regarding the candidates. For example, “When our subjects viewed photos of Mr.
Thompson, we saw activity in the superior temporal sulcus and the inferior frontal cortex,
both areas involved in empathy”, and “Looking at photos of Mitt Romney led to activity in
the amygdala, a brain area linked to anxiety.” More recently, another New York Times Op-
Ed by a marketing writer used unpublished fMRI data to infer that people are “in love” with
their iPhones (Lindstrom, 2011). Clearly, the desire to “read minds” using neuroimaging is
strong.

In 2006 I published a paper that challenged the common use of reverse inference in the
neuroimaging literature (Poldrack, 2006); for a similar earlier critique, see (Aguirre, 2003).
Since the publication of those critiques, “reverse inference” has gradually become a bad
word in some quarters, though very often a citation to those papers is used as a fig leaf to
excuse the use of reverse inference. At the same time, a number of researchers have argued
that it is a fundamentally important research tool, especially in areas such as
neuroeconomics and social neuroscience, where the underlying mental processes may be
less well understood (e.g. Young & Saxe, 2009). In what follows, I will lay out and update
the argument against reverse inference as it is often practiced in the literature. I will then
describe how recent developments in statistical analysis and informatics have provided new
and more powerful ways infer mental states from neuroimaging data, and discuss the
limitations of those techniques. I will conclude by highlighting what I see as important
challenges that remain in the quest to reliably use neuroimaging data to understand mental
function.

A probabilistic framework for inference in neuroimaging
The goal of reverse inference is to infer the likelihood of a particular mental process M from
a pattern of brain activity A, which can be framed as a conditional probability P (M|A) (see
Sarter et al., 1996, for a similar formulation). Neuroimaging data provide information
regarding the likelihood of that pattern of activation given the engagement of the mental
process, P (A|M); this could be activation in a specific region, or a specific pattern of
activity across multiple regions. The amount of evidence that is obtained for a prediction of
mental process engagement from activation can be estimated using Bayes’ rule:

Notably, estimation of this quantity requires knowledge of the base rate of activation A, as
well as a prior estimate of the probability of engagement of mental process M. Given these,
we can obtain an estimate of how likely the mental process is given the pattern of activation.
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The amount of additional evidence that the pattern of activity provides for engagement of
the mental process can be framed in terms of the ratio between the posterior odds and prior
odds, known as the Bayes factor. To the degree that the base rate of activation in the region
is high (i.e., it is activated for many different mental processes), then activation in that
region will provide little added evidence for engagement of a specific mental process;
conversely, if that region is very specifically activated by a particular mental process, then
activation provides a great deal of evidence for engagement of the mental process.

This framework highlights the importance of base rates of activation for quantifying the
strength of any reverse inference, but such base rates were not easy to obtain until recently.
In Poldrack (2006), I used the BrainMap database to obtain estimates of activation
likelihoods and base rates for one particular reverse inference (viz, that activation of Broca’s
area implied engagement of language function). This analysis showed that activation in this
region provided limited additional evidence for engagement of language function. For
example, if one started with a prior of P (M)=0.5, activation in Broca’s area increased the
likelihood to 0.69, which equates to a Bayes factor of 2.3; Bayes factors below 4 are
considered weak. Others have since published similar analyses that were somewhat more
promising; for example, Ariely & Berns (2010) found that activation in the ventral striatum
increased the likelihood of reward by a Bayes factor of 9, which is considered moderately
strong.

One drawback of the BrainMap database is that the papers in the database are manually
chosen to be entered, and thus reflect a biased sample of the literature. In recent work, we
(Yarkoni et al., 2011) developed an automated means to obtain activation coordinate data
(like those contained in BrainMap) from the full text of published articles; currently, the
database contains data from 3,489 articles from 17 different journals. These data, (which are
available online at http://www.neurosynth.org) provide a less biased means to quantify base
rates of activation (though biases clearly remain due to the lack of complete and equal
coverage of all possible mental states in the literature). Figure 1 shows a rendering of base
rates of activation across the studies in this database. What is striking is the degree to which
some of the regions that are most common targets of informal reverse inference (e.g.,
anterior cingulate, anterior insula) have the highest base rates, and therefore are the least
able to support strong reverse inferences.

Reverse inference using literature mining
A thorough analysis of reverse inference using meta-analytic data is difficult because it
requires manual annotation of each dataset in order to specify which mental processes are
engaged by the task. Databases such as BrainMap rely upon relatively coarse ontologies of
mental function, which means that while one can assess the strength of inferences for broad
concepts such as “language”, it is not possible to perform these analyses for finer-grained
concepts that are likely to be of greater interest to many researchers.

An alternative approach relies upon the assumption that the words used in a paper should
bear a systematic relation to the concepts that are being examined. Yarkoni et al. (2011)
used the automatically extracted activation coordinates for 3,489 published articles, along
with the full text of those articles, to test this form of reverse inference: Instead of asking
how predictive an activation map is for some particular mental process (as manually
annotated by an expert), it asks how well one can predict the presence of a particular term in
the paper given activation in a particular region. While there are clearly a number of reasons
why this approach might fail, Yarkoni et al. found that for many terms it was possible to
accurately predict activation in specific regions given the presence of the term (i.e., forward
inference), as well as to predict the likelihood of the term in the paper given activation in a
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specific region (i.e., reverse inference). We also found that it was possible to classify data
from individual participants with reasonable accuracy, as well as to classify the presence of
words in individual studies against as many as 10 alternatives, which suggests that these
meta-analytic data can provide the basis for relatively large-scale generalizable reverse
inference.

A challenge to the use of literature mining to perform reverse inference is that it is based on
the language that researchers use in their papers, and thus may tend to reify informal reverse
inferences. For example, if researchers in the past tended to interpret activation in the
anterior cingulate cortex as reflecting “conflict” based on informal reverse inference, then
this will increase the support obtained from a literature-based meta-analysis for this reverse
inference (since that analysis examines the degree to which the presence of activation in the
anterior cingulate is uniquely predictive of the term “conflict” appearing in the text).
Another challenge for this approach arises from the coarse nature of coordinate-based meta-
analytic data, which will likely limit accurate generalization to domains where the relevant
activation is distributed across large areas rather than being reflected in finer-grained
patterns of activation; for example, it will be much easier to identify datasets where visual
motion is present than to identify a particular motion direction. Finally, literature-based
analysis is complicated by the many vagaries of how researchers use language to describe
the mental concepts they are studying; classification will be more accurate for terms that are
used more consistently and precisely in the literature. Despite these limitations, the meta-
analytic approach has the potential to provide useful insights into the potential strength of
reverse inferences.

Decoding of mental states: Towards formal reverse inference
Whereas the kind of reverse inference described above is informal, in the sense that it is
based on the researcher’s knowledge of associations between activation and mental
functions, a more recent approach provides the ability to formally test the ability to infer
mental states from neuroimaging data. Known variously as multi-voxel pattern analysis
(MVPA), multivariate decoding, or pattern-information analysis, this approach uses tools
from the field of machine learning to create statistical machines that can accurately decode
the mental state that is represented by a particular imaging dataset. In the last ten years, this
approach has become very popular in the fMRI literature; for example, in the first 8 months
of 2011 there have been more than 50 publications using these methods, versus 41 for the
entire period before 2009.

A pioneering example of this approach was the study by Haxby et al. (2001), who showed
that it was possible to accurately classify which of several classes of objects a subject was
viewing, using a nearest-neighbor approach in which a test dataset was compared to training
datasets obtained for each of the classes of interest. Whereas early work using MVPA
focused largely on decoding of visual stimulus features, such as object identity (Haxby et al.,
2001) or simple visual features (Haynes & Rees, 2005; Kamitani & Tong, 2005), it is now
clear that more complex mental states can also be decoded from fMRI data. For example,
several studies have shown that future intentions to perform particular tasks can be decoded
with reasonable accuracy (Gilbert, 2011; Haynes et al., 2007). These studies show that it is
possible to quantitatively estimate the degree to which a pattern of brain activation is
predictive of the engagement of a specific mental process, and thus provides a formal means
to implement reverse inference. They have also provided evidence that activation in some
regions may be less diagnostic than is required (and often assumed) for effective reverse
inference. For example, neither the “fusiform face area” nor the “parahippocampal place
area” is particularly diagnostic for the stimulus classes that activate them most strongly
(faces or scenes respectively) (Hanson & Halchenko, 2008).
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Model-based approaches
The approach to decoding described above treats the relation between mental states and
neuroimaging activation patterns as a data mining problem, estimating relations between the
two using statistical brute force. An alternative and more principled approach has been
developed more recently, in which the decoding of brain activation patterns is guided by
computational models of the putative processes that underly the psychological function. In
one landmark study, Mitchell et al. (2008) showed that it was possible to use the activation
patterns from one set of concrete nouns to predict the patterns of activation in another set of
untrained words. These predictions were derived using a model that identified semantic
features based on correlations between noun and verb usage in a very large corpus of text.
Using “semantic feature maps” that reflect the activation associated with a semantic feature
(which is derived from the mapping of nouns to verbs in the training corpus), predicted
activation maps were then obtained by projecting the untrained words into the semantic
feature space. These predicted maps were highly accurate, allowing above-chance
classification of pairs of untrained words in all of the nine participants.

Another study published in 2008 by Kay and colleagues (Kay et al., 2008) examined the
ability to classify natural images based on fMRI data from the visual cortices. This study
estimated a receptive field model for each voxel (based on Gabor wavelets), which
estimated the voxel’s response along spatial location, spatial frequency, and orientation
dimensions, using fMRI data collected while viewing a set of 1,750 natural images. They
then applied the model to a set of 120 images that were not included in the training set, and
attempted to identify which image was being viewed, based on the predicted brain activity
derived from the receptive field model. The model was highly accurate at decoding which
image was being viewed, even when the set of possible images was as large as 1000. These
studies highlight the utility of using intermediate models of the stimulus space to constrain
decoding attempts.

In the former cases, the decoding problem was relatively constrained by the presence of a set
of test items to be compared, which varied from 2 in the Mitchell et al. study to up to 1000
in the Kay et al. study. However, subsequent work has shown that it is possible to provide
realistic reconstruction of entire images from fMRI data using Bayesian inference with
natural image priors, in effect reading the image from the subject’s mind. Naselaris et al.
(2009) used a model similar to the one described for the Kay et al. study to attempt to
reconstruct images from brain activation. They found that the reconstructions provided by
the basic model were not better than chance with regard to their accuracy. However, using a
database of six million randomly selected natural images as priors, it was possible to create
image reconstructions that had structural accuracy substantially better than chance.
Furthermore, using a hybrid model that also included semantic labels for the images, the
reconstructions also had a high degree of semantic accuracy. Another study by Pereira et al.
(2011) used a similar approach to generate concrete words from brain activation, using a
“topic model” trained on corpus of text from Wikipedia. These studies highlight the utility
of model-based decoding, which provides much more powerful decoding abilities via the
use of computational models that better characterize mental processes along with statistical
information mined from large online databases.

Towards large-scale decoding of mental states
The foregoing examples of successful decoding are impressive, but each is focused on
decoding between different stimuli (images or concrete words) for which the relevant
representations are located within a circumscribed set of brain areas at a relatively small
spatial scale (e.g., cortical columns). In these cases, decoding likely relies upon the relative
activity of specific subpopulations of neurons within those relevant cortical regions or the
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fine-grained vascular architecture in those regions (see Kriegeskorte et al., 2010, for further
discussion of this issue). In many cases, however, the goal of reverse inference is to identify
what mental processes are engaged against a much larger set of possibilities. We refer to this
here as “large-scale” decoding, where “scale” refers here both to the spatial scale of the
relevant neural systems and to the breadth of the possible mental states being decoded. Such
large-scale decoding is challenging because it requires training data acquired across a much
larger set of possible mental states. At the same time, it is more likely to rely upon
distributions of activation across many regions across the brain, and thus has a greater
likelihood of generalizing across individuals compared to decoding of specific stimuli,
which is more likely to rely upon idiosyncratic features of individual brains. While most
previous decoding studies have examined generalization within the same individuals, a
number of previous studies have shown that it is possible to generalize across individuals
(Davatzikos et al., 2005; Mourão-Miranda et al., 2005; Shinkareva et al., 2008).

In an attempt to test the large-scale decoding concept, we (Poldrack et al., 2009) examined
the ability to classify which of eight different mental tasks an individual was engaged in,
using statistical summaries of activation for each task compared to rest from each subject.
The classifier was tested on individuals who were not included in the training set; the results
showed that highly accurate classification was possible, even when generalizing across
individuals. Accurate classification was possible using small regions of interest but was
greatest using whole-brain data, suggesting that decoding of tasks relied upon both local and
global information. Although this work provides a proof of concept for large-scale decoding,
true large-scale decoding is still far away; the eight mental tasks tested in this study are but a
drop in the very large bucket of possible psychological functions, and each function would
likely need to be tested using multiple tasks to ensure independence from specific task
features.

A major challenge for large-scale decoding is the lack of a sufficient database of raw fMRI
data on which to train classifiers across a large number of different tasks and stimuli. The
development of large databases of task-based fMRI data, such as the OpenFMRI project
(http://www.openfmri.org), should help provide the data needed for such large-scale
decoding analyses. In addition to the need for larger databases, there is also an urgent need
for more detailed metadata describing the tasks and processes associated with each dataset.
The Cognitive Atlas project (http://www.cognitiveatlas.org; Poldrack et al., 2011) is
currently developing an ontology that will serve as a framework for detailed annotation of
neuroimaging databases, but this is a major undertaking that will require substantial work by
the community before it is completed. Until these resources are well-developed, the ability
to classify mental states on a larger scale is largely theoretical.

Limits on decoding
Despite the incredible power of these methods to decode mental states from neuroimaging
data, some important limits remain. Foremost, decoding methods cannot overcome the fact
that neuroimaging data are inherently correlational (cf. Poldrack, 2000), and thus that
demonstration of significant decoding does not prove that a region is necessary for the
mental function being decoded. Lesion studies and manipulations of brain function using
methods such as transcranial magnetic stimulation (TMS) will remain essential for
identifying which regions are necessary and which are epiphenomenal. Conversely, a region
could be important for a function even if it is not diagnostic of that function in a decoding
analysis. For example, it is known that the left anterior insula is critical for speech
articulation (Dronkers, 1996). However, given the high base rate of activation in this region
(see Figure 1), it is unlikely that large-scale decoding analyses would find this region to be
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diagnostic of articulation as opposed to the many other mental functions that seem to
activate it.

Another important feature of most decoding methods is that they are highly opportunistic,
i.e., they will take advantage of any information present that is correlated with the processes
of interest. For example, in a recent comparison of univariate and multivariate analysis
methods in a decision-making task (Jimura & Poldrack, 2011), we found that many regions
showed decoding sensitivity using multivariate methods that did not show differences in
activation using univariate methods. This included regions such as the motor cortex, which
presumably carry information about the motor response that the subject made (in this case,
pressing one of four different buttons). If one simply wishes to accurately decode behavior
then this is interesting and useful, but from the standpoint of understanding the neural
architecture of decision making it is likely a red herring. More generally, it is important to
distinguish between predictive power and neurobiological reality. One common strategy is
to enter a large number of voxels into a decoding analysis, and then examine the importance
of each voxel for decoding (e.g., using the weights obtained from a regularized linear model,
as in Cohen et al., 2010). This can provide some useful insight into how the decoding model
obtained its accuracy, but it does not necessarily imply that the pattern of weights is
reflective of the neural coding of information. Rather, it more likely reflects the match
between the coding of information as reflected in fMRI (which includes a contribution from
the specific vascular architecture of the region) and the specific characteristics of the
statistical machine being used. For example, analyses obtained using methods that employ
sparseness penalties (e.g., Carroll et al., 2009) will result in a smaller number of features that
support decoding compared to a method using other forms of penalties, but such differences
would be reflective of the statistical tool rather than the brain.

Finally, the ability to accurately decode mental states or functions is fundamentally limited
by the accuracy of the ontology that describes those mental entities. In many cases of fine-
grained decoding (e.g., “is the subject viewing a cat or a horse?”), the organization of those
mental states is relatively well defined. However, for decoding of higher-level mental
functions (e.g., “is the subject engaging working memory?”), there is often much less
agreement over the nature or even the existence of those functions. We (Lenartowicz et al.,
2010) have proposed that one might actually use classification to test claims about the
underlying mental ontology; that is, if a set of mental concepts cannot be classified from one
another based on neuroimaging data that are meant to manipulate each one separately, then
that suggests that the concepts may not actually be distinct. This might simply reflect
terminological differences (e.g., the interchangeable use of “executive control” and
“cognitive control”), but could also reflect more fundamental problems with theoretical
distinctions that are made in the literature.

Whither reverse inference?
Given the youth of cognitive neuroscience and the enormity of the problem that we aim to
solve, we should use every possible strategy at our disposal, so long as it is valid. Viewed as
a means to generate novel hypotheses, I think that reverse inference can be a very useful
strategy, especially if it is based on real data (such as the meta-analytic maps from Yarkoni
et al., 2011) rather than on an informal reading of the literature. In fact, reverse inference in
this sense is an example of “abductive inference” (Pierce, 1903/1998) or “reasoning to the
best explanation”, which is widely appreciated as a useful means of scientific reasoning. The
problem with this kind of reasoning arises when such hypotheses become reified as facts, as
well stated by the psychologist Daniel Kahneman (2009):

The more difficult test, for a general psychologist, is to remember that the new idea
is still a hypothesis which has passed only a rather low standard of proof. I know
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the test is difficult, because I fail it: I believe the interpretation, and do not label it
with an asterisk when I think about it. (p. 524)

I would argue that this test is often difficult not just for general psychologists, but also for
neuroimaging researchers, who far too often drop the asterisk that should adorn a hypothesis
derived from reverse inference until it has been directly tested in further studies.
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Figure 1.
A rendering of base rates of activation across 3,489 studies in the literature; increasingly
bright yellow/red colors reflect more frequent activation across all studies, with the reddest
regions active in more than 20% of all studies. Regions of most frequent activation included
the anterior cingulate cortex, anterior insula, and dorsolateral prefrontal cortex. Reprinted
with permission from Yarkoni et al., 2011.
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