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Insect metamorphosis is regulated by ecdysteroids, which induce molts, and juvenile hormone (JH), which
inhibits metamorphic changes. The molecular action of ecdysteroids has been thoroughly studied, but that
of JH is poorly understood, with data currently only being available for holometabolous species, like
Drosophila melanogasterand Tribolium castaneum. We studied the function of Kriippel homolog 1 (Kr-h1)
in Blattella germanica, a hemimetabolous model. Kr-h1 is a Zn finger transcription factor whose function as
transductor of the antimetamorphic action of JH has recently been demonstrated in D. melanogasterand T.
castaneum. The RNAi experiments reported herein indicated that Kr-h1 transduces the antimetamorphic
action of JH also in B. germanica, thereby suggesting that this role is an ancestral condition that has been
conserved in insect evolution from hemimetabolous to holometabolous species.

nsect metamorphosis has fascinated mankind since the time of Aristotle, some two thousand years ago. Much

later, Renaissance entomologists established that post-embryonic changes are most spectacular in insects like

beetles, moths and flies, which undergo a dramatic morphological transformation from larva to pupa and
adult, a phenomenon nowadays known as holometaboly, which is typical in endopterygote species. Exopterygote
insects, such as locusts and cockroaches, also transform from last nymphal instar to adult, although the trans-
formation is not as radical as the nymphs are relatively similar to the adult stage. However, they undergo
qualitative metamorphic changes, such as formation of mature wings and external genitalia, amongst others,
in a type of metamorphosis known as hemimetaboly'~. Understanding insect metamorphosis at molecular level
is still a challenging mystery because we still only have a few pieces of the puzzle. From an endocrine point of view,
metamorphosis is regulated by two kinds of hormones, namely molting hormone, which induces molts, and
juvenile hormone (JH), which modulates the quality of the molt: to an immature stage when it is present, and to
the adult when it is absent; JH therefore plays a crucial repressive role in insect metamorphosis"*°.

The effect of the commonest molting hormone, namely 20-hydroxyecdysone, is mediated by a cascade of
transcription factors and starts upon its binding to the heterodimeric receptor composed by the ecdysone receptor
and the ultraspiracle (or RXR), both of which belong to the nuclear receptor superfamily. This activates express-
ion of a hierarchy of transcription factors, such as E75, E78, HR3, HR4 and FTZ-F1, which regulate the genes that
underlie the cellular changes associated with molting and metamorphosis®’. Most of the reported data on this
cascade of transcription factors refer to Drosophila melanogaster, the fruit fly, a holometabolous insect that shows
many highly derived characters, which has been the most thoroughly studied species from the point of view
of molecular endocrinology®’. From this point of view, the most widely studied hemimetabolous model is the
German cockroach Blattella germanica, and results indicate that the transcription factors involved in 20-
hydroxyecdysone signalling are generally conserved, although the functions of some of them and the precise
epistatic relationships between them may differ with respect to D. melanogaster'®™.

Conversely, the molecular mechanisms underlying the action of JH are poorly understood, and our current
understanding relies completely on holometabolous models*. An important player is Methoprene tolerant (Met),
a transcriptional regulator of the basic helix-loop-helix (hHLH) -Per-Arnt-Sim (PAS) domain family that was
discovered in D. melanogaster'> where it binds JH at physiological concentrations. This and other characteris-
tics*'® suggest that Met plays the role of JH receptor, or is a component of a heterodimeric JH receptor. Key
functional evidence that Met is required for the repressor action of JH on metamorphosis was not obtained in
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D. melanogaster but in the beetle Tribolium castaneum, a holome-
tabolous insect that shows fewer highly derived characters than D.
melanogaster, where the RNAi of Met induced larvae to undergo
precocious metamorphosis'”*®.

The transcription factor Kriippel homolog 1 (Kr-h1), whose anti-
metamorphic action has recently been demonstrated in D. melano-
gaster' and T. castaneum®, is another important transducer of the
JH signal. In D. melanogaster, the adult epidermis of head and thorax
derive from imaginal discs*', whereas that of the abdomen derives
from larval histoblasts that start proliferating after puparium forma-
tion and give the pupal epidermal cells*>**. Ectopic application of JH
prior to the prepupal stage prevents the normal differentiation of the
abdominal epidermis, and the bristles that normally occur in the
dorsal midline of the adult fly become shorter or simply do not
form****. Moreover, ectopic expression of Kr-hl in the abdominal
epidermis during metamorphosis causes missing or short dorsal
midline bristles, just as in the experiments with JH treatment, thereby
suggesting that, in D. melanogaster, Kr-h1 mediates the antimeta-
morphic action of JH". In T. castaneum, RNAIi experiments have
shown that Kr-h1 represses metamorphosis and that it works down-
stream of Met in the JH signalling pathway®. Kr-hl therefore
appears to be the more distal transcription factor in the JH signalling
pathway whose role as mediator of the antimetamorphic action of JH
has been conserved from beetles to flies, within the Endopterygota
(=Holometabola) insect subclass.

As all functional data on the signalling pathway of JH have been
obtained in holometabolous models, research in hemimetabolous
species is needed if we aim at elucidating the evolution of insect
metamorphosis. In light of this, we studied the function of Kr-hl
in B. germanica, a polyneopteran exopterigote that shows a gradual
morphological transformation along the life cycle, which is repre-
sentative of hemimetabolous metamorphosis'*. Methodologically,
our strategy was to knockdown Kr-h1l by RNAj, a technique that
has been shown to be highly effective for silencing gene expression
in B. germanica®, and then to examine the phenotype obtained.

Results

The sequence of Kriippel-hl is highly conserved in insects.
Cloning of Kr-h1 ¢DNA in B. germanica was accomplished by a
RT-PCR approach, combining the use of degenerate primers based
on Kr-h1 conserved motifs to obtain a partial sequence, and 5’-RACE
and 3-RACE experiments to complete it. These amplifications
rendered a cDNA of 2269 bp (GenBank accession number
HES575250) where the putative start codon is preceded by in-frame
stop codons, thus suggesting that a full-length open reading frame
had been obtained. Database BLAST searches indicated that it
encoded an ortholog of Kr-hl, which we called BgKr-hl. The
conceptual translation rendered a 658 amino acid protein sequence
containing the eight classical C,H, zinc fingers towards the C-
terminal region, and the “A” (LPLRKR) and “B” (RSRSVIHYA)
motifs towards the 3’end in the N-terminal region, which are
typical of Kr-h1 proteins®.

The alignment of the Kr-hl protein sequences (Supplementary
Fig. 1 online) indicates that the most conserved region is the Zn finger
domain, where the most apparent feature is an insertion-deletion of
25-47 amino acids located between the first and second Zn finger,
which distinguishes the dipterans (that show the insertion) from the
other insect orders. The percentage of identity of the BgKr-hl Zn
finger domain with respect to non-dipteran species is very high,
ranging from 90% (with Apis mellifera), to 82% (with Nasonia
vitripennis), whereas it is lower when compared with dipteran
sequences, ranging from 68% (with Aedes aegypti) to 63% (with D.
melanogaster). The percentage of identity in the Zn finger domain is
also high with the homolog that we found in the crustacean Daphnia
pulex, whose sequence presents only seven Zn fingers but having
between 60 and 70% identity with the equivalent region in insects.

Kriippel-h1 expression decays suddenly in the last instar nymph
and is up-regulated by juvenile hormone. To gain a first insight into
the possible involvement of BgKr-h1 in cockroach metamorphosis,
we studied its expression pattern in the whole body of females during
the three last nymphal instars. The results (Fig. 1a) show that BgKr-
hl mRNA levels generally oscillate between 10 and 20 copies per
1000 copies of BgActin-5¢ but suddenly vanish one day after the molt
to the sixth (last) nymphal instar. This down-regulation of BgKr-h1
expression coincides with decreasing levels of circulating JH (Fig. 1a),
according to analytical data previously obtained in our laboratory**.
Moreover, expression is not confined to a single or few tissue types,
but is ubiquitously distributed amongst practically all tissues,
especially the muscle, epidermis (pronotum, mesonotum and
metanotum samples) and ovaries (Fig. 1b). Pattern coincidence
suggests that BgKr-hl expression is induced by JH, therefore to
test this hypothesis we treated freshly emerged sixth instar female
nymphs with JH III, and measured BgKr-hl transcript levels 6 h,
2 days, 4 days and 6 days later. The results obtained indicate that JH
up-regulates BgKr-h1 expression and that the stimulatory effect lasts
practically the entire sixth instar nymph, although with decreasing
intensity (Fig. 1c). A number of JH-treated specimens were left alive
until the next molt, and they molted into adultoids with nymphal
features (Supplementary Fig. 2 online), as expected.
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Figure 1 | Expression of BgKr-hl mRNA in Blattella germanica
determined by qRT-PCR. (a) Expression in female whole body in the
three last nymphal instars: N4, N5 and N6. Relative titers of juvenile
hormone III (JH) and 20-hydroxyecdysone (20E) in N5 and N6 are
indicated below, according to Treiblmayr et al.*® and Romana et al.”,
respectively. (b) Expression in different tissues of females in day 0 of Né:
muscle (M), pronotum (P), mesonotum (Ms), metanotum (Mt), ovaries
(O), brain (B), fat body (FB), corpora allata (CA), and in testicles (T) from
males of the same age. (c) Effect of the application of 20 pg of JH on freshly
emerged N6 on BgKr-h1 mRNA levels. Data in (a) and (c) represent the
mean *= SEM, and are indicated as copies of BgKr-h1 mRNA per 1000
copies of BgActin-5¢; each point represents 4 biological replicates. Data in
(b) represent a pool of 5 specimens. In (c), differences of JH-treated with
respect to controls were statistically significant in all cases (p < 0.05),
according to the REST software tool*.
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RNAIi of Kriippel-hl in fifth instar female nymphs results in
precocious metamorphosis after the next molt. We approached
the study of BgKr-h1 function in B. germanica by RNAI. In a first
set of experiments, we injected a single 3-pig dose of dsSRNA targeting
BgKr-hl (dsKr-hl) into the abdomen of freshly emerged fifth
(penultimate) instar female nymphs. Controls received the same
dose of unspecific dsRNA (dsMock). Transcript monitoring at
48 h intervals indicated that BgKr-hl levels were significantly
lower (52%) in dsKr-hl-treated specimens than in controls 6 days
after the treatment (Fig. 2a). dsMock-treated (control) specimens
(n = 40) molted to normal sixth instar nymphs ca. 6 days after the
treatment. Females treated with dsKr-hl (n = 41) required, on
average, two or three days more than controls to perform the next
molt (Fig. 2b), and this molt rendered individuals with adult features.
About 71% of the specimens (Fig. 2¢c) had a general morphology and
coloration intermediate between a sixth (last) instar nymph and an
adult; of note, the structure of the latero-basal expansions of the
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mesonotum and metanotum (which correspond to the mesonotal
and metanotal wing pads) was flexible and membranous, as in
mature wings and tegmina (Fig. 2d). Most of these intermediates
(86%) died between 6 and 10 days after the molt. In contrast, some
of them (14%) were able to molt again (around day 9 of this sixth
instar), although they were unable to properly shed the exuvia, and
this resulted in mechanically deformed adults, with the wings well
patterned but not well extended (Supplementary Fig. 3 online). The
remaining 29% of the treated specimens (Fig. 2c) had the typical
morphology and coloration of an adult, although they were smaller
(having the size of a normal sixth instar female nymph) and their
wings were membranous and well patterned, although not well
extended (Fig. 2d). These precocious adults lived much longer than
the nymph-adult intermediates (between 2 and 3 months, as average)
and did not molt again.

In a second set of experiments we injected two doses of 3 g each of
dsKr-h, one into freshly emerged fifth instar female nymphs, and the
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Figure 2 | Effects of BgKr-h1 depletion in fifth nymphal instar (N5) of Blattella germanica females. Females received 1 injection (3 pg-dose, on day 0 of
N5), or 2 injections (3 pg each, on day 0 and day 3 of N5, respectively) of dsMock (control) or dsKr-h1 (treated). (a) Effects on BgKr-h1 mRNA levels
measured by qRT-PCR on days 2, 4 and 6 of N5 in single-injection experiments, or on day 6 of N5 in two-injection experiments. (b) Length (days) of N5 in
control and treated female specimens. (c) Percentage of specimens showing the intermediate nymph-adult phenotype or the precocious adult phenotype
in the 1- or 2-injection experiments. (d) Dorsal and ventral view of phenotypes resulting from 1- or 2-injection experiments, compared with control
females in last nymphal instar and with the adult stage. (e) Dorsal part of the thorax in the intermediate nymph-adult phenotype, showing the
membranous structure of the wing pads. Data in (a) represent 4 biological replicates (mean = SEM) and are normalized against the dsMock females
(reference value = 1); the asterisk indicates statistically significant differences with respect to controls (p < 0.05), according to the REST software tool*.
Replicates in (b) are indicated at the top of each bar; the asterisk indicates that differences with the respective controls are statistically significant (student’s

t-test, P<<0.001).
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other one three days later. Controls were equivalently treated with
dsMock. Six days after the treatment, BgKr-h1 mRNA levels were
significantly lower (72%) in dsKr-h1-treated specimens than in con-
trols (Fig. 2a). Females treated with dsKr-h1 (n = 21) took between
three and four days more than controls (n = 36) to complete the fifth
instar (Fig. 2b). In contrast with controls, which molted normally to
the sixth nymphal instar, all dsKr-hl-treated specimens molted to
precocious adults with imperfectly extended wings, in a similar man-
ner to the 29% fraction of the single-injection experiments reported
above (Fig. 2d). None of these precocious adults molted again.

RNAIi in fourth instar female nymphs results in precocious
metamorphosis after two molts. In order to test whether
precocious metamorphosis could also be provoked in younger
instars, we carried out experiments equivalent to those just
described but using fourth instar female nymphs. Single-injection
treatments were carried out on freshly emerged fourth
(antepenultimate) instar female nymphs, and four days after the
injection BgKr-hl mRNA levels were already significantly lower
(72%) in dsKr-h1-treated specimens than in controls (Fig. 3a). The
length of the fourth instar was the same (ca. 5 days) in dsKr-h1-
treated (n = 25) and in controls (n = 15), and all specimens
molted normally to fifth instar. However, the length of the fifth
instar in the dsKr-hl-treated specimens was almost twice that for
the controls (Fig. 3b). After the next molt, control specimens became
normal sixth instar nymphs, whereas six out of 25 specimens
(24%) of the ds-Kr-hl-treated group (Fig. 3c) gave a phenotype
intermediate between a sixth instar nymph and an adult, showing
the typical membranous structure of the wing pads (Fig. 3d). These

six intermediates died between 8 and 10 days after the molt. The
remaining 19 dsKr-h1-treated specimens (76%) (Fig. 3c) molted into
precocious adults with imperfectly extended wings (Fig. 3d), which
did not molt again.

Two-injection experiments also induced a significant decrease
(82%) of BgKr-hl mRNA levels four days after the first injection
(Fig. 3a), and the timing of the fourth and fifth nymphal instars
was similar to that found in the single-injection experiments: no
differences in the length of the fourth instar between dsKr-h1-treated
(n = 20) and controls (n = 12), and a significant increase in the
length of the fifth instar in the dsKr-h1-treated specimens (Fig. 3b).
After the next molt, all dsKr-hl-treated specimens became pre-
cocious adults with imperfectly extended wings (Fig. 3d), which
did not molt again. Controls molted to normal sixth instar nymphs.

Males are more sensitive to the silencing effects of Kriippel-hl
RNAI. A few male nymphs, all of which yielded precocious adults
after two molts, were inadvertently included in the experiments
involving injecting a single dose of dsKr-hl into fourth instar
female nymphs. This prompted us to test whether males could be
more sensitive than females to the silencing effects of RNAi on BgKr-
hl. First, we obtained data regarding BgKr-hl mRNA levels on
selected days of the penultimate and last nymphal instars in males.
Our determinations indicated that the expression pattern (Fig. 4a) is
similar to that of females (Fig. 1a), with a sudden decrease after the
first day of the last nymphal instar.

We then used the design of single-injection RNAi experiments by
administering a 3-pg dose of dsKr-h1 into freshly emerged fourth
instar male nymphs (controls received the same dose of dsMock).
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Figure 3 | Effects of BgKr-h1 depletion in fourth nymphal instar (N4) of Blattella germanica females. Females received 1 injection (3 pg-dose, on day 0
of N4), or 2 injections (3 pg each, on day 0 and day 3 of N4, respectively) of dsMock (control) or dsKr-h1 (treated). (a) Effects on BgKr-h1 mRNA levels
measured by qRT-PCR on day 4 of N4 in 1- or 2-injection experiments. (b) Length (days) of N5 in control and treated specimens. (c) Percentage of
specimens showing the intermediate nymph-adult phenotype or the precocious adult phenotype in the 1- or 2-injection experiments. (d) Dorsal view of
phenotypes resulting from 1- or 2-injection experiments, compared with control females in last nymphal instar and with the adult stage Data in (a)
represent 4 biological replicates (mean *+ SEM) and are normalized against the dsMock females (reference value = 1); the asterisk indicates statistically

significant differences with respect to controls (p < 0.05), according to the REST software too
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asterisk indicates that differences with the respective controls are statistically significant (student’s t-test, P<<0.001).
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Figure 4 | Expression of BgKr-h1 and effects of its depletion in Blattella germanica males. Males received a single dose of 3 j1g on day 0 of fourth (N4) or
fifth (N5) nymphal instar of dsMock (control) or dsKr-h1 (treated). (a) Expression of BgKr-h1 in male whole body in selected days of N5 and N6.
(b) Effects of dsKr-h1 on BgKr-h1 mRNA levels measured by qRT-PCR in specimens treated on N4 (transcript measured on day 4) or on N5 (transcript
measured on day 6). (c) Length (days) of N5 in male specimens treated in N4 or N5. (d) Phenotype (dorsal and ventral view) resulting from the
experiments carried out on N4 after two molts or in N5 after one molt. (e) Tip of the abdomen showing the area occupied by the tergal glands (TG) in the
seventh and eighth tergites. Data in (a) represent the mean * SEM, and are indicated as copies of BgKr-h1 mRNA per 1000 copies of BgActin-5¢; each
point represents 4 biological replicates. Data in (b) represent 4 biological replicates (mean = SEM) and are normalized against the dsMock females
(reference value = 1); the asterisk indicates statistically significant differences with respect to controls (p < 0.05), according to the REST software tool*’.
Replicates in (c) are indicated at the top of each bar; the asterisk indicates that differences with the respective controls are statistically significant (student’s

t-test, P<<0.001).

This treatment induced a significant decrease (75%) of BgKr-hl
mRNA levels four days after the injection (Fig. 4b). Moreover, the
fourth instar had the same length in dsKr-h1-treated and in control
males, and all specimens molted normally to the fifth instar, whereas
the length of the latter in dsKr-h1-treated males was practically twice
that of the controls (Fig. 4c). All dsKr-h1-treated specimens (n = 20)
then molted into precocious adults, with the same shape and colora-
tion as a normal adult male, but with the size of a sixth nymphal
instar, the membranous wings present but not well extended, and the
tergal glands (which are absent in nymphs but present in adult males
as paired pouches on the tergites 7 and 8) readily apparent (Fig. 4d).
Of note, the posterior margin of tergite 7 was somewhat shorter and
notched in these precocious adults, which allowed seeing directly the
paired glands of the tergite 8, whereas they are partially hidden by the
well developed tergite 7 in normal adults (Fig. 4e). Male precocious
adults resulting from dsKr-h1 treatments did not molt again. Control
specimens (n = 12) became normal sixth instar nymphs after the
fifth molt.

Finally, we carried the same experiments but treating freshly
emerged fifth instar male nymphs. In this case, the treatment induced
a remarkable decrease (93%) of target transcript levels (Fig. 4b),
much higher than that observed in females in equivalent experi-
ments, and the length of the fifth instar was higher in treated than
in controls (Fig. 4c), as in the former experiments. All dsKr-hl-
treated specimens (n = 23) molted into precocious adults at the next

molt, showing the same features as those described in the experi-
ments carried out on males in the fourth nymphal instar (see Fig. 4d).
Controls (n = 10) molted to normal sixth instar nymphs.

Discussion

The amino acid sequence of BgKr-h1, the Kriippel homolog 1 of the
cockroach B. germanica (which undergoes a nymphal-adult trans-
formation that is representative of hemimetabolous metamorphosis)
is similar to those of ortholog sequences of other insects from holo-
metabolous orders (i.e. those that undergo a full metamorphosis).
Considering all sequences included in the alignment (Supplementary
Fig. 1 online), the degree of conservation is high, even when com-
paring the sequence of B. germanica with that of the holometabolous
insect D. melanogaster, which shows many highly derived characters.
The similarity is particularly high in the Zn finger domain, where the
most complex binding capacity of the molecule resides. Indeed,
multiple-adjacent C,H, zinc finger proteins bind 25-75% of the
Zn fingers to DNA, whereas the remainder may bind to proteins
and RNA, including dsRNA and DNA-RNA heterocomplexes®.
The high degree of conservation found in the C,H, zinc finger
domain in all studied species suggests that the Kr-h1 function might
have been generally conserved across the insect class. The discovery
of a Kr-h1 homolog in the crustacean D. pulex opens the question of
its function, which remains to be investigated.

| 1:163 | DOI: 10.1038/5rep00163



Our mRNA determinations showed that BgKr-h1 is ubiquitously
expressed in different tissues, whereas time-course studies indicated
that expression vanishes after the first day of the last instar nymph.
Similar decreases in Kr-hl expression have been observed in the
transition from the “propupa” to the “pupa” of thrips species
(Frankliniella occidentalis and Haplothrips brevitubus)*, which show
a variant of hemimetaboly called neometaboly"*'. Similar decreases
of Kr-h1 expression occur between the prepupal and pupal stages in
holometabolous models, such as the fly D. melanogaster' and the
beetle T. castaneum®. The coincidence of the patterns of BgKr-hl
and that of circulating JH (which decreases during the first days of
the last nymphal instar®®) in the cockroach B. germanica (Fig. 1a),
suggested that BgKr-h1 expression is induced by JH. This hypothesis
was assessed in experiments that showed that treatment of last instar
nymphs with JH readily induced the re-expression of BgKr-h1. Early
works on D. melanogaster reported that Kr-h1 is partially regulated
by 20-hydroxyecdysone and, in turn, modulates ecdysteroid-
dependent metamorphic processes®**. However, more recent work
revealed that Kr-h1 expression is induced by JH in the fly D. mela-
nogaster'®, the beetle T. castaneum?, and the thrips F. occidentalis
and H. brevitubus®, as is also the case in B. germanica (present work).

The results of RNAi experiments indicate that knockdown of
BgKr-hl in B. germanica in juvenile stages induces a precocious
metamorphosis after the penultimate (fifth) nymphal instar. Of note,
when the RNAi was carried out in the fourth nymphal instar, two
molts were needed before the occurrence of precocious metamorph-
osis. Pioneering experiments have shown that metamorphosis can be
precociously induced by dissecting out the corpora allata, i.e., the JH-
producing glands. However, when such allatectomy is performed in
very young larvae, one or two additional molts are currently needed
before precocious adult features appear*. More recent studies have
shown that depletion of JH through overexpression of JH esterase
fails to cause premature pupation in larvae of the lepidopteran
Bombyx mori if they are younger than third instar”. Similarly, meta-
morphic changes after RN Ai treatment targeting Met in young larvae
of T. castaneum typically require two or three molts before giving
precocious adult features'”. These observations, and those described
herein in B. germanica, suggest that the immature insect must
achieve a critical weight (thus a minimum time of postembryonic
growth) in order to be able to metamorphose when JH vanishes,
either in hemimetabolous as well as in holometabolous species.
Connected with this issue is the observation showing that the stage
previous to precocious metamorphosis in dsKr-hl-treated speci-
mens, i.e., the fifth (normally the penultimate) nymphal instar is
prolonged by 40-100% before molting, compared with the same
instar in controls. Again, this delay could be necessary to reach a
minimal critical weight or (perhaps more plausibly, given that there
are no delays in the fourth nymphal instar) to unfold the devel-
opmental transition between the nymph and the adult.

RNAi was found to be more efficient in males than in females of B.
germanica. Thus, the penetrance of the precocious adult phenotype
in males using a single injection was 100%, irrespective of the stage of
treatment, whereas in females it was between 29%, when females
were treated in the fifth nymphal instar, and 76% when treated in
the fourth nymphal instar (Supplementary Table 1 online). The
experiments with males made clearer that there is a rough correlation
between the percentage of transcript decrease after dsKr-hl treat-
ment and that of precocious adults obtained in the experiment.
Moreover, the fact that target transcript decrease was higher in males
than in females, especially in fifth nymphal instar (compare
figures 2a and 4b), suggests that RNAi machinery®® was more effi-
ciently induced in males than in females after dsKr-h1 treatment, an
aspect that may deserve further research.

According to the functional studies performed on D. melanoga-
ster'’ and T. castaneum?®’, Kr-h1l was considered the more distal
transductor of the JH hierarchy whose antimetamorphic action

had been conserved from beetles to flies, within the endopterygote
suborder, whose species show holometabolous metamorphosis.
Now, the results of the RNAi experiments reported herein indicate
that BgKr-h1 plays the equivalent role in B. germanica, an exopter-
ygote polyneopteran species showing an hemimetabolous mode of
metamorphosis'. This suggests that the repressor role of Kr-hl on
metamorphosis is an ancestral condition that has been conserved
from hemimetabolous to holometabolous species. Thus, the ances-
tral role of Kr-h1 can be a useful starting point to study the mecha-
nisms underlying the evolutionary transition from hemimetaboly to
holometaboly, which still remain a challenging enigma.

Methods

Insects. The specimens of B. germanica used in the experiments were obtained from a
colony reared in the dark at 30 +1°C and 60-70% RH. They were anaesthetized with
carbon dioxide prior to injection treatments, dissections and tissue sampling.

Cloning of Kr-h1 cDNA. The B. germanica Kr-h1 homolog was obtained following a
RT-PCR strategy using degenerate primers designed on the basis of conserved
motifs from insect Kr-h1 sequences, and cDNA from one- to six-day-old fifth
instar female nymphs of B. germanica as a template. The primers were:

forward, 5- GVCAYTACCGNACNCAYACBGGBGA -3’; reverse,

5’- TTBAGCACRTGRTTGTAGCCRAAG -3’. The sequence of the amplified
fragment (419 bp) was highly similar to the equivalent region in known insect Kr-h1
sequences. Then, the sequence was completed by 5’ and 3> RACE (5’- and 3’-RACE
System Version 2.0; Invitrogen) using the same template. For 5-RACE, reverse
primer was 5’- CCTTGCCACAAATGACACAA -3’ and the nested primer was
5-AATGATTTGCTGCAATACTCGC -3. For 3’-RACE, forward primer was
5-CTTGTCATACACATGCGCACTCATACAG-3’ and the nested primer was
5-GGAGAAACCCTATTCTTGTG -3’. All PCR products were subcloned into the
pSTBlue-1 vector (Novagen) and sequenced.

RNA Extraction and retrotranscription to cDNA. All RNA extractions were
performed using the miRNeasy Mini Kit (Qiagen). A 500-ng sample from each RNA
extraction was treated with DN Ase (Promega) and reverse transcribed with
Superscript II reverse transcriptase (Invitrogen) and random hexamers (Promega).
RNA quantity and quality was estimated by spectrophotometric absorption at

260 nm using a Nanodrop Spectrophotometer ND-1000® (NanoDrop
Technologies).

Determination of mRNA levels by quantitative real-time PCR. Quantitative real
time PCR (qRT-PCR) reactions were carried out in triplicate in an iQ5 Real-Time
PCR Detection System (Bio-Rad Laboratories), using SYBR®Green (Power SYBR®
Green PCR Master Mix; Applied Biosystems). A template-free control was included
in all batches. The primers used to detect Kr-h1 mRNA were as follows:

forward, 5’- GCGAGTATTGCAGCAAATCA -3’ and reverse,

5’- GGGACGTTCTTTCGTATGGA -3’. The efficiency of this primer set was first
validated by constructing a standard curve through four serial dilutions. mRNA levels
were calculated relative to BgActin-5c (Accession number AJ862721) expression,
using the Bio-Rad iQ5 Standard Edition Optical System Software (version 2.0).
Results are given as copies of mRNA per 1000 copies of BgActin-5¢ mRNA.

Treatments with juvenile hormone III in vivo. To study the effect of juvenile

JH upon Kr-h1 expression, JH III (Sigma-Aldrich), which is the native JH of B.
germanica®, was applied topically to freshly emerged last instar nymphs at a dose of
20 pg per specimen in 1 uL of acetone. The commercial JH IIT is a mixture of isomers
containing ca. 50% of the biologically active (10R)-JH III, thus the active dose applied
was around 10 pg per specimen. Controls received 1 pL of acetone.

RNA interference. The detailed procedures for RNAi experiments were as described
previously”’. A dsRNA encompassing a 320-bp fragment located between
nucleotides 611 and 930 (dsKr-h1), in the Zn finger domain, was designed.

The primers used to generate the templates to prepare the dsKr-h1 were

as follows: forward, 5- GAATCTCAGTGTGCATAGGCG -3’ and reverse,

5’- CCTTGCCACAAATGACACAA -3’. The fragments were amplified by PCR
and cloned into the pSTBlueTM-1 vector. A 307-bp sequence from Autographa
californica nucleopoyhedrovirus (Accession number K01149, from nucleotide 370 to
676) was used as control dsRNA (dsMock). The dsRNAs were prepared as reported
previously”. A volume of 1 pL of dsRNA solution (3 pg/pL) was injected into the
abdomen of specimens at chosen ages and stages. Control specimens were treated
with the same dose and volume of dsMock.

Sequence comparisons. Insect sequences labelled as Kriippel homolog 1 were
obtained from GenBank, and the list was enlarged by BLAST search using the B.
germanica BgKr-h1 sequence as query. Finally, the protein sequences included in the
analysis were the following (GenBank accession number and annotation details, if
needed, in parenthesis). Acromyrmex echinatior (EG166600.1), Acyrtosiphon pisum
(XP_001946194, annotated as hypothetical protein), Aedes aegypti (EAT46451,
annotated as Zinc finger protein), Anopheles gambiae (EAA13888.4, annotated as
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Zinc finger protein, incomplete at the 3” end of the ORF), Apis mellifera
(NP_001011566.1), Blattella germanica (HE575250), Bombyx mori
(NP_001171332.1), Bombus terrestris (ACX50259.1), Camponotus floridanus
(EFN62423.1), Culex quinquefasciatus (XP_001863529.1, annotated as Zinc finger
protein), Drosophila melanogaster (CAA06543, Kr-h1 isoform B), Frankliniella
occidentalis (BAJ41258.1, Kr-h1 isoform B), Nasonia vitripennis (XP_003425921.1),
Solenopsis invicta (EFZ20948.1, annotated as Zn finger protein), Spodoptera littoralis
(EZ981183.1, nucleotide sequence from transcriptome shotgun assembly), Striacosta
albicosta (EZ585624.1, nucleotide sequence from transcriptome shotgun assembly),
Tribolium castanenum (NP_001129235.1), Pediculus humanus (XP_002428656.1,
annotated as Kr-18). In addition, we found a Kr-h1 orthologue of the Crustacean
Daphnia pulex (EFX82007.1, annotated as Zn finger protein), which served as a
reference for the sequences comparison. The sequences were aligned using the
MAFFT program®, with default parameters, and visualized using Geneious Software.
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