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Here we report the generation and characterization of 84 mouse ES cell lines with doxycycline-controllable
transcription factors (TFs) which, together with the previous 53 lines, cover 7-10% of all TFs encoded in the
mouse genome. Global gene expression profiles of all 137 lines after the induction of TFs for 48 hrs can
associate each TF with the direction of ES cell differentiation, regulatory pathways, and mouse phenotypes.
These cell lines and microarray data provide building blocks for a variety of future biomedical research
applications as a community resource.

ammalian genomes encode 1,500-2,000 transcription factors (TFs)', which cross-regulate one another

to form the network of TFs. The network controls the transcriptome of cells, thereby defining the

identity of cells. A powerful approach to deciphering such a complex network is the systematic per-
turbation of individual TFs followed by global gene expression profiling’.

Results

Here we report the generation of mouse embryonic stem (ES) lines, each of which has been engineered by
integrating an expression cassette of a specific transcription factor (TF) into the ubiquitously expressing
Rosa26 locus (Fig. 1a)*. The Rosa26 locus’ drives relatively uniform expression of the exogenous copy (transgene)
of a TF, which is repressed by doxycycline (Dox) and can be induced in Dox- cell culture conditions (Fig. 1b)*.
Combined with the 53 ES lines reported previously®, we present a total 137 ES cell lines. The majority of the
manipulated genes were TFs, which were selected from a set of high-priority genes involved in critical functions in
mouse ES cells and their differentiation®. To ensure the quality of these ES cell lines, we implemented vigorous QC
steps that have been described previously in detail>. As a part of the characterization of these ES cell lines, we
carried out global gene expression profiling by DNA microarrays 48 hours after TF induction (Fig. 1¢; GEO
accession number, GSE31381). The induction of a TF was confirmed by qRT-PCR (Fig. 1d, Supplementary Table
1 for primer pairs). The effect of TF induction on the transcriptome of mouse ES cells was highly variable (Fig. 1e;
Supplementary Table 2). On a scale of the number of genes significantly changed in expression (FDR = 0.05, fold
change =1.5), the top 10% of studied TFs changed 4676 genes on average (e.g., Dmrtl), whereas the bottom 50%
of TFs caused significant changes in expression in only 54.5 genes on average (e.g., Mbd3) (Fig. 1c, d).

To further characterize the transcriptome alterations caused by each TF, we compared our microarray data
with 3 public databases: the gene expression profiles of many mouse organs/tissues at The Genomics Institute of
the Novartis Research Foundation (GNF) (ver. 2 & 3)%7, the Genetic Association Database (GAD) on gene sets
associated with mouse phenotypes®, and the MSigDB database (ver. 3) of gene sets associated with signaling
pathways and cellular functions’. Because the GNF database is quantitative and the two other databases are
qualitative, we used different methods to quantify association: correlation of median-subtracted log-transformed
gene expression values for the GNF database, and Parametric Analysis of Gene Expression (PAGE)' for the GAD
and msigdb databases (see Supplementary Methods).

A comparison of our microarray data with the GNF database showed that the induction of a TF in ES cells often
initiates the differentiation of ES cells into specific cell types as soon as 48 hr later, when cells do not yet exhibit
any overt phenotypes (Fig. 2 for GNF ver. 3; Supplementary Fig. 1 for GNF ver. 2). For example, the transcriptome

| 1:167 | DOI: 10.1038/srep00167 1



Fold induction
3 19 30 190 ‘1000

d

ROSA26 Locus Datis Lo
on mouse Chromosome 6 Otx1
. Foxp3
Lhx2 [
Tox5 |3
Hoxa2
loxP loxPV Ankrd22
Hoxa9
SALTA |-D-| Puro L] ORF A Hniaa
* Gata2 |y
hCMV*-1 7 Nkx2-5 [
His6-FLAG NS
:
Telt L
Foxc1 L
Foxg1 1
. Zic1 L
s EScells TF-manipulable Mbd3 Amt2 [
L Dox- Smadé |1
é = EScells Trov2 [0
he) e AY f—\ Meis2 L
2 o 25 Foxl2 [ 1
St Zmat4
B 2 < Transgene 12
=" sirt3
o % 17 SS|><17 1
0X'
e Endogenous Foel2 i
o gene Dox+ Dppa3 ]
Prickle1
Bcl6
Dox+ Dox- Metti5 [T
Jun L
Dmrtt [V
1ds [T
Ets1 [
e Tox3 |t
Fhi2 [
Foxat :
TFname| Up |Down| |TFname| Up [Down| |TFname| Up [Down| |TFname| Up [Down| |TFname| Up |Down SAo!::nS T
Aes 29] 18| [Esx1 2941[ 2445| [1d1 124] 224 [Nr5a2 795 _816| [stat3 7 0| Tgm2 [
Aff1 27| 22| [Ets1 408 450| [1d3 14| 38| [Nrip1 | 1685| 1163| [stra13 20 9 ggy’jg T
Ankrd22 4 5| [Etvl 34 15| |Inppll 15 2| |Nsbpl 10| 8| [Subl 0| 0| Strat3 [
Amt2 25 11| [Etv3 245 93| [irf2 677| 407| [Nupr1 18 0| [suz12 1] 24 ﬁ%f;’g]
Ascl1 [ 1401] o51] [Etvs 38] 44| [Jarid1a 11] 0| [ostf1 1 8| [T 639 710 Hmga2 [
Ascl2__ | 1483] 1009| [Fbxo15 of g [sarid2 2| o [owa 355] 110| [Tbx3 2] 19 TC*gggg +
Ash2l 42| 61| [Femib 65 17| [Jmjd2c 10 o| [otx2 850 407| [Tbxs 614] 731 Cdyl [
Atf3 351] 175| [Fgfbpl 2 1| Pun 1826 1477| [Pdlim1 13 6| [Tcea3 28] 20 Peddz |
Atxnl 21 2| [rhi2 0| o| [if3 676] 702| [Pousfi | 818] 587| [Tcf3 3101] 2644 Nsbp1 [—
Batf3 15| 15| [Fosi2 | 470 387| [«ifa__ | 2478] 2320| [Prickier| o] 0| [Tct4 333 19 Totrs [
Bcl6 677] 961| [Foxa1 | 1379] 1274 [kifo 455]  591| |Rest 0| 3| [Tcfap2c | s816] 682 Foxn3 [0
Cbx8 43| 188| [Foxcl | 1440] 889| |Lass2 4 3| [Rhox6 | 203] 69| [Tcfep2l1 | 315] 312 daridta 1
cdx2 | 3219] 2938| [Foxgl | 1783 1637| [Lhx2 548| 456| [Rxra 557] 337| [Tl 33] 201 Kif9 |t
Cdyl 9 4| [Foxj2 2 0| [Mbd3 25] 17| [sall4 299 420] [Tgif1 484] 598 Jm'i;‘él ;
Cdyl2 33]  451] [Foxl2 2120] 1624 [Mef2c | 752[ 350| [sap30 11 7| [Tem2 0 5 Hisf2op (L
Ctbp2 192 31| [Foxn3 13| 65| [Meis2 53| 59| [sfpin [ 1303] 1372 [Trpv2 1 2 S":;;g 1
Ctnnb1 2 1| [Foxp3 773 686| [Mettl5 1 0| |Sfrs6 126 49| |Tubala 11] 4 Fbxo15 :
Dedd2 1 0| |Gadd45a | 488] 293 [Mkrn1 5 2| [sirt3 3| 16| [TxIng 1 4 G,Eh':g i
DIx3 1763| 1379| |Gataz | 2756 2684| |Msc 765|667 [Six1 63| 81| [ugp2 39 50 Soxtt (4
Dmrt1 | 3476] 2983| |Gata3 [ 2205| 2075| [mybl2 | 205] 209| [smad1 2 6] |Whsc2 0 2 A
Dnmit3b | 12 0| [Gbx2 1411] 1282| [Myc 443|  944| |smad4 2 0| [zfand3 4 1 Etvs [
Dppa3 24 1| |Grhi2 313|211 [Myen 195| 101| [Smad6 27| 11 [zfps7 31 26 Jﬁlﬂ?
Dppa5a 7| 10| |[Hesx1 493| 661] |[Myod1 | 1319 991 [smad7 | 362[ 293| [zic1 704| 528 Subt
Eed [ of [Amga2 | 57| 27| [Nanog | 241 165| [soxi1 | 1329| 1403| [zmata 4 s Zins7
EIf1 1145]  946| [Hnfda 868 696 [Nkx2-5 | 2603] 2042 [Sox15 122| 161 [zscanac | 993] 977, Ctbp2
EIf5 398| 781| [Hoxa2 168| 138| [Nrobl 150] 195 [Sox2 1635| 1663 ,Igh‘g
Ell2 18] 13| [Hoxa9 402 367| [Nr2f1 535] 387| [Sox7 530[ 557 Sirsé
Eomes | 1453| 1823| [Hsf2bp 38| 43| [Nr2f2 961 874] [sox9 3001] 2509 J;%SZ‘

Figure 1 | Induction of transcription factors (TFs) in ES cells: (a) plasmid structure that includes loxP recombination sites, puromycin resistance gene,
open reading frame (ORF) of a TF with hCMV promoter followed by His6-FLAG tag; (b) schematic diagram showing the expression of transgenic TF
induced in Dox- conditions; (c) examples of scatterplots of gene expression in Dox- versus Dox+ condition. Green and red dots indicate genes that are
differentially expressed with statistical significance (FDR<C0.05, change >1.5 fold); (d) Increase of transcription factor expression after the induction of a
transgene, as measured by gPCR (Dox- vs. Dox+); results from two biological replicates (3 technical replicates each); error bars (S.E.M.; ANOVA); and
dashed line = 2 fold change; (e) a list of TFs and the number of genes up- or down-regulated by the induction of the TF (FDR<0.05, change >1.5 fold)

(Supplementary Table S2).

of ES cells shifted toward a neural profile after the induction of Sox9,
Foxgl, KIf3, or Pou5fl; toward endoderm after the induction of
Hnf4a, Gata2, Gata3, or Esx1; and toward skeletal muscle and heart
after the induction of Myod1 or Mef2c. Similarly, the transcriptome
of ES cells shifted toward hematopoietic cell lineages after the induc-
tion of Sfpil, Elfl, or Irf2; and toward T-cells and thymocytes after
the induction of EIf5 or Tgifl. Interestingly, TFs associated positively
with transcriptome changes toward specific lineages showed a nega-
tive association with those toward different cell lineages (Fig. 2). For
example, TFs associated with transcriptome changes toward neural
tissues were negatively associated with those toward hematopoietic
lineages (e.g., Sox9 and Foxg1 in Fig. 2), and vice versa (e.g., Irf2, Elf1,

Sfpil in Fig. 2). These data suggest that TF networks are organized to
cross-regulate as if different tissue lineages are mutually exclusive.

A comparison of our microarray data with the GAD database
identified associations of TF’s with mouse phenotypes (Fig. 3).
Many newly identified associations are consistent with published
data. For example, Hoxa2 was associated with the pancreatic alpha
and beta cells''; Foxcl, with hair follicle/shaft'>"*; and Sox11 with
skeletal defects'. A comparison of our microarray data with the
msigdb database identified the association of each TF with specific
cells and pathways (Fig. 4). For example, Smadé6 was associated with
keratinocytes'’; Myodl, with alveolar rhabdomyosarcoma's; and
Hnf4a, with lipoproteins'’.
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Figure 2 | Correlation of gene expression response to the induction of TFs with tissue-specific gene expression from the GNF ver. 3 database’.

Discussion

The collection of mouse ES cell lines reported here are freely available
to the research community (http://esbank.nia.nih.gov/index.html).
The analysis presented here can help researchers select ES cell lines
suitable for their own research programs. For example, these TF-
manipulable ES cell lines can be used to study the complex mechan-
isms of ES cell differentiation toward specific lineages. These ES cell
lines are also adaptable to a variety of experiments and analyses, as
shown in our previous report®. For example, each TF is C-terminally
tagged with His6-FLAG, which simplifies studies of TF localization,
protein-protein interactions, and protein-DNA interactions®. Further

mining of the microarray results reported here as well as additional
experiments with provided ES cell lines and their derivatives will
yield more insight into gene regulatory networks. Carrying out sim-
ilar experiments for more regulatory proteins (ideally for all TFs and
additional signaling proteins) should give increasingly complete
information to comprehend gene regulation in mammalian cells
and organs.

Methods

Derivation of transgenic ES cell lines. ES cell lines with inducible TF transgenes were
derived from MC1 mouse ES cells (129S6/SvEvTac), passage 17. Cells were cultured
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Figure 3 | Enrichment of gene sets associated with mouse phenotypes from GAD database® among genes that were upregulated (positive) or

downregulated (negative) after the induction of various TFs.

in DMEM with 15% FBS and LIF on feeder cells. Cells were electroporated with a Venus expression, hygromycin B susceptibility, transgene RNA expression,
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linearized pMWROSATcH vector and selected by hygromycin B. Knock-in for genotyping for Cre mediated integration, and mycoplasma contamination.
ROSA-TET locus was confirmed by southern blotting. For exchange vectors, PCR

amplified ORFs were subcloned into pZhcSfi that was modified to express a His6- Gene expression analysis of cells with induced TFs. ES cells (passage 25) were
FLAG tagged protein and puromycin resistance gene. ES cells were co-transfected cultured in the standard LIF+ medium with Dox+ on a gelatin-coated dish

with a sequence verified exchange vector and pCAGGS-Cre and selected by throughout the experiments. Cells from each cell line were split into 6 wells and the
puromycin in the presence of doxycycline (Dox). Isolated clones were tested for media was changed 24 hr after cell plating: 3 wells with Dox+ medium, and 3 wells
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Figure 4 | Enrichment of gene sets associated with various functions and signaling pathways from msigdb ver. 3 database’ among genes that were
upregulated (positive) or downregulated (negative) after the induction of various TFs.
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with Dox- medium to induce transgenic TFs. Dox was removed via washing 3 times
with PBS at 3 hour intervals. Total RNA was isolated by TRIzol (Invitrogen) after
48 hr, and two replications were used for real time qPCR (see primers in
Supplementary Table S1) and for microarray hybridization. RNA samples were
labeled with total RNA by the Low RNA Input Fluorescent Linear Amplification Kit
(Agilent). For most TFs, we hybridized Cy3-CTP labeled sample from Dox- medium
together with a Cy5-CTP labeled sample from Dox+ medium. But for 7 TFs we
labeled samples from Dox- and Dox+ with Cy3, and hybridized them independently
with a Cy5-labeled reference target, which is a mixture of Stratagene Universal Mouse
Reference RNA and MC1 cells RNA (this method requires a double number of
arrays). Analysis showed that both methods produce results of comparable quality.
Targets were hybridized to the NIA Mouse 44K Microarray v3.0 (Agilent, design ID
015087)"¢. Slides were scanned with Agilent DNA Microarray Scanner. All DNA
Microarray data are available in Supplementary Table S2, at GEO/NCBI" (http://
www.ncbi.nlm.nih.gov/geo; accession number GSE31381), and at NIA Array
Analysis software® (http://Igsun.grc.nia.nih.gov/ANOVA).

Normalization of microarray data and detection of outliers. Two methods of array
hybridizations were used in this study: (1) RNA extracted from cells with induced
transcription factors (TFs) (cultured in Dox- conditions) and from controlled cells
(cultured in Dox+ conditions) were Cy3 labeled and all hybridized on separate arrays
together with reference RNA labeled with Cy5; and (2) RNA extracted from cells with
induced TFs (Dox-) were labeled with Cy3 and hybridized together with RNA from
control cells (Dox+) which were labeled with Cy5. The second method does not use
reference RNA. Data processing depended on the method of hybridization. Potential
Cy3/Cy5 bias in microarrays with the hybridization of Dox- vs. Dox+ samples was
removed by normalization to the median logratio of gene expression change in all TF-
manipulation experiments. The details of the method are available in Supplementary
Information.

Statistical analysis of microarray data. For statistical analysis we used NIA Array
Analysis, which estimates the False Discovery Rate (FDR) to account for multiple
hypothesis testing™. Response of genes to the knockdown of TFs was measured as a
logratio (i.e., difference between means of log-transformed intensities) between
manipulated (Dox-) and control (Dox+) cells. We considered gene expression
change as significant if logratio was significantly different from zero (FDR < 0.05)
and the change of expression was >1.5 fold.

Correlation with tissue-specific gene expression. Association of gene expression
changes induced by TF manipulation with tissue-specific gene expression was
evaluated based on the correlation between our microarray results with the GNF
database’. Correlation was estimated between gene expression responses to TF
manipulation (logratio of Dox- vs. Dox+) and median-centered log-transformed
gene expression in various tissues from GNF database (ver. 2 and 3). Because the
importance of genes in ES cells and adult tissues may be different and different
platforms of microarrays used in these studies are not 100% compatible, we applied
correlation analysis to a subset of genes that are highly expressed and dynamic in both
data sets. We selected 10,000 genes in each database with the highest score equal to the
product of average log-expression and standard deviation of expression (after
induction of various TFs or in different tissues), and then took the intersecting
portion of 5,595 genes for GNF ver. 3 (5,295 genes for ver. 2). Then, correlation values
and corresponding z-values were estimated based on this subset of genes. The matrix
was sorted using hierarchical clustering, TMEV, ver 3.1*".

Analysis of gene set enrichment. Enrichment of target genes in subsets of genes that
are upregulated or/and downregulated following the manipulation of the TF is
quantified using a modified Parametric Analysis of Gene Enrichment (PAGE)"™.
PAGE is based on the comparison of the average expression change in a specific
subset of genes, xset, with the average expression change in all genes, xall:

z=(xset—xall) * sqrt(nset)/SDall (1)

where nset is the size of the gene set and SDall is standard deviation of expression
change among all genes. We modified this method by applying equation (1) to the
subset of N top upregulated and another subset of N top downregulated genes rather
than to all genes combined, which allowed us to detect the enrichment of the same
gene set among both upregulated and downregulated genes. The value of N = 5000
was selected experimentally because it appeared that the enrichment of genes with TF
binding sites is always limited to the top 5000 upregulated or downregulated genes.
The probability distribution of expression change within subsets of N upregulated
and downregulated genes is not normal; however, because we compare averages for
large sets of genes (usually, nset is >50), the probability distribution of these averages
is close to normal based on the central limit theorem?®. Thus, it is reasonable to use
equation (1) as an approximation. In the case when both up-regulated and down-
regulated genes were enriched in a specific functional gene set, we subtracted the
smaller z-value from both z-values. The matrix of z-values was first sorted using
hierarchical clustering, TMEV, ver 3.1*', and then manually converted to a semi-
diagonal form.
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