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Abstract

Magnetic elastomers have been widely pursued for sensing and actuation applications. Silicone-

based magnetic elastomers have a number of advantages over other materials such as hydrogels, 

but aggregation of magnetic nanoparticles within silicones is difficult to prevent. Aggregation 

inherently limits the minimum size of fabricated structures and leads to non-uniform response 

from structure to structure. We have developed a novel material which is a complex of a 

silicone polymer (polydimethylsiloxane-co-aminopropylmethylsiloxane) adsorbed onto the surface 

of magnetite (γ-Fe203) nanoparticles 7–10 nm in diameter. The material is homogenous at very 

small length scales (< 100 nm) and can be crosslinked to form a flexible, magnetic material which 

is ideally suited for the fabrication of micro- to nanoscale magnetic actuators. The loading fraction 

of magnetic nanoparticles in the composite can be varied smoothly from 0 – 50% wt. without 

loss of homogeneity, providing a simple mechanism for tuning actuator response. We evaluate 

the material properties of the composite across a range of nanoparticle loading, and demonstrate 

a magnetic-field-induced increase in compressive modulus as high as 300%. Furthermore, we 

implement a strategy for predicting the optimal nanoparticle loading for magnetic actuation 

applications, and show that our predictions correlate well with experimental findings.
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1. Introduction

Stimuli-responsive micro- and nanoscale structures have many potential applications as 

sensors and actuators in the fields of microfluidics and microengineering. Of the various 

strategies for actuating such structures, magnetic actuation has numerous advantages. For 

example, structures may be actuated by large-scale external fields, requiring no wire tethers 

to supply voltage or current, and magnetic fields are unlikely to interfere with sensitive 

chemical reactions. Thus, much recent work has been devoted to the development of 

microscale structures capable of magnetic actuation. Currently, most magnetically actuated 

microstructures consist of thin magnetic components bound to flexible substrates[1; 2; 3; 

4; 5] or paramagnetic chains formed by linking colloidal particles[6; 7]. However, another 

class of magnetic microactuator is emerging in which devices are composed of a monolithic 

material which is both flexible and magnetic[8; 9]. A chief difficulty in engineering a 

monolithic magnetic actuator lies in designing the properties of the material itself to achieve 

an optimal magnetic response. The responsiveness of a structure is a competition between 

flexibility and magnetic permeability, properties which are generally mutually exclusive in 

pure materials. Thus, these properties must be engineered into a composite material, such as 

a composite of highly permeable magnetic nanoparticles in a flexible polymer matrix.

Magnetic nanoparticles generally mix easily into aqueous suspensions, and so the most 

common choices for polymer networks by far are soft hydrogels such as those constructed 

of polyacrylamide[10; 11; 12], N-isopropylacrylamide[13], polyvinyl alcohol[14; 15; 16; 17; 

18], and their derivative copolymers[19; 20]. Also prevalent are gelatin[21] and copolymers 

of polyethylene oxide[22; 23]. Hydrophobic matrices are much less common, but are 

preferable in many instances since they are generally chemically and osmotically inert in 

aqueous environments. However, obtaining a homogenous dispersion of magnetic micro- 

or nanoparticles in a hydrophobic matrix such as silicone is challenging. While numerous 

instances of iron particles dispersed in a silicone elastomer have been reported, very little 

attention has been given to the microscale homogeneity of these materials which is so 

critical to their implementation in microactuator applications. In most cases, the magnetic 

component consists of 2–4 um carbonyl iron particles[24; 25; 26; 27] or commercially-

available iron powders containing particles 200 nm or larger[25; 27], and the iron particles 

are simply mixed into the uncrosslinked silicone, occasionally with the aid of a surfactant. 

The large size of the particles, compounded by the tendency of iron oxide particles to 

aggregate in a silicone matrix, generally renders these materials unsuitable for microactuator 

applications. Large particles and particle aggregation severely limit the size of structures 

which can be fabricated and introduce sources of inhomogeneity in actuator response from 

structure to structure.

We are aware of only two reports of magnetic silicone elastomers containing magnetic 

particles smaller than 100 nm. In one instance, researchers note aggregates in materials with 

particle loadings greater than 0.1% wt.[28]; the second is a prior report from our group[8]. 

In both cases, the nanoparticles are merely entrapped within the polymer network. In the 

ideal material, silicone polymer would be adsorbed directly onto the surface of the magnetic 

nanoparticles. The resulting core-shell nanostructure would itself be useful in a variety of 

applications ranging from biocompatible magnetic hyperthermia agents to environmental 
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toxin absorbents[29]; more notably, such processing would entirely eliminate the potential 

for aggregation or leaching of nanoparticles in the crosslinked bulk.

We note that in recent years researchers have succeeded in producing a just such a material 

by complexing a functionalized polydimethylsiloxane (PDMS) with cobalt and iron oxide 

nanoparticles[30; 31]. However, to our knowledge this material has not been crosslinked to 

form a solid. In this work therefore, we describe the first instance of a magnetic silicone 

elastomer in which a functionalized silicone is absorbed directly onto the surface of iron 

oxide nanoparticles (7–10 nm). The presence of the polymer surrounding each individual 

nanoparticle eliminates the potential for aggregation, resulting in a composite material with 

unprecedented uniformity at the nanoscale. Furthermore, iron nanoparticle content can be 

varied smoothly from 0 – 50% wt. without any loss of homogeneity.

The responsiveness of any magnetic actuator is the result of a competition between magnetic 

and elastic properties: a higher magnetic permeability enables a greater magnetic torque; 

however, the very nanoparticles which contribute toward permeability also increase the 

modulus of the material, rendering it less flexible. Thus, we characterize both the magnetic 

and elastic properties of this material across the full range of nanoparticle loadings. We 

measure elastic modulus both in the presence and absence of a moderate 300 mT magnetic 

field, and find a dramatic field-induced increase in elastic modulus at higher nanoparticle 

loadings. This sharp increase in modulus at higher loadings suggests that there exists an 

optimal magnetite loading at which the material is most responsive to magnetic actuation. 

We demonstrate this optimization by constructing and actuating microstructures of this new 

composite material across a range of nanoparticle loadings and show that our experimental 

data correlates well with predictions based on established models.

2. Experimental

2.1 Materials

Ferric chloride (FeCl3), ferrous chloride tetrahydrate (FeCl2 + 4 H2O), and ammonium 

hydroxide were obtained from Sigma Aldrich. Dicumyl peroxide was obtained from 

Fisher Scientific. (Tridecafluoro-1,1,2,2-tetrahydrooctyl) trichlorosilane (SIT8174.0) and the 

copolymer of aminopropylmethylsiloxane (APMS) with dimethylsiloxane (DMS), with 6–7 

percent APMS mole % (AMS-161) were obtained commercially from Gelest, Inc. All were 

used as received.

2.2 Synthesis

Following the work of Massart[32; 33] and van Ewijk[34], the magnetite nanoparticles used 

in this work are precipitated from ferric chloride (FeCl3) and ferrous chloride (FeCl2) salts 

in a 2:1 molar concentration. Ferric chloride (FeCl3, 1.2 g) and ferrous chloride tetrahydrate 

(FeCl2 + 4 H2O, 0.74 g) are each dissolved in deionized water (20 mL) and then mixed 

together and stirred for several minutes. While stirring vigorously, concentrated ammonium 

hydroxide (20 mL, 29% wt. in water) is added to precipitate the salts and form magnetite 

(Fe2O3) nanoparticles.
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We complex these nanoparticles with a copolymer of aminopropylmethylsiloxane (APMS) 

and dimethylsiloxane (DMS), containing 6–7 mole % APMS. For simplicity, we will refer 

to this polymer as PDMS-NH2. The APMS segment of the PDMS-NH2 contains amine 

groups which adsorb onto the surface of the magnetite nanoparticles under appropriate 

conditions, but the segments are short enough (~0.6 nm) to be unlikely to bind multiple 

particles. By tuning the pH of the aqueous solution containing the magnetite nanoparticles 

to be greater than the isoelectric point of magnetite (pH 6.8)[35] and less than the pKa of 

the secondary amines (pH ~10), conditions can be created in which the amine functionality 

of the siloxane copolymer will bind to the positively-charged magnetite particle, transferring 

the magnetite from the aqueous phase (nanoparticles in water) to the organic phase (PDMS-

NH2) and yielding a siloxane-magnetite complex. We find that this occurs sufficiently well 

at the unadjusted pH of the nanoparticle solution following precipitation. After stirring the 

nanoparticle solution for several minutes, PDMS-NH2 (2 mL) is added, and the mixture 

is stirred vigorously for 24 hours, during which time it will separate into two phases: a 

light-to-clear aqueous phase and a thick, black organic phase.

Since the resulting complex is a ferrofluid (FF), we refer to it as FFPDMS-NH2. A 

diagram detailing the synthesis of FFPDMS-NH2 is shown in Figure 1. Scanning electron 

microscopy clearly shows a uniform distribution of iron oxide nanoparticles embedded in a 

polymer matrix, indicating remarkable homogeneity at the microscale.

The organic phase consists largely of the magnetite-PDMS-NH2 complex, but also contains 

some amount of uncomplexed magnetite, uncomplexed PDMS-NH2, and entrained water 

and ammonia. To separate the complexed material from the byproducts, the aqueous phase 

is decanted and the PDMS phase is rinsed copiously with methanol and mechanical stirring 

to remove excess uncomplexed PDMS-NH2. The resulting suspension is sedimented with a 

permanent magnet, and the methanol is decanted.

The sediment is rinsed five times in methanol, five times in water, and five times again 

in methanol, sedimenting with a magnet and decanting each time. Finally, we add 15 mL 

of chloroform and the mixture is sonicated in a bath ultrasonicator for 30 minutes. At 

this point the complexed material forms a stable suspension in the chloroform, resulting 

in an extremely dark, unclouded solution. The solution is allowed to sediment overnight 

on a permanent magnet to remove any uncomplexed magnetite aggregates. Magnetite 

concentration may be tuned at this point by diluting the suspension with additional PDMS-

NH2 followed by 30 minutes of ultrasonication prior to removing the solvent. In this manner, 

we were able to adjust the magnetic content of the composite smoothly from 0% to 50% 

wt. iron without any particle aggregation. Observation of microstructures made of FFPDMS-

NH2 dilutions by optical microscopy with a 40× objective yield no visible inhomogeneities 

in the material, and TEM imaging indicates that particles are well-dispersed even in 

crosslinked materials (Figure 2).

Crosslinking may be accomplished by adding 10% wt. dicumyl peroxide to the FFPDMS-

NH2. After adding the peroxide, the mixture is stable at room temperature for several 

months and will cure in approximately 2 hours at 180° C. A pre-treatment at 80° C for two 

hours will prevent bubbles from forming during the crosslinking step.
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2.3 Characterization

In this work, we measured the elastic modulus and magnetization of 20% – 90% wt. nominal 

dilutions of FFPDMS-NH2 complex into PDMS-NH2. These dilutions correspond to 9% – 

50% wt. concentrations of magnetite nanoparticles (Table 1). In addition, we constructed 

microactuators of each dilution and quantified the bending of each in a 300 mT magnetic 

field. This field magnitude is typical near the surface of a neodymium iron boride magnet, 

and is thus relevant to many microscale actuation systems.

2.3.1 Young's Modulus—Each material was poured into a cylindrical 

polydimethylsiloxane (PDMS) mold (2.5 mm diam. × 3 mm length) and cured at 180° C for 

2–6 hours. To prevent the mold and material from adhering to one another, the PDMS mold 

was pretreated with a release agent via vapor deposition: the mold was plasma-treated for 20 

seconds and then placed in a vacuum desiccator with (tridecafluoro-1,1,2,2-tetrahydrooctyl) 

trichlorosilane (200 uL) for one hour prior to filling with FFPDMS-NH2.

Young's modulus measurements of the cured samples were taken with an in-house 

modulometer constructed of a piezoelectric force sensor and micrometer. Measurements 

were taken under compression and in the low strain region (< 10% strain) of multiple 

stress-strain curves for each material, since low strain is characteristic of high-aspect-ratio 

actuators. Moduli were measured for each sample first in ambient conditions and then under 

the influence of a uniform 300 mT magnetic field provided by a neodymium iron boride 

magnet and oriented parallel to the direction of compression. The variation in the field 

magnitude over the sample space was less than 10 mT. As shown in Figure 3, we found 

that modulus was linearly dependent on magnetic loading in the absence of a magnetic field, 

but that under the influence of a 300 mT field modulus increased precipitously for higher 

magnetite loadings. Modulus measurements are presented in both Table 1 and Figure 3.

2.3.2 Magnetization—We used SQUID magnetometry (Quantum Design Magnetic 

Property Measurement Systems) to obtain a full magnetization curve for magnetite 

nanoparticles and saturation magnetizations for each of the dilutions. The magnetization 

of magnetite nanoparticles was measured while varying the field between −5 and +5 T at 

room temperature (300 K). Saturation magnetization values for crosslinked FFPDMS-NH2 

samples of varying magnetic concentrations were taken at fields approaching 5 T.

No significant hysteresis is observed, indicating that the material is superparamagnetic as 

expected. This is a desirable feature in a magnetic actuator, since it avoids complications due 

to remanence magnetization. As shown in Figure 4, the saturation magnetization increases 

linearly with the % wt. of FFPDMS-NH2 in PDMS-NH2. The saturation magnetizations fall 

well within the range of previously reported saturation values for magnetite and maghemite 

polymer complexes[31; 36; 37; 38], which range as high as 50 Am2 kg−1.

By extrapolation of the linear fit to the saturation magnetization data in Figure 4, we 

can predict that a 100% FFPDMS-NH2 sample would have a mass magnetization of 

29.1 Am2/kg. We have measured the saturation magnetization of the uncoated magnetite 

nanoparticles used in this work to be 51.5 Am2/kg, and can therefore determine that a 100% 

sample (the complex itself with no excess polymer) would consist of 56.5% wt. (21.1% vol.) 
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magnetite. A similar extrapolation of the density data in Figure 4 yields the same result to 

within a 2% relative difference. Such volume loading corresponds to a complex radius which 

is 1.7 times larger than the radius of the nanoparticle core, or an average polymer thickness 

of approximately 3 nm for our 7–10 nm-diameter magnetite nanoparticles. This number is 

not inconsistent with a polymer monolayer.

2.3.3 Microactuators—In addition to bulk samples, high-aspect-ratio microstructures (75 

μm × 2.5 mm) of each dilution were fabricated and actuated with a spatially-uniform 300 

mT magnetic field. To produce high-aspect-ratio FFPDMS-NH2 microstructures (75 μm 

× 2.5 mm), 33 G needles were used to drill 210-μm holes in a pre-strained polystyrene 

(Shrinky-Dinks, goestores.com, item# D700-6A) which relaxed to its unstrained dimensions 

upon heating to 180° C. FFPDMS-NH2 with dicumyl peroxide was pressed into the resulting 

75 μm diameter × 2.5 mm pores and cured at 180° C for 2–6 hours, after which the 

polystyrene template was dissolved in chloroform. The FFPDMS-NH2 cylinders were then 

affixed to a glass substrate and positioned between the poles of an electromagnet (Atomic 

Laboratories, cat. # 79641) configured to produce a field magnitudes of 300 mT with very 

low magnetic field gradients (< 5 G/mm). All structures were positioned such that their 

initial orientation was 70° out of alignment with the magnetic field and were actuated across 

a range of field magnitudes, up to and including 300 mT. Images were taken with a digital 

camera mounted on a dissection scope and bending angles were calculated from analysis of 

the tip displacement.

It is important to note that a high-aspect-ratio magnetic microstructure may, in general, 

actuate by two distinct mechanisms: 1) a torque caused by the misalignment of the long 

axis of the microstructure with a magnetic field, and 2) a force caused by a magnetic field 

gradient. In most microactuator applications, the former is dominant[8; 39]. Therefore the 

actuating field in this experiment was designed with a minimal gradient to ensure that 

actuation was well within the field-dominated regime. To verify that this is the case, the ratio 

of `gradient' torque to `field' torque should be significantly less than unity. This ratio is given 

by R = 2∇BL / μ0Mρ, where L is the length of the actuator, M is the mass magnetization 

of the composite, and ρ is the density[39]. In our experiments, R ranges from 0.25 to 0.027, 

indicating dominance of the field-mediated mechanism.

3. Results and Discussion

A material which is intended for use as an actuator must be both flexible and have a large 

magnetic permeability. However, adding high-modulus magnetic particles to a composite 

to achieve higher magnetic permeability generally increases the modulus of the composite, 

resulting in a less flexible material. A method for determining the optimal loading of 

magnetic particles which will result in the most responsive material is therefore critical. 

The responsiveness of a material in this sense is quantified by a figure of merit which has 

been proposed in various forms by several previous studies[39; 40; 41; 42]. In brief, the 

angle through which a cantilevered high-aspect-ratio magnetic microstructure is expected to 

bend is given by the following[39], in which M is the mass magnetization of the composite 

material, ρ is the density, E is the Young's modulus, and L/2r is the aspect ratio of the 

actuator:
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θ = μ0M2ρ2
E

L
2r

2

(1)

The first term in this expression represents the influence of material properties and is 

independent of geometrical considerations. As such, it is extremely useful in the design 

of materials for effective actuators. Since this term represents the material-dependent 

component of the ratio of magnetic to elastic torques on a high-aspect-ratio microactuator, 

we refer to it as the magnetoelastic ratio. A higher magnetoelastic ratio indicates a material 

that will bend more easily in response to a uniform applied magnetic field, regardless 

of geometrical configuration. It should be noted that the magnetization M is in general 

a function of applied field. In our experiments with FFPDMS-NH2, we assume that 

magnetization is proportional to the loading fraction of magnetic nanoparticles and we may 

therefore use the full the magnetization curve of the magnetite nanoparticles (Figure 4A) to 

deduce the mass magnetization of each sample at 300 mT.

Magnetoelastic ratios for each of the dilutions of FFPDMS-NH2 were calculated 1) from 

measurements of modulus, mass magnetization and density and 2) from microactuator 

bending experiments. The former are shown in Table 1 and both sets of calculations are 

plotted in Figure 5. In both cases, the data show a clear peak in magnetoelastic ratio around 

a 60% – 70% nominal concentration of FFPDMS-NH2 in PDMS-NH2, which represents 

a total % wt. loading of magnetite nanoparticles of approximately 37 – 39%. Materials 

with lower magnetic content are less responsive to the magnetic field; materials with higher 

magnetic content are too stiff to bend sufficiently.

It should be noted that the sharp increase in modulus with particle loading exhibited in 

Figure 3 is critical in producing the peak in the magnetoelastic ratio within the range 

of samples studied in this work. Field-induced increases in moduli of iron / polymer 

composites have been reported previously[24; 26; 27; 43; 44; 45], and several works develop 

models which predict the dependence of elastic or shear moduli on magnetic field in such 

materials. Some report on the shear modulus of parallel chains of nanoparticles embedded in 

a soft matrix, such as may be produced by curing the matrix in the presence of a magnetic 

field[24; 43]. These predict a linear dependence on nanoparticle loading fraction; however, 

it is clear that these models cannot be applied to an isotropic material. Later models do 

address the compressive modulus of isotropic dispersions of magnetic particles in a matrix. 

However, while these models show how modulus depends on magnetic field strength[27] 

or the degree of magnetization relative to saturation[46], in both cases the dependence on 

loading fraction, φ, is buried within fitting parameters. Thus we have found no model which 

predicts the dependence of modulus on the loading fraction of magnetic nanoparticles in an 

isotropic composite. In this work, we find that the increase in modulus caused by the applied 

field is best fit by a function of the form ΔE(φ) = α exp βφ, as shown in Figure 3B.

Furthermore, while some studies have reported moduli of composites of varying particle 

loading in a magnetic field, the results from one study to the next vary widely. For example, 

Filipcsei et al. report a modest 20% increase in elastic modulus for a 30% wt. isotropic 
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composite of 200-nm magnetite in a silicone[27], while Stepanov et al. report a 10-fold 

increase in modulus for a 35% wt. isotropic composite of 2–70 um iron particles in a 

silicone of similar zero-field modulus[44]. We suspect that much of this variation may be 

due to inhomogeneities in the materials caused by aggregation effects, or to a broad disparity 

of particle sizes within the material. The complex presented in this work may therefore 

constitute an ideal platform for experimental inquiry into the effect of particle loading on 

modulus in magnetic elastomers.

Since this material is of interest to the magnetic microactuation community, we compare our 

material to existing magnetic / polymer composite materials in Figure 6, which is adapted 

from Evans et al., 2011[39]. We restrict this plot to materials with magnetic particles smaller 

than 100 nm, since larger particles are not ideal for microactuator applications. In addition, 

we broadly segregate magnetic composite materials into the two most commonly-reported 

classes: hydrogels and silicones. The utility of each class depends largely on the specific 

application under consideration: while hydrogels have much lower moduli, silicones have 

the advantage of being chemically and osmotically inert in aqueous environments and 

stable when exposed to atmosphere. In the silicone class, our material has the highest 

magnetoelastic ratio of available composites with particle sizes smaller than 100 microns.

4. Conclusions

We have produced a novel material consisting of a homogenous dispersion of complexed 

magnetic nanoparticles within a flexible silicone copolymer. When crosslinked, this 

material is both flexible and magnetic, introducing new possibilities for monolithic 

micromagnetomechanical systems. We have demonstrated that the material has a clear 

optimal configuration for magnetic actuation applications which can be determined simply 

by measuring its mechanical and magnetic properties. As the field of microscale actuators 

expands, we expect this strategy will be a useful tool in designing materials.

A curable magnetic/polymer composite material such as this may find use in many 

applications, ranging from scalable microbead technology to microactuators. With this 

material, we have produced our own actuator arrays, which consist of high-aspect ratio 

cantilevered microrods roughly the size of human lung cilia, similar to those previously 

reported[8], which will be presented in a future publication. This system has been 

magnetically actuated in a fluid and serves to demonstrate the utility of this new material 

in actuator applications. Furthermore, we expect that the unique microscale homogeneity of 

this silicone composite may be of use in exploring the fundamental physics responsible for 

magnetically-enhanced modulus in magnetic elastomers.
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Highlights

> A silicone-magnetite elastomer with nanoscale homogeneity.

> Iron content tunable from 0 – 50% wt. without aggregation.

> Elastic modulus increases in presence of magnetic field.

> Model and experiment show maximal actuation for microstructures near 40% 

wt. iron.
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Fig. 1. 
A) Synthesis of FFPDMS-NH2. Iron oxide nanoparticles are precipitated from iron salts 

upon the addition of ammonium hydroxide. PDMS-NH2 is then added to the nanoparticle 

solution, and the mixture is left to stir overnight. The nanoparticles move into the organic 

phase due to their electrostatic attraction to the PDMS-NH2, yielding FFPDMS-NH2. B) 
Scanning electron micrograph of a film of uncrosslinked FFPDMS-NH2 in which individual 

nanoparticles are clearly visible. The material is homogeneous at small length scales.
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Fig. 2. 
A) Cylindrical microstructures (2 μm diam. × 25 μm length) constructed of a 60% FFPDM-

SNH2. In the upper-right, one collapsed structure lies parallel to the focal plane and 

across a crack in the substrate. This microstructure responds to magnetic actuation. No 

magnetite aggregations are visible at the limits of optical microscopy, indicating microscale 

homogeneity. B) Transmission electron micrograph of crosslinked 70% FFPDMS-NH2. 

Magnetite nanoparticles are well-dispersed throughout the material, with diameters ranging 

from 7 – 10 nm.

Evans et al. Page 14

J Magn Magn Mater. Author manuscript; available in PMC 2013 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
A) Young's modulus, E, of 20% – 90% FFPDMS-NH2 to PDMS-NH2 dilutions. Circles 

indicate the moduli in the absence of a magnetic field; the dotted line is a linear fit to guide 

the eye. Triangles indicate moduli in a 300 mT field oriented parallel to the direction of 

compression; the solid curve is a fit of the form ΔE(φ) = α expβφ + γ φ + δ, where α = 1100 

Pa, β = 9.5, γ = 3.3 × 106 Pa, and δ = −220,000 Pa. B) The difference in modulus, ΔE, due 

to the effect of the applied magnetic field. The curve is a fit of the form ΔE(φ) = α exp βφ, 

where α = 1100 Pa and β = 9.5.
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Fig. 4. 
A) Magnetization curve of magnetite nanoparticles. B) Saturation magnetization (squares) 

and mass density (diamonds) of 20% – 90% FFPDMS-NH2 to PDMS-NH2 dilutions. 

Saturation magnetization was measured at 5 T by SQUID magnetometry.
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Fig. 5. 
Magnetoelastic ratios of 20% – 90% FFPDMS-NH2 to PDMS-NH2 dilutions. Triangles 

indicate magnetoelastic ratios calculated from modulus and magnetization data obtained for 

each material. Squares indicate magnetoelastic ratios calculated from microactuator bending 

experiments. The curve is calculated according to Equation 2 using the fit to the modulus 

data in Figure 3A and linear fits to the magnetization and density shown in Figure 4B.
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Fig. 6. 
Magnetoelastic ratios for this work and reports from literature. Solid curves represent a 

constant magnetoelastic ratio as a function of magnetite loading and Young's modulus. 

Superimposed on the plot are instances of reported magnetic elastomers. Crosses: FFPDMS-

NH2 (20% – 90% FFPDMS-NH2) presented in this work. Diamonds: maghemite / 

polyacrylamide (Galicia et al. 2003)[11]; Square: magnetite / polyvinyl alcohol (Barsi et al. 

1996)[14]; Triangle: M-300 / polyvinyl alcohol (Collin et al. 2003)[15]; Circle: maghemite / 

poly(dimethyl siloxane) (Evans et al. 2007)[8]; Shaded areas indicate regions potentially 

accessible by hydrogel-based and silicone based magnetic elastomers, respectively.
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