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ABSTRACT The distribution of fitness effects (DFE) of new mutations is of fundamental importance in evolutionary genetics. Recently,
methods have been developed for inferring the DFE that use information from the allele frequency distributions of putatively neutral
and selected nucleotide polymorphic variants in a population sample. Here, we extend an existing maximum-likelihood method that
estimates the DFE under the assumption that mutational effects are unconditionally deleterious, by including a fraction of positively
selected mutations. We allow one or more classes of positive selection coefficients in the model and estimate both the fraction of
mutations that are advantageous and the strength of selection acting on them. We show by simulations that the method is capable of
recovering the parameters of the DFE under a range of conditions. We apply the method to two data sets on multiple protein-coding
genes from African populations of Drosophila melanogaster. We use a probabilistic reconstruction of the ancestral states of the
polymorphic sites to distinguish between derived and ancestral states at polymorphic nucleotide sites. In both data sets, we see
a significant improvement in the fit when a category of positively selected amino acid mutations is included, but no further improve-
ment if additional categories are added. We estimate that between 1% and 2% of new nonsynonymous mutations in D. melanogaster
are positively selected, with a scaled selection coefficient representing the product of the effective population size, N, and the strength

of selection on heterozygous carriers of ~2.5.

HE increasing availability of large, genome-wide data

sets on DNA sequence variability within populations
has stimulated the development of statistical population ge-
netic methods for fitting models of the evolutionary forces
affecting sequence evolution and variability and estimating
the parameters of the models, especially the strength of
positive and purifying selection (reviewed by Eyre-Walker
and Keightley 2007; Wright and Andolfatto 2008; Sella
et al. 2009; Charlesworth 2011). These methods have been
applied to both noncoding and coding sequences and within
coding sequences to selection on codon usage at synonymous
sites (Bulmer 1991; Akashi 1995; Zeng and Charlesworth
2009; Sharp et al. 2010) and nonsynonymous sites (Sawyer
et al. 1987; Bustamante et al. 2002; Piganeau and Eyre-
Walker 2003; Eyre-Walker et al. 2006; Loewe et al. 2006;
Keightley and Eyre-Walker 2007; Boyko et al. 2008).
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There is general agreement that nonsynonymous muta-
tions are usually subject to the strongest selection pressures
relative to other types of single-nucleotide mutation, and
much attention has been given to the following two ques-
tions, which can in principle be answered by large-scale
studies of within-species variation and between-species
divergence. What is the nature of the distribution of se-
lection coefficients against newly arising nonsynonymous
mutations that have deleterious effects on fitness? What is
the fraction («) of nonsynonymous differences between two
related species that have been driven to fixation by positive
selection, as opposed to neutral or slightly deleterious muta-
tions that were fixed by random genetic drift? While these
questions are far from being completely answered, evidence
from a variety of organisms and methods suggests that there
is a wide distribution of selection coefficients against non-
synonymous mutations, with the bulk of variants found seg-
regating in populations being only weakly deleterious
(Sawyer et al. 1987; Bustamante et al. 2002; Piganeau and
Eyre-Walker 2003; Eyre-Walker et al. 2006; Loewe et al.
2006; Keightley and Eyre-Walker 2007; Boyko et al. 2008;
Haddrill et al. 2010). In several species of Drosophila, mice,
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bacteria, and some plants, there is evidence that « is of
the order of 50%, whereas in hominids and some plants it
is apparently much lower (Smith and Eyre-Walker 2002;
Charlesworth and Eyre-Walker 2006; Welch 2006; Andolfatto
2007; Shapiro et al. 2007; Bachtrog 2008; Boyko et al. 2008;
Eyre-Walker and Keightley 2009; Strasburg et al. 2009, 2011;
Gossmann et al. 2010; Halligan et al. 2010; Haddrill et al.
2010; Ingvarsson 2010; Jensen and Bachtrog 2010; Slotte
et al. 2010).

The rate of fixation of advantageous nonsynonymous
mutations is proportional to the product of the proportion
of new nonsynonymous mutations that are selectively advan-
tageous (p,) and their rate of fixation once they arise in the
population, assuming that the rate of adaptive evolution is
limited by the supply of new mutations (Ohta and Kimura
1971). If the population size is large, the rate of fixation of
new nonsynonymous mutations in a randomly mating popu-
lation is proportional to the product of the effective popula-
tion size, N., and their mean selective advantage in the
heterozygous state, s,,» (Ohta and Kimura 1971). For a given
rate of fixation of neutral or slightly deleterious nonsynony-
mous mutations, « is thus controlled by the product p,Nes,. In
several recent analyses p, and Ns, have been estimated sep-
arately by several different methods, using polymorphism and
divergence data sets from Drosophila. Very disparate esti-
mates have been obtained by these methods, ranging from
a very low frequency of adaptively favorable mutations with
relatively strong selective advantages (Eyre-Walker 2006; Li
and Stephan 2006; Macpherson et al. 2007; Jensen et al.
2008; Jensen 2009) to a relatively high frequency with a very
small mean selective advantage (Sawyer et al. 2003;
Andolfatto 2007) and a mixture of strongly and weakly se-
lected advantageous mutations (Sattath et al. 2011).

In this article, we develop a new method for dealing with
this problem, in which we extend the maximum-likelihood
estimation procedure of Keightley and Eyre-Walker (2007)
and Eyre-Walker and Keightley (2009) for estimating the
distribution of deleterious selection coefficients and a. The
extended method allows the inclusion of contributions from
advantageous mutations to nonsynonymous diversity, which
permits p, and Nes, to be estimated simultaneously with the
other parameters. A similar method was developed by Boyko
et al. (2008), but they did not explore the performance of
their method in any depth. However, they did note that it
was very difficult to disentangle the rate and strength of
advantageous mutation when applied to data from homi-
nids. We apply our method to the data sets of Shapiro
et al. (2007) and Callahan et al. (2011) on within-species var-
iability and between-species divergence for protein-coding
genes in Drosophila melanogaster and find evidence that p,
is of the order of 1.5% and Ns, ~ 5.

Our new method requires assignment of the allele
corresponding to the ancestral state at each site. Using
parsimony, the ancestral state would correspond to the allele
found in the closest outgroup species, in this case D. simulans.
However, this does not take into account the possibility of
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a substitution in the D. simulans lineage, nor does it consider
rate variation among sites (where some sites are more con-
strained than others). Thus, a probabilistic approach using
two different outgroups was used, in which the first step is
to estimate the properties of the substitution process (the
substitution rate matrix and the degree of rate variation) as
well as the distances between the three species. The second
step is to estimate the probability distribution for each an-
cestral nucleotide at each site under a probabilistic substitu-
tion model. This takes into account potential substitutions in
any of the outgroups, which depend on the evolutionary
distances between the species. The influence of the more
distant outgroup (here D. yakuba) is smaller than that of
the closer outgroup (D. simulans), but it is a strong indicator
of a site being either more constrained (if the states of the
two outgroups coincide) or more variable (if the outgroup
states disagree).

Materials and Methods
Data

We analyzed two sets of D. melanogaster polymorphism data.
The African subset of the D. melanogaster protein-coding gene
sequences described by Shapiro et al. (2007) was kindly pro-
vided by Joshua Shapiro and consists of 15 D. melanogaster
alleles (11 originating from Zimbabwe and 2 each originating
from Botswana and Zambia) along with 1 outgroup allele
from D. simulans.

The sequences of an additional outgroup, D. yakuba,
were obtained through the UCSC Genome Browser (Kent
et al. 2002) by aligning the D. melanogaster “base sequen-
ces” to the reference genome (version dm3) and then using
the pairwise genome alignment (version vsDroYak2) to map
each nucleotide to the orthologous nucleotide in D. yakuba.
Of the 397 protein-coding loci, 5 had to be discarded due to
ambiguous mapping to the reference genome. The remain-
ing 392 loci were analyzed and yielded 181,415 zerofold
sites that were used as nonsynonymous sites and 42,113
fourfold sites that were used as synonymous sites. A second
data set, described by Callahan et al. (2011), was kindly
provided by Peter Andolfatto and consists of 24 D. mela-
nogaster alleles originating from Zimbabwe, along with
D. simulans and D. yakuba outgroup alleles. The 213 protein-
coding loci provide a total of 80,809 nonsynonymous (zero-
fold) and 19,574 synonymous (fourfold) sites. In the case of
Shapiro et al. (2007), the maximum-likelihood (ML) analy-
sis was simultaneously applied to sites where all 15 alleles
were present and to sites with up to 5 missing alleles. For
the Callahan et al. (2011) data set, we allowed up to 8
missing alleles from the 24 sequenced. Sites with >2 segre-
gating alleles were excluded from the analysis.

Model

We assume that all nucleotide sites are in linkage equilib-
rium and that up to two variants can segregate at a site. We



assume that there is a class of sites at which mutations are
exclusively neutral (“neutral sites”) and a class of sites at
which both advantageous and deleterious mutations can
occur (“selected sites”). We assume that there are n, classes
of advantageous mutations. We assume intermediate domi-
nance and independence among sites. The fitness effect of
classi i=1...n,)is sg, which is the difference in fitness
between the wild-type and mutant homozygotes. Fitness
effects of deleterious mutations are assumed to be gamma
distributed, f(sq), with scale and shape parameters a and b,
respectively, and sq is the fitness difference between the
wild-type and mutant homozygotes. The fraction of advan-
tageous mutations is p, = > %, p\, and a fraction 1 — p, of
mutations are deleterious.

Obtaining the unfolded site frequency spectrum

The unfolded distribution of the number of copies of the
derived allele in a sample of nt alleles from a population
(the unfolded site frequency spectrum, SFS) is a vector p().
Let p(sel) and p(neut) denote the vectors for selected
and neutral sites, respectively. If we are dealing with sim-
ulated data, the ancestral allele is known, and thus the
number of derived alleles can be determined directly.
However, with real sequence data from extant species
the ancestral state is unknown. If we have a close out-
group species and assume parsimony, the ancestral allele
corresponds to the outgroup allele in most cases. However,
substitutions between the ingroup and outgroup species,
followed by mutations that cause polymorphism, can lead
to a misinterpretation of low-frequency alleles as high-
frequency alleles or vice versa. This can be corrected by
computing the probabilities for the possible ancestral states.
We therefore require a model for the substitution process
between the outgroup and the ancestral sequence of the
focal species, which can then be used to estimate a cor-
rected SFS.

Estimating the substitution parameters

The substitution process between the three species (D.
melanogaster, D. simulans, and D. yakuba) is modeled as a
Markov process under the general time-reversible (GTR)
model (Tavaré 1986), assuming rate variation among sites
with a proportion of invariant sites and Ny equally probable
categories of rates whose means, r;, follow a gamma distri-
bution (Yang 1994). The substitution parameters were esti-
mated separately for synonymous and nonsynonymous sites
for each data set. All sites of a given type within a data set
were concatenated to one large alignment and then ana-
lyzed using Phyml (Guindon et al. 2010) under the GTR
model. In addition to the substitution rate matrix and the
branch lengths leading to the three species, the proportion
of invariant sites and the shape parameter a of the gamma
distribution of the site rates were also estimated (we use a to
denote the shape parameters to avoid confusion with «,
which is introduced below as the fraction of adaptive
substitutions).

Probabilistic computation of the unfolded site
frequency spectrum

For each site with a pair of segregating alleles in D. mela-
nogaster (with states x and y), the probability distribution of
the ancestral state A depends on the corresponding states
o5 and oy, of the outgroups (of D. simulans and D. yakuba,
respectively) and on the substitution process 6 (which
describes the substitution rate matrix Q, the branch lengths
tmel> tsim,» aNd tyi leading to the three species, and the shape
parameter a). Given these parameters, the likelihood of the
ancestral state being x is defined as follows:

L(A=x |oy,05,08)=L(T |6, x,0y,0s) xPr(S= {x,y} |x,6).
€))

The first term on the right-hand side, L(T), is the likelihood
of the tree T relating the three characters x, o,, and o,, while
the second term, Pr(S = {x, y}), is the probability that the
ancestral state x generated the two observed alleles x and y,
which depends on the substitution rates Q and is given by
Hernandez et al. (2007):

Qey

= . 2
Zi;éxQX.i ( )

Pr(S = {x.y} b, Q)

Under a model of rate variation among sites with Ny
discrete rate categories of equal probability with mean rates
r;, the likelihood of a tree relating the characters x, o,, and o,
is defined (Yang 1994) as

1

Nr
L(T |a,x,0y,05,0) :N—ZL(T, ri |x,0y,05,0). 3)
Ri=1

Finally, for a given rate r, the likelihood of a tree relating
three species is obtained by summing over the possible
states Y of the unknown internal node,

L(T7r ‘Xaoﬁo)’?e)
= S my xL(Y = [rxtm, QL(Y >0y [rxt,Q) (4
Y

x L(Y—os |rxts, Q),

with L(a — b|t, Q) being the likelihood of character a being
substituted by b after time t under a Markov model defined
by rate matrix Q. This corresponds to the index (a, b) of the
probability matrix P(t), given by P(t) = '@ (Cox and Miller
1977).

Considering only the possibilities of A being either in
state x or in state y, the probabilities of the two possible
ancestral states are obtained by normalizing the likelihoods:

L{A =x}
L{A=x}+L{A=y}

Pr{A =x} = (5)

The SFS is then calculated such that for each site with
m alleles of type x and ny — m alleles of type y, the
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corresponding allele frequency p(),, is increased by Pr{A = x}
and p() is increased by Pr{A = y}.

ny—m

Calculation of the population allele
frequency distribution

We used the methods described by Keightley and Eyre-
Walker (2007) to compute the expected distribution of the
frequency of a new mutant allele subject to selection in
a finite diploid population, while incorporating a step
change from an equilibrium population of size N; to a pop-
ulation of size N, at a time t generations in the past, under
the assumption of unidirectional mutation. This involves
calculating the frequency distribution of segregating sites
for an equilibrium model, assuming a population of size
N3, and then applying transition matrix iteration for t gen-
erations in a population of size N, to calculate the net num-
bers of segregating sites that are at different frequencies,
conditioned on a mutation having occurred at each site
(from ancestral to derived) at each possible generation in
the past. In evaluating the likelihood of the data, we fix N;
at 100 and estimate N, and t as parameters of the model. We
have shown previously that this simple two-epoch demo-
graphic model allows the recovery of the parameters of
the distribution of fitness effects (DFE) with little bias, even
if the true demographic scenario is substantially more com-
plex (Keightley and Eyre-Walker 2007; Eyre-Walker and
Keightley 2009). The vector v’ (s) contains the relative num-
bers of new mutations segregating at frequencies between
1/(2N,) and (2N, — 1)/(2N5) for a selection coefficient s, at
the time of sampling from the population. Let the sum of
these relative numbers be

> V) (6)

We define the frequencies at which neutrally evolving
sites (s = 0) are in the ancestral and derived states at the
time of sampling as f, and f,y, respectively, which are esti-
mated as parameters of the model. In our previous analysis
(Keightley and Eyre-Walker 2007), the parameter fon was
not included, since ancestral and fixed alleles were not dis-
tinguished from one another.

The likelihood function uses an allele frequency proba-
bility vector for neutral sites, v(0), which has elements as
follows:

V(O)O:f07
V(0)2N2:f2N7 7)

V(O)i _ V,(O)i(]-x(_of)O _fZN) (fOI‘ i=1 to 2Ny — 1)

For the class of sites that are subject to selection, we use
transition matrix methods to calculate v’'(s), the vector of
expected numbers of new mutations segregating at frequen-
cies from 1/(2N,) to (2N, — 1)/(2N,), by integrating over
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the distribution of deleterious mutational effects, f(sq), and
including advantageous mutations with n, classes of selec-
tive effects s, weighting the overall contributions of advan-
tageous and deleterious mutations by p, and 1 - p,,
respectively. This vector is used to calculate a probability
vector of frequencies of segregating and fixed mutations,
v(s), which is used in the likelihood calculations. Elements
of the vector of numbers of segregating selected mutations
(elements 1. .. 2N, —1) are scaled in an identical manner to
those for neutral mutations, to satisfy the requirement that
Sv'(0)/2v'(s); = 2v(0)/2v(s);. For segregating selected
mutations, the elements of v(s) are therefore scaled by the
conditional number of neutral segregating mutations:

v'(s);(1 —fo — fon)
x(0)

v(s);= (fori=1 to 2No —1). (8)

Let u(N,, s)/u(N,, 0) be the ratio of the fixation proba-
bility for a selected mutation of fitness effect s to the fixation
probability for a neutral mutation, in a population of effec-
tive and census size N, (Fisher 1930). Then multiplying this
by fon gives the fraction of sites with selection coefficient s
that have become fixed for the derived allele over the whole
time since the split from the ancestral species. The expected
frequency of selected sites that are fixed for the derived
allele, averaged over the contributions of mutations with
different selection coefficients (including all classes of
advantageous mutations and deleterious mutations), is
therefore

_ fZN u(Na,s)

4Ny, 0) ©

V($)ay

where the overbar indicates the mean over the distribution
of s. Under the assumption that neutral and selected-site
divergence is dominated by fixations that occurred prior to
any recent change in population size (the signature of which
manifests itself in a departure of the neutral site SFS from its
neutral expectation), it is appropriate to assume that N, is
the ancestral population size, N1, in Equation 9. However, if
there has been a change in population size many genera-
tions ago (i.e., t > N,), the SFS may contain essentially no
information from which to estimate N1s. We therefore apply
an approximation, such that N, is a weighted average of N;
and N,, as described by Eyre-Walker and Keightley (2009,
Equation 1). If the population size change was very recent,
then N, — Ny; if the size change was ancient, then N, — No.
Finally, the frequency of ancestral selected alleles is

2N,

v)p=1- Y vls);

i=1

(10)

and includes the frequency of sites that never experienced
a new mutation and negatively selected mutations that
became eliminated from the population.



Parameter inference by ML

The function for the likelihood of the site frequency spectra
data was similar to that described by Keightley and Eyre-
Walker (2007), with some simplifications. Let p(sel) and
p(neut) be SFS vectors for selected and neutral sites, respec-
tively, whose elements are the numbers of sites having
a number of derived alleles from O to ny, where nr is the
number of alleles in the sample. We assume that the ob-
served SFSs are binomial samples from the allele frequency
distributions v(s). We calculate v(s) and v(0) as functions of
the model parameters (i.e., for a single class of advanta-
geous mutations: a, b, s}, pl, Na, t, fo, fan). For the selected
sites, the log likelihood is

nr 2N,
logLger = » 4 p(sel); log | Y " v(s);b(i [n1,j/(2N2)) | ¢,
i=0 j=0

(1D

where b(i|ny, q) is the binomial probability of observing i
derived alleles in a sample of n alleles, if the expected de-
rived allele frequency is q. Note that the summations in
Equation 11 are to nt and 2N, rather than to ny — 1 and
2N, — 1, respectively, as in Keightley and Eyre-Walker
(2007), because in that article we did not distinguish be-
tween sites fixed for ancestral and derived alleles, as is the
case here. For neutral sites, the log likelihood (10g Lyey) Was
calculated using Equation 11, replacing p(sel) with p(neut)
and v(s) with v(0). The overall log likelihood was log L +
log Lyey:- Log likelihood was maximized using the simplex
algorithm (Nelder and Mead 1965; Press et al. 1992), as
described in Keightley and Eyre-Walker (2007), and conver-
gence was checked by starting the simplex multiple times
with random starting values.

The fraction of substitutions driven to fixation by
adaptive evolution («) can be estimated from the relation

Z?a [Péu(Naa Sa,-)}

— S (12)
Zia [p;u(Na,sai)] + (]' _pa) u(Na75d)

o=

Similarly, the rate of adaptive substitution scaled by the
rate of neutral substitution is

" [pLu(Na, s, O
waZWZZNaZ[an(N%S&)]'

1

(13)

Simulations

To assess the accuracy of estimation of p, and s, and poten-
tial bias, we analyzed simulated data sets generated by sam-
pling from expected gene frequency vectors computed by
the transition matrix method (see Keightley and Eyre-
Walker 2007 for details). Various data sets of 15 alleles
(the number of alleles available in the smaller of the two
D. melanogaster data sets that we subsequently analyze)

were simulated with between 1250 and 50,000 synonymous
and nonsynonymous bases that are subject to mutation dur-
ing the simulation process. We simulated a single class of
advantageous mutational effects, with different combina-
tions of values for p, and s,, together with a gamma distri-
bution of negative fitness effects with shape parameter b =
0.5, a mean fitness effect for deleterious mutations E(sq) =
—0.1, and a constant population size of N = 100. The ML
estimation procedure was then used to estimate the param-
eters as described above. The simulated parameter values
were used to initialize the procedure to minimize the esti-
mation time and to avoid converging to incorrect
local minima. For each data set with these combinations of
number of sites, s, and p,, 1000 simulation replicates were
performed. We found that the distribution of parameter esti-
mates is highly skewed, so we present the median and the
25% and 75% quantiles to describe the distribution of
estimates.

To investigate the effects of linkage on parameter
estimation, another set of simulations was performed using
the SFS_code software (Hernandez 2008). For each run,
1.2 x 107 nucleotide sites were simulated, divided into un-
linked loci of 30, 300, 3000, or 30,000 nucleotides within
which linkage was complete. The simulations were per-
formed using 100 ancestral individuals with a speciation
event immediately after a burn-in phase, resulting in two
populations of 100 individuals, which each evolved indepen-
dently for 4000 generations. For each combination of pa-
rameter values, 100 runs of the simulation for each of the
four locus lengths were performed.

Results
Simulations with unlinked loci

Simulations were performed to investigate the conditions
under which the parameters modeling positively selected
mutations can be estimated with confidence and when there
is likely to be bias. In the model presented here, adaptive
mutations are described by two parameters, the fraction of
a single class of positively selected mutations, p,, and their
selection strength, s,.

Figure 1 shows the estimation accuracy of these param-
eters as a function of the number of sites subject to muta-
tion, for simulated values of p, = 0.015 and s, = 0.1 (giving
Ns, = 10), which are similar to the values estimated from
the analysis of D. melanogaster data sets (see below). The
plot suggests that the median of the estimates for both
parameters can be estimated accurately, even for small num-
bers of sites. However, if the number of sites is small
(<10,000 sites), the variances of the estimates become very
high, and a single estimate can be an over- or underestimate
by a factor of =10. For larger numbers of sites, however
(=25,000 nucleotides), the variance of the estimates
becomes much smaller and allows for estimation of the
parameters with high confidence. Remarkably, it appears
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Figure 1 Relative error (estimated value divided by the true, simulated
value) when estimating pa, s,, and their product p,s, from simulated data
plotted against the number of nucleotides subject to mutation. The bars
indicate the interval between the 25% and the 75% quantile, with the
point or line representing the median. The simulation parameters were
p, = 0.015 and s, = 0.1.

that the product of the two parameters can be estimated
accurately and with low variance, even when only a small
number of sites is available. This is illustrated in Figure 2,
which shows the correspondence between the estimated
values of p, and s,. Each point corresponds to the estimates
obtained from one run of the simulation with 25,000 sites. It
can be seen that most points are very close to the L-shaped
curve, which would be expected if the product of the two
parameters was constant at 0.015 x 0.1. The parameters of
the gamma distribution of negatively selected mutations
[i.e., the shape parameter b and the mean effect E(s)] are
estimated with high precision: for =10,000 sites simulated,
mean estimates are at most 1% different from expectation,
and even for as few as 2500 sites, the estimates deviate by
<10% from the simulated values.

The accuracy of parameter estimation is shown as a
function of the selection strength s, in Figure 3, again on the
basis of simulations using 25,000 sites. This suggests that
the accuracy of estimation of both p, and s, increases as the
simulated value of s, is increased. Interestingly, this effect is
stronger for p,. A likely reason for this behavior is that, if
adaptive mutations are strongly selected, the resulting sig-
nal in the SFS (increased amounts of high-frequency non-
synonymous alleles) is easier to distinguish from random
noise.

Linkage effects

In a second set of simulations, the effect of linkage on
parameter estimation was investigated. We used the pro-
gram SFS code (Hernandez 2008) to generate data in
which the genome was split into varying numbers of un-
linked loci within which linkage was complete. The results
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Figure 2 Correspondence between p, and s, estimates from simulations
of 25,000 sites with simulated values of p, = 0.015 and s, = 0.1. The
thin, dashed lines indicates the L-shaped curve that would be expected if
the product p,s, was constant at 0.015 x 0.1.

suggest that for many short loci (30 or 300 nucleotides), the
simulated parameters can be estimated with little bias
(Figure 4). For unlinked loci of longer length (e.g., 3000
nucleotides), p, tends to become overestimated and s,
underestimated. The underestimation of s, may be due to
two effects. First, there may be Hill-Robertson interference
undermining selection on advantageous mutations linked to
other advantageous mutations and to deleterious mutations.
Second, genetic hitchhiking can drag neutral genetic var-
iants to high frequency (Fay and Wu 2000). These high-
frequency—derived mutations will give the appearance in
the SFS of additional slightly advantageous mutations, and
this will lead to overestimation of p, and consequent under-
estimation of s,. They may also distort the neutral SFS, lead-
ing to problems in correctly inferring the true demography.
For loci of length <1000 bases, however, the extent of the
bias observed is relatively modest; the complete linkage
within loci assumed here is in any case likely to greatly
exaggerate the effect of linkage compared with the typical
situation for a Drosophila or mammalian gene (see McVean
and Charlesworth 2000; Kaiser and Charlesworth 2009).

Analysis of two D. melanogaster data sets

We applied the ML method to polymorphism data sets of
D. melanogaster protein-coding genes of Shapiro et al. (2007),
consisting of 15 alleles from African flies, and of Callahan
et al. (2011), consisting of 24 alleles sampled from Zimbabwe.
The results from the two data sets are very similar (Tables
1 and 2). Under a constant population size model, the in-
clusion of a single class of positively selected mutations
greatly increases the log likelihood (i.e., by 48 and 212
log-likelihood units, respectively, for the Shapiro et al. and
Callahan et al. data sets). This model includes only two
additional parameters (s, and p,); thus there is clearly a better
fit to the data than that of the deleterious mutations-only
model. If population size change is allowed, including adap-
tive mutations also significantly increases the log likelihood
(by 65 and 148 log-likelihood units, respectively).

The best-fitting models indicate changes in population
size. Interestingly, for the data set of Callahan et al. (2011),
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Figure 3 Relative error when estimating pa, s,, and the product p,s, from
simulated data plotted against the selection strength s,. The bars indicate
the interval between the 25% and the 75% quantile, with the point or
line representing the median. The simulation parameters were p, = 0.015
and N = 25,000 (number of nucleotides subject to mutation).

a relatively large, quite recent increase (5.5-fold with adap-
tive mutations) is inferred, whereas for the African data set of
Shapiro et al. (2007), a 50% decrease is found, which could
be indicative of population admixture. This contrasts with the
20-fold increase in population size reported by Keightley and
Eyre-Walker (2007) from an analysis of a similar data set, but
using a folded SFS and assuming that no adaptive mutations
contribute to polymorphism. This is presumably a conse-
quence of the presence of high-frequency alleles that are
not distinguished from low-frequency alleles in the folded
SFS. However, if there are no adaptive mutations, simulation
results indicate that similar results are obtained by analyzing
either the folded or the unfolded SFS (Keightley and Eyre-
Walker 2007). In addition, including selection on synony-
mous sites, which we have ignored here, has been shown to
remove the signature of population expansion in the Zim-
babwe population of D. melanogaster (Zeng and Charlesworth
2009), so that it is likely that ignoring population expansion
could be justified. For both data sets, there were only negligi-
ble increases in log likelihood if two classes of advantageous
mutational effects are included.

Under the best-fitting model (with population size
change), the estimated percentage of sites under positive
selection is p, = 0.96%, with a mean selection strength Ns,
= 4.5 for the Shapiro et al. data set. For the Callahan et al.
data set, the results suggest slightly higher frequencies of
adaptive mutations with stronger effects, i.e., p, = 1.8% and
Nes, = 5.7. Under the constant population size model, esti-
mates are similar (p, = 0.88% and N.s, = 4.4 for Shapiro
et al. and p, = 2.1% and Ncs, = 4.9 for Callahan et al.). The
variances of the adaptive mutation parameter estimates are
relatively high, but they covary strongly. This is shown in
plots of the log-likelihood landscape as a function of p, and
s, around their ML estimates (Figure 5). The parameter
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Figure 4 Extent of estimation bias (as percentage of deviation from
simulated parameter values) for simulations including linkage plotted
against the lengths of loci within which linkage was complete. As x-axis
values increase, the overall amount of linkage in the system therefore
increases. Parameters of the simulation were 6 = 4Nw = 1073, Nsy =
—100, b = 0.3, p, = 0.1, Ns, = 10.

estimates corresponding to a difference of 2 log-likelihood
units from the maximum-likelihood estimates suggest that
pa could be between 0.3% and 2.1% and Nes, could be
between 2.3 and 13.5. A similar analysis of the Callahan
et al. data set provides ~95% confidence intervals for p, of
1.1-2.5% and for Ns, of 4.0-9.1, which are narrower than
those obtained for the Shapiro et al. data set. This can pos-
sibly be explained by the higher number of alleles in this
data set (24 as opposed to 15). Although the support limits
are fairly wide for both parameters, the likelihood landscape
clearly follows a “1/x” curve, indicating the high interdepen-
dence of the two parameters that we have observed in the
simulations (see Figure 2).

Under the best-fitting model, estimates of the proportion
of adaptive substitutions from Equation 12 are a = 0.74 (for
the Shapiro et al. data set) and o = 0.95 (for the Callahan
et al. data set). These are higher than the estimates obtained
using the unfolded SFS of 0.52 for the Shapiro et al. data set
(Eyre-Walker and Keightley 2009) and 0.84 for the Callahan
et al. data set. The increases in « are probably due to the fact
that Eyre-Walker and Keightley (2009) assumed that advan-
tageous mutations are strongly selected and contributed little
to amino acid polymorphism. In the current method, advan-
tageous mutations can contribute to polymorphism, which
reduces the estimate of the contribution from effectively neu-
tral mutations. As a consequence, advantageous mutations
contribute proportionally more amino acid substitutions. A
similar pattern was observed by Boyko et al. (2008).

Discussion

Our study was motivated by two factors. First, we wished
to estimate the rate and fitness effects of advantageous
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Table 1 ML parameter estimates and changes in log likelihood under models with constant or changing population sizes and with or
without adaptive mutations from analysis of the Shapiro et al. (2007) data set

Model N/N4 t/IN> NeE(sq) b fo fon Pa NeSa AloglL
Constant population, no adaptation — — -3 x 108 0.1 0.82 0.08 0 — 0
Constant population, adaptation — — —699 0.45 0.81 0.08 0.88% 4.4 47.8
Population size change, no adaptation 0.6 3.1 -2 x 108 0.14 0.83 0.08 0 — 8.8
Population size change, adaptation 0.5 3.1 —372 0.54 0.83 0.08 0.96% 4.5 73.5

mutations, since both these parameters are fundamental for
our understanding of evolutionary adaptation. Second,
whole-genome sequencing of multiple individuals sampled
from natural populations promises to produce data that will
make estimation of these parameters more tractable. Obser-
vations of excesses of amino acid substitutions over pre-
dictions based on standing polymorphism have provided
evidence of widespread adaptive protein evolution in many
species (Smith and Eyre-Walker 2002; Charlesworth and
Eyre-Walker 2006; Welch 2006; Andolfatto 2007; Shapiro
et al. 2007; Bachtrog 2008; Strasburg et al. 2009, 2011;
Haddrill et al. 2010; Halligan et al. 2010; Ingvarsson
2010; Slotte et al. 2010). Under an additive model, the rate
of adaptive substitution is largely determined by the product
of the mutation rate to beneficial alleles and their average
selection coefficient (s,), since the fixation probability of
a new advantageous mutation is proportional to s,. This re-
lationship constrains estimates of the rate and strength of
adaptive evolution and makes inference strongly depend on
the information used in the analysis. Sawyer et al. (2003)
fitted a model to divergence and diversity data, in which
a proportion of selected sites were assumed to be under
strong negative selection, with other sites taking the
strength of selection from a normal distribution. Under this
model they inferred that amino acid substitutions are over-
whelmingly a consequence of positive selection, but that the
strength of selection on advantageous mutations is very
weak. Andolfatto (2007) used an approach based on a com-
parison of nucleotide divergence and diversity and inferred
a relatively high proportion of moderately beneficial amino
acid mutations in D. melanogaster (i.e., N.s, somewhat
above the nearly neutral range, implying s, of the order of
1075). In contrast, Eyre-Walker (2006) and Macpherson
et al. (2007) have inferred that the strength of selection
acting upon advantageous mutations is strong (Nes, of the
order of =100). Eyre-Walker (2006) assumed that the cor-
relation between nucleotide diversity and recombination
rate was due to selective sweeps, whereas Macpherson
et al. (2007) inferred the strength of selection from an anal-

ysis of genome-wide heterogeneity in diversity levels in Dro-
sophila. Recently, Sattath et al. (2011) suggested that these
conflicting results can be resolved. By analyzing the pattern
of diversity around synonymous and nonsynonymous sub-
stitutions, they inferred that two classes of effects of adap-
tive mutations, with effects of ~0.5% and ~0.01%, best
explain polymorphism and divergence data in Drosophila.
Under this model the class of larger-effect mutations is re-
sponsible for most selective sweeps. The discrepancy be-
tween these results principally arises because the different
approaches consider different scales over which an adaptive
fixation event is expected to reduce nucleotide diversity in
the genome (Sella et al. 2009).

In the simulations, we first evaluated the performance of
our inference procedure using data generated under the
same model as employed in the analysis. We inferred that
a modest amount of data (=10,000 sites) are needed to
estimate the product of the proportion of adaptive mutations
(p.) and s,, which is closely related to the proportion of
adaptive substitutions (a, Equation 12). However, the two
parameters are strongly negatively correlated, such that data
can typically be explained nearly as well by high values of s,
and low values of p, and vice versa. The reason for this is that
the ratio «/(1 — a) is equal to pa\a/(1 — pa JAg = Paha /g,
where \, and \q are the fixation probabilities of advanta-
geous and deleterious mutations relative to the neutral
value, respectively. Provided that o and Ay are accurately
estimated, p,\, is thus strongly determined, and \, is pro-
portional to s,. Obtaining accurate estimates of p, and s,
separately requires of the order of =10° sites. Furthermore,
parameters for weakly selected advantageous mutations
are difficult to disentangle from parameters for mildly dele-
terious mutations, even in very large data sets. Whereas
estimating the proportion or relative rate of adaptive sub-
stitutions (a or w,, respectively), which are functions of the
product of p, and s,, largely depends on the frequency of
sites that are fixed for the derived allele, separately estimat-
ing p, and s, depends on the presence of high-frequency
polymorphisms (i.e., adaptive mutations that are on their

Table 2 ML parameter estimates and changes in log likelihood under models with constant or changing population sizes and with or
without adaptive mutations from analysis of the Callahan et al. (2011) data set

Model N>/N, tIN, NeE(Sd) b fo fZN Pa NeSa A IOg L
Constant population, no adaptation — — -3x 10" 0.05 0.80 0.09 0 — 0
Constant population, adaptation — — —103 1.36 0.79 0.08 2.10% 4.9 211.8
Population size change, no adaptation 8.0 0.02 -3x 10" 0.05 0.53 0.09 0 — 94.3
Population size change, adaptation 55 0.02 —363 0.70 0.60 0.08 1.80% 5.7 242.0
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Figure 5 Contour plots of the log likelihood for the Shapiro et al. (top)
and Callahan et al. (2011) (bottom) data as functions of p, and s,. The
highest isoline is shown in dark blue and corresponds to —41,132.9 log-
likelihood units for the Shapiro et al. (2007) data and to —25,702.6 for
the Callahan et al. (2011) data. The following isolines indicate decreasing
log likelihoods in intervals of 1 unit in the order purple, cyan, yellow,
black, orange, gray, and red .

way to fixation). Alleles at these frequencies are expected to
be uncommon; hence there is the need for genome-wide
scale data for accurate inference.

We then investigated the effect of linkage on parameter
inference. This is expected to potentially lead to biased
parameter estimates, because selection on advantageous
mutations will tend to change the frequencies of blocks of
linked sites and can lead to excesses of high-frequency
neutral and deleterious polymorphisms over neutral expec-
tation (Fay and Wu 2000). We employed the SFS_code soft-
ware developed by Hernandez (2008) and were able to
make qualitative predictions about the nature of biases
expected. Consistent with previous results on the effects of
linkage on estimates of a (Eyre-Walker and Keightley 2009),
we found that, provided that linkage is not too tight, the
product of s, and p, is reasonably unbiased (Figure 4). How-
ever, we also found that linkage tends to lead to underesti-
mation of s, and overestimation of p,. Presumably, increased
linkage increases the effect of Hill-Robertson interference,
so the effectiveness of selection on individual positively se-
lected alleles is reduced, and hence estimates of s, are de-
creased. Furthermore, hitchhiking generates high-frequency
alleles that can distort both the neutral and the selected
SFSs. Due to the limitations of the model and computing
time, we are unable to make a quantitative prediction of
the amount of bias expected for a real data set (for example,
the Drosophila data set that we have analyzed here). To do
so would require a more comprehensive simulation of an
entire chromosome, with realistic distributions of sites sub-
ject to selection and amounts of recombination (at least on

a scale N.r, where r is the recombination rate between sites).
However, it is likely that the scenarios investigated in Figure
4 represent much tighter linkage than is realistic for Dro-
sophila, since we simulated loci with no intragenic recombi-
nation, and so will overestimate the probable effects of
linkage in a natural population of flies.

Our approach has several other limitations, some of
which that are intrinsic to the information used in the
analysis and some that might be overcome with further
work. We have implicitly assumed that variation is main-
tained under mutation, selection, and drift balance and
disregarded the possibility that other processes, such as
migration and balancing selection, maintain variation. We
have fitted multiple categories of s,, but in principle a distri-
bution of s, could be fitted to the model. However, it is
doubtful whether the information would be sufficient to
estimate parameters of a distribution in practice. We have
fitted a gamma distribution of negatively selected muta-
tional effects. Although this distribution can take a wide
variety of shapes, it is always unimodal and may fail to
model more complex distributions adequately. However, if
we fit a distribution with n discrete bins, we have shown
that this model is capable of adequately fitting complex dis-
tributions (e.g., mixtures of gamma and beta distributions),
the only limitation being the amount of data available
(A. Kousathanas and P. D. Keightley, unpublished data).
We have used the relatively simple demographic model of
a step change in population size. However, selection param-
eters are recovered with little bias, even if the true scenario
is substantially more complex (Keightley and Eyre-Walker
2007; Eyre-Walker and Keightley 2009). In our analysis,
we have assumed that synonymous sites evolve neutrally,
an assumption that is violated for this data set (Zeng and
Charlesworth 2009). We have also assumed that the muta-
tion rates for synonymous and nonsynonymous sites are
equal, an assumption that is also violated, since they differ
significantly in GC content. These departures from the
model assumptions will presumably partially cancel each
other, since the higher GC content of synonymous sites
implies that they have a higher mutation rate than nonsy-
nonymous sites. However, the net effect is uncertain.

Our analysis of two extensive data sets of D. melanogaster
protein-coding gene sequences of Shapiro et al. (2007) and
Callahan et al. (2011) revealed clear differences in the fit
among the different models. The best-fitting model included
adaptive mutations and a modest change in recent effective
population size. Whether or not population size change was
included in the model had little influence on estimates of
adaptive mutation parameters. We obtained similar results
for the two data sets, suggesting that ~1.5% of amino acid
mutations are adaptive with an average selection strength
Nes, ~ 5. The inclusion of adaptive mutations led to very
significant increases in likelihood (reported in Tables 1 and
2) and resulted in a substantially better fit. Figure 6 shows
the fit of the inferred SFSs to the true SFSs for selected and
neutral sites for the data set from Shapiro et al. (2007). The
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Figure 6 Fit of the expected SFS (thin, colored bars) for selected and
neutral sites to the observed SFS (thick, gray bar) for the Shapiro et al.
(2007) data set. For illustration purposes, only the subset of genes with 15
alleles is used, and the parameters to generate the expected SFS have
been estimated from this subset.

two models that include adaptive mutations (Figure 6, green
and purple bars) give the best fit to the selected SFSs, and
only the model that additionally includes population size
change (Figure 6, green bars) also fits the neutral SFS. It
should be noted, however, that parameter inference requires
substantial amounts of data. The simulations together with
the likelihood plot for the real data (which is indicative of
the variances, Figure 5) clearly show that the product p.s,
can be estimated quite accurately from small data sets, but
disentangling p, from s, can be done with high confidence
only from larger data sets. The consistency among the two
D. melanogaster data sets used here indicates that they are
sufficiently large to get reasonably accurate estimates. But
larger data sets from whole-genome sequencing of samples
of individuals from natural populations will improve the
accuracy of the estimates and shed more light on the role
of adaptive mutations in molecular evolution.

Software availability

The method is available via P. D. Keightley’s website, http://
homepages.ed.ac.uk/eang33/. Source files for the project
have been deposited in sourceforge http://sourceforge.
net/.
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