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ABSTRACT High-throughput genomics allows genome-wide quantification of gene expression levels in tissues and cell types and,
when combined with sequence variation data, permits the identification of genetic control points of expression (expression QTL or
eQTL). Clusters of eQTL influenced by single genetic polymorphisms can inform on hotspots of regulation of pathways and networks,
although very few hotspots have been robustly detected, replicated, or experimentally verified. Here we present a novel modeling
strategy to estimate the propensity of a genetic marker to influence several expression traits at the same time, based on a hierarchical
formulation of related regressions. We implement this hierarchical regression model in a Bayesian framework using a stochastic search
algorithm, HESS, that efficiently probes sparse subsets of genetic markers in a high-dimensional data matrix to identify hotspots and to
pinpoint the individual genetic effects (eQTL). Simulating complex regulatory scenarios, we demonstrate that our method outperforms
current state-of-the-art approaches, in particular when the number of transcripts is large. We also illustrate the applicability of HESS to
diverse real-case data sets, in mouse and human genetic settings, and show that it provides new insights into regulatory hotspots that
were not detected by conventional methods. The results suggest that the combination of our modeling strategy and algorithmic
implementation provides significant advantages for the identification of functional eQTL hotspots, revealing key regulators underlying
pathways.

THE current focus of biological research has turned to
high-throughput genomics, which encompasses large-

scale data generation and a variety of integrated approaches
that combine two or more -omics of data sets. An important
example of integrative genomics analysis is the investigation
of the genetic regulation of transcription, also called expres-
sion quantitative trait locus (eQTL) or “genetical genomics”
studies (Cookson et al. 2009; Majewski and Pastinen 2011).
A typical eQTL analysis follows a natural structure of paral-
lel regressions between the large set of q responses (i.e.,
expression phenotypes), and that of p explanatory variables

(i.e., genetic markers, often single nucleotide polymor-
phism, SNPs), where p is typically much larger than the
number of observations n.

From a statistical point of view, the size and the complex
multidimensional structure of eQTL data sets pose a signif-
icant challenge. Not only does one wish to detect the set of
important genetic control points for each response (expres-
sion phenotype), including cis- and trans-acting control for
the same transcript, but, ideally, one would wish to exploit
the dependence between multiple expression phenotypes.
This will facilitate the discovery of key regulatory markers,
so-called hotspots (Breitling et al. 2008), i.e., genetic loci or
single polymorphisms that influence a large number of tran-
scripts. Identification of hotspots can inform on network and
pathways, which are likely to be controlled by major regu-
lators or transcription factors (Yvert et al. 2003; Wu et al.
2008). Most importantly, there is mounting evidence that
common diseases may be caused (or modulated) by changes
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at a few regulatory control points of the system (i.e., hot-
spots), which can cause perturbations with large phenotypic
effects (Chen et al. 2008; Schadt 2009).

In this article, we set out to perform hotspot and eQTL
detection in an efficient manner, which exploits fully the
multidimensional dependencies within the genome-wide
gene expression and genetic data sets. We build upon our
previous work (Bottolo and Richardson 2010), where we
implemented Bayesian sparse multivariate regression for
continuous response to search over the possible subsets of
predictors in the large 2p model space. For each expression
phenotype, this corresponds to carrying out multipoint map-
ping within an inference framework, Bayesian variable se-
lection (BVS), where model uncertainty is fully integrated.
Here, we propose a novel structure for linking parallel mul-
tivariate regressions that borrows information in a hierarchi-
cal manner between the phenotypes to highlight the
hotspots. To be precise, we propose a new multiplicative
decomposition of the joint matrix of selection probabilities
vkj that link marker j to phenotype k and demonstrate in
a simulation study that this hierarchical structure and its
Bayesian implementation (hierarchical evolutionary sto-
chastic search or HESS algorithm) possess good character-
istics in terms of sensitivity and specificity, outperforming
current methods for hotspot and eQTL detection. Finally,
we show the applicability of our method in two real-case
eQTL studies, including animal models and human data.
Our approach is broadly applicable and extendable to other
high-dimensional genomic data sets and represents a first
step toward a more reliable identification of functional eQTL
hotspots and the underlying causal regulators.

Analysis models for eQTL data are linked to two strands of
work: (i) methods for multiple mapping of QTL, where a single
continuous response, referred to as a “trait,” is linked to DNA
variation at multiple genetic loci by using a multivariate re-
gression approach, and (ii) models that exploit the pattern of
dependence between the sets of responses associated with
a predictor (i.e., genetic marker). There is a vast literature on
multi-mapping QTL (see the review by Yi and Shriner 2008);
some of the models have been extended to the analysis of
a small number of traits simultaneously (Banerjee et al.
2008; Xu et al. 2008). Several styles of approaches have been
adopted ranging from adaptive shrinkage (Yi and Xu 2008;
Sun et al. 2010) to variable selection within a composite model
space framework that sets an upper bound on the number of
effects (Yi et al. 2007). Most of the implemented algorithms
sample the regression coefficients via Gibbs sampling. How-
ever, these have not been used with a substantial set of markers
in the “large p small n” paradigm, but mostly in case of candi-
date genes or in small experimental cross-animal studies. To
face the challenges typical of larger eQTL studies, we have
chosen to build our multi-mapping model using a recently de-
veloped Bayesian sparse regression approach (Bottolo and
Richardson 2010). In this approach, subset selection is imple-
mented in an efficient way for vast (potentially multi-modes)
model space by integrating out the regression coefficients and

by using a purposely designed MCMC variable selection algo-
rithm that enhances the model search with ideas and moves
inspired by evolutionary Monte Carlo algorithms.

The first eQTL modeling approach that explicitly set out
to borrow information from all the transcripts was proposed
by Kendziorski et al. (2006). In the mixture over markers
(MOM) method, each response (expression phenotype) yk,
1 # k # q, is potentially linked to the marker j with prob-
ability pj or not linked to any marker with probability p0. All
responses linked to the marker j are then assumed to follow
a common distribution fj(�), borrowing strength from each
other, while those of nonmapping transcripts have distribu-
tion f0. Inspired by models that have been successful for
finding differential expression, the marginal distribution of
the data for each response yk is thus given by a mixture
model: p0f0ðykÞ þ

Pp
j¼1pj fjðykÞ. A basic assumption of the

MOM model is that a response is associated with at most
one predictor. For good identifiability of the mixture, MOM
requires a sufficient number of transcripts to be associated
with the markers. The authors use the EM algorithm to fit
the mixture model and estimate the posterior probability of
mapping nowhere or to any of the p locations. By combining
information across the responses, MOM is more powerful
and can achieve a better control of false discovery rates
(FDR) by thresholding the posterior probabilities than pure
univariate differential expression methods testing each tran-
script-marker pair. But as originally developed, it is not fully
multivariate as it does not account for multiple effects of
several markers on each expression trait.

To improve on identification of eQTL effects, Jia and Xu
(2007) formulate a unifying q · p hierarchical model in which
each transcript yk, 1 # k # q, is potentially linked to the
complete set of p markers X through a full linear model with
regression coefficients, bk = (bk1,..., bkj,..., bkp)T. Inspired by
Bayesian shrinkage approaches already used in conventional
QTL mapping, they propose using a mixture prior on each of
the bkj, also known as “spike and slab,”

bkj �
�
12 gkj

�
Nð0; dÞ þ gkjN

�
0;s2

j

�
; (1)

with a fixed very small d for the spike and an independent
prior for the variance s2

j of the slab in the jth marker. They
then link the q responses through a hierarchical model of the
Bernoulli indicators gkj, establishing what we refer to as
a hierarchical regression set-up. They assume that gkj �
Bernoulli(vj), 1 # k, # q, and give vj a Dirichlet(1, 1) prior.
In this model, to improve detection of transcript-marker
associations, strength is borrowed across all the transcripts
via the common latent probability vj. Jia and Xu (2007)
implement their hierarchical model in a fully Bayesian
framework using an MCMC algorithm called BAYES, based
solely on Gibbs sampling.

The high dimensionality of both gene expression and
marker space has been alternatively addressed through the
use of data reduction methods. In particular, Chun and Kelesx
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(2009) have proposed implementing sparse partial least-
squares regression (M-SPLS eQTL) on preclustered group of
transcripts. M-SPLS selects markers associated with each tran-
script cluster by evaluating the loadings on a set of latent
components. As the dimension of each cluster is moderate,
SPLS implements a multivariate formulation that takes into
account the correlation between the transcripts in the same
cluster. Sparsity of the latent direction vectors is achieved by
imposing a combination of L1 and L2 penalties, similar to the
elastic net. The tuning parameters K and h controlling the
number of latent components and the convexity of the penal-
ized likelihood are tuned together by cross-validation. The
output of this method is the set of the regression coefficients
of the markers belonging to the latent vectors that are signif-
icantly associated with a subset of transcripts, selected by
bootstrap confidence interval.

Jia and Xu’s linked regression set-up and fully Bayesian
formulation is a natural starting point for eQTL detection,
which shares common features with our approach. Here, we
present a novel model structure and state of the art imple-
mentation based upon evolutionary Monte Carlo. We report
the results of a simulation study comparing our HESS
method to BAYES (Jia and Xu 2007), as well as to two
alternative approaches: MOM (Kendziorski et al. 2006)
and M-SPLS (Chun and Kelesx 2009). Finally, we show the
application of our method to two diverse genomic experi-
ments in mouse and human genetic contexts.

Theory and Methods

Hierarchical related sparse regression

Let Y 5 fyTk ; 1#k#qg the n · q matrix of responses, with
yk = (yk1,. . ., ykn)T the sequence of n observations of the kth
response, and let X be the n · p design matrix with ith row
xi = (xi1, . . ., xip)T. We assume throughout that xi is quanti-
tative. It encompasses the case of continuous biomarkers,
inbred genotypes {0, 1} for recombinant inbred (RI) strains
and {0, 1, 2} genotype coding for F2 animal crosses or hu-
man data. A linear model for the kth response can be de-
scribed by the equation

yk ¼ ak1n þ Xbk þ ek;

where a is an unknown constant, 1n is a column vector of
ones, bk = (bk1, . . ., bkp)T is the p · 1 vector of regression
coefficients, and ek is the error term with ek � Nð0;s2

kInÞ,
where In is the diagonal matrix of dimension n. BVS is per-
formed by placing a constant prior density on ak and a prior
on bk, which depends on a latent binary vector gk ¼
(gk1,. . ., gkj, . . ., gkp)T, where gkj ¼ 1 if bkj 6¼ 0 and gkj ¼ 0
if bkj ¼ 0, j ¼ 1, . . ., p. Conditionally on the latent binary
vector, the linear model becomes

yk ¼ ak1n þ Xgk
bgk

þ ek;

where bgk is the nonzero vector of coefficients extracted
from bk, Xgk is the design matrix of dimension n · pgk, with

columns corresponding to gkj = 1, and pgk[gTk1p the num-
ber of selected covariates for the k response. For every re-
gression k, we assume that, apart from the intercept ak, X
contains no variables that would be included in every pos-
sible model and that the columns of the design matrix have
all been centered in 0.

Assuming independence of the q regression equations
conditionally on the selected predictors modeled in the q ·
p latent binary matrix G ¼ fgTk ; 1#k#qg, the likelihood
becomes

Yq
k¼1

fn

�
yk;ak1n þ Xgk

bgk
;s2

kIn
�
; (2)

where fn(�) is the n -variate normal density function.
The description of the joint likelihood as the product of q

regression equations is similar to the one proposed by Jia
and Xu (2007). However, one important difference is the
assignment in (2) of a regression specific error variance
s2
k , allowing for transcript-related residual heterogeneity

and making our formulation more flexible. A more general
model, seemingly unrelated regressions (SUR) introduces
additional dependence between the responses Y through
the noise ek, modeling the correlation between the residuals
of different responses (Banerjee et al. 2008). However, it
becomes computational unfeasible when the size of q is
large, which is typical in eQTL experiments.

Prior set-up

For a given k, we follow the same prior set-up for the
regression coefficients and error variance as described in
Bottolo and Richardson (2010). First, we treat the intercept
ak separately, assigning it a constant prior, p(ak) } 1. Sec-
ond, conditionally on gk, we assign a g-prior structure on the
regression coefficients and an inverse-gamma (Inv Ga) den-
sity to the residual variance

p
�
bk

��gk; t;s2
k
� ¼ N

�
0;s2

kt
�
XT
gk
Xgk

�21
�

(3)

p
�
s2
k
� ¼ Inv Gaðas; bsÞ; (4)

with as, bs . 0, and Eðs2
kÞ ¼ bs=ðas21Þ. This conjugate

prior set-up has many advantages. The most important is
that, for a given k, the marginal likelihood p(ykjX, gk, t)
can be written in a closed form that is particularly simple
to compute once (3) and (4) are integrated out. Further-
more, it allows for more efficient MCMC exploration with
correlated predictors than the nonconjugate case (i.e., when
the variance component s2

k in (3) is different from the error
variance) and it provides more accurate identification of the
high-probability models among those visited during the
MCMC (George and McCulloch 1997). Finally it leads
to a simple and interpretable expression, EðbkjjY; tÞ ¼
t=ð1þ tÞbOLS

kj with bOLS
kj the ordinary least-squares solution,

of the level of shrinkage.
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The hierarchical structure on the regression coefficients
is completed by specifying a hyper-prior on the scaling
coefficient t, p(t). We adopt the Zellner–Siow priors struc-
ture for the regression coefficients that can be thought as
a scale mixture of g-priors and an inverse-gamma prior on t,
p(t) ¼ Inv Ga(1/2, n/2) with heavier tails than the normal
distribution, pðbkjgk;s2

kÞ 5 Cauchyð0; ns2
kðXT

gk
XgkÞ21Þ. In

general it has been observed (Bottolo and Richardson
2010) that data adaptivity of the degree of shrinkage con-
forms better to different variable selection scenarios than
assuming standard fixed values (which can be easily imple-
mented by using a point mass prior for t). Since the level of
shrinkage can influence the results of the variable selection
procedure, in our model we force all the q regression equa-
tions to share the same common t, linking the regression
equations hierarchically through the variance of their non-
zero coefficients.

The prior specification is concluded by assigning a Bernoulli
prior on the latent binary value gkj, p(gkjjvkj) ¼ Bernoulli
(vkj). The prior chosen for vkj is of paramount importance
in BVS since it controls the level of sparsity, i.e., the associ-
ation with a parsimonious set of important predictors. For
a given response this task can be accomplished by specifying
a common small-selection probability for all p predictors,
vkj ¼ vk and giving p(vk) ¼ Beta(ak, bk) (Bottolo
and Richardson 2010). Inducing sparsity when all the
responses are jointly considered is harder because further
constraints are desirable. eQTL surveys (Cookson et al.
2009) suggest that only a fraction of expression traits are
under genetic regulation and the number of their control
points is usually small. This can be modeled by assigning
a different probability for each marker vkj ¼ vj with an
hyper-prior on vj. This solution, first proposed by Jia and
Xu (2007) with the conjugate prior p(vj) ¼ Dirichlet(d1j,
d2j), assumes that this selection probability is the same for
all the responses. However, whatever the sensible choice of
the hyperparameters d1j and d2j, d1j, d2j ¼ 1 or d1j, d2j ¼ 0.5,
the posterior density greatly depends on the ratio between the
number of transcripts associated to the marker j, qj, and the
total number the transcripts in the eQTL experiment, q, since
E(vjjY) ¼ (qj + d1j)/(q+ d1j + d2j), where qj ¼ # {j: gkj ¼ 1}.
In such formulation, the results are thus clearly influenced by
the number of responses analyzed and sparsity of each kth
regression cannot be controlled in the prior specification adop-
ted for vkj of gkj.

In this article we propose a novel way of specifying the
selection probability vkj to synthetize the benefits of both
approaches, Bottolo and Richardson (2010) and Jia and Xu
(2007). We propose decomposing this probability into its
marginal effects

vjk 5vk   ·   rj (5)

with vk and rj the “row” and “column” effect, respectively,
and 0# vk # 1 and rj $ 0, but constrained so that 0# vjk #

1. The idea behind this decomposition is to control the level of

sparsity for each row k through a suitable choice of the hyper-
parameters ak, bk of p(vk)¼ Beta(ak, bk), while the parameter
rj captures the “relative propensity” of predictor j to influence
several responses at the same time. Large values of rj indicate
that predictor j has a marked influence on vjk and thus likely
to be a hotspot. The adopted multiplicative formulation has
some similarity to the disease mapping paradigm where the
relative risk level acts in a multiplicative fashion on an
expected number of cases in a binomial or Poisson disease
risk model. A gamma density on the jth latent hotspot effect,
p(rj) ¼ Ga(c, d), with E(rj) ¼ c/d, complete the hierarchical
structure for the decomposition (5).

We conclude this section by describing the choice of the
hyperparameters for vk and rj. Since by construction vk ? rj,
E(vjk) ¼ E(vk)E(rj). If we assume c ¼ d, the hotspot pro-
pensity does not change the a priori row marginal expecta-
tion, E(vjk) ¼ E(vk). However, it inflates the a priori row
marginal variance Var(vjk) . Var(vk), with Var(vjk) ¼
Var(vk)(1 + d21) + d21E2(vk). For the specification of
the hyperparameters ak and bk, we use the Beta-binomial
approach illustrated in Kohn et al. (2001), after marginal-
izing over the column effect in (5). The two hyperpara-
meters can be worked out once E(pgk

) and Var(pgk
), the

expected number and the variance of the number of ge-
netic control points for each response, are specified.

Posterior inference

After integrating out the intercepts, the regression coeffi-
cients and the error variances, the joint density can be
factorized as

pðY;X;G;V; tÞ5 pðYjX;G; tÞpðGjVÞpðVÞpðtÞ; (6)

where pðYjX;G; tÞ 5 Qq
k51pðykjX; gk; tÞ, pðGjVÞ 5Qq

k51

Qp
j51pðgkjjvkjÞ, and pðVÞ 5 Qq

k¼1pðvkÞ
Qp

j¼1pðrjÞ. Pos-
terior inference is carried out on the q · p latent binary
matrix G= {gkj, 1# k# q, 1# j# p}, on the q · p selection
probability matrix V = {vkj, 1 # k # q, 1 # j # p}, and on
the scaling coefficient t, if not fixed.

Sampling G is extremely challenging since complex de-
pendence structures in the X create well-known problems of
multimodality of the model space even for a single regres-
sion equation. Here the computational challenge is higher
since we are aiming to explore a huge model space of di-
mension (2p)q. For this reason vanilla MCMC (MC3, Gibbs
sampler, simple dimension changing moves) cannot guaran-
tee a reliable exploration of the model space in a limited
number of iterations. In this article we use a sampling
scheme introduced by Bottolo and Richardson (2010), evo-
lutionary stochastic search (ESS) as a building block for our
new algorithm HESS. For each response, HESS relies on
running multiple chains with different “temperature” in par-
allel, which exchange information about the set of covari-
ates that are selected in each chain. Since chains with higher
temperatures flatten the posterior density, global moves (be-
tween chains) allow the algorithm to jump from one local
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mode to another. Local moves (within chains) permit the
fine exploration of alternative models, resulting in a com-
bined algorithm that ensures that the chains mix efficiently
and do not become trapped in local modes. Specific modifi-
cations of ESS were introduced to comply with the structure
of vkj, which are sampled with the decomposition (5) rather
than integrating them out as in ESS. This requires some
modifications in the local moves (details in Supporting In-
formation, File S1, Section S.2.2.)

For sampling the selection probability matrix V, we
implemented a Metropolis-within-Gibbs algorithm for each
element of the row effect v ¼ (v1, . . . , vq)T and column
effects r ¼ (r1, . . . , rq)T, rejecting proposed values outside
the range [0, 1]. However, since the dimension of v and r

is very large, tuning the proposal for each element of the
two vectors is prohibitive. To make HESS fully automatic,
we use the adaptive MCMC scheme proposed by Roberts
and Rosenthal (2009), where the variance of the proposal
density is tuned during the MCMC to reach a specified
acceptance rate. To satisfy the asymptotic convergence of
the adaptive MCMC scheme, mild conditions are imposed
(details in File S1, Section S.2.3).

If not fixed, the scaling coefficient t, which is common for
all the q regression equations and all the L chains, is sampled
using a Metropolis-within-Gibbs algorithm with random
walk proposal and fixed proposal variance (details in File S1,
Section S.2.4).

Finally, we describe a complete sweep of our algorithm.
We assume that the design matrix is fully known. If missing
values are present, these can be imputed in a preprocessing
imputation step (for instance using the fill.geno function
from the qtl R package for genetic crosses (Broman and Sen
2009) or FastPhase (Scheet and Stephens 2006) for human
data). Without loss of generality, we assume that the
responses and the design matrix have both been centered.
The same notation is used when t is fixed or given a prior
distribution. For simplicity of notation we do not index var-
iables by the chain index, but we emphasize that the de-
scription below applies to each chain:

• Given V and t we update gk, according to the ESS pro-
cedure, using global and local moves. During the burn-in,
we sample the latent binary vector gk for each k to tune
the regression specific temperature ladder (details in File
S1, Section S.2.5). After the burn-in, at each sweep, we
select at random without replacement a fraction f of the
regressions where to update gk.

• Given G and t, we sample v and r with a random walk
Metropolis with adaptive proposals.

• Given G and V, we sample t with a random walk Me-
tropolis with a fixed proposal. To balance the number of
updates of the latent binary values gkj with those of the
scaling coefficient, at each sweep, the number of times we
sample t is proportional to q · p · L.

The Matlab implementation of the HESS algorithm is
available upon request from the authors.

Postprocessing analysis

In this section we present some of the postprocessing
operations required to extract useful information from the
rich output of our model. We stress that, while here for
simplicity we are not using the output of the heated chains,
following Gramacy et al. (2010), posterior inference could
also be carried out using the information contained in all the
chains.

The primary quantity of interest is the posterior pro-
pensity of each predictor to be a hotspot. In the spirit of
cluster detection rules in disease mapping (Richardson et al.
2004), we use tail posterior probabilities of the propensities
rj, i.e., declare the jth predictor to be a hotspot if

Pr
�
rj.1

���Y�$t; (7)

where t is a chosen threshold. We have found by empirical
exploration and simulations that choosing a posterior
threshold of t ¼ 0.8 gives good performance across different
scenarios with varying dimensions (data not shown).

The next quantity of interest is the posterior probability
of inclusion for the pair (k, j). Following Petretto et al.
(2010), the marginal probability of inclusion is

p
�
gkj 5 1

��yk
�
5C21

k

XS
s51

1ðgðsÞ
kj ¼1ÞðgkÞpðg

ðsÞ
k jykÞ; (8)

where g
ðsÞ
k ¼ ðgðsÞk1 ; . . .  ; gðsÞkj ; . . .  ; g

ðsÞ
kq Þ is the latent binary vec-

tor sampled at iteration s, pðgðsÞk jykÞis the model posterior
probability obtained through inexpensive numerical integra-
tion in the full output (see File S1, Section S.3) and
Ck ¼

PS
s¼1pðgðsÞk jykÞ is the constant of normalization. The

Bayes factor (BF) for the pair (k, j) is derived from (8) as
the ratio between posterior odds and prior odds

BFkj ¼
pðgkj ¼ 1jykÞ

12 pðgkj ¼ 1
��ykÞÞ=

E
�
pgk

�
=p

12
�
E
�
pgk

�
=p

�; (9)

where E(pgk) is the a priori expected number of genetic
control points for the kth transcript.

Similarly to (8), if of interest, we can further evaluate the
joint posterior probability of the set of predictors declared as
hotspots as

pð \H
j¼1

ðgkj ¼ 1Þ��ykÞ ¼ C21
k

XS
s¼1

1�\H
j¼1ðgkj¼1Þ

�ðgkÞpðgðsÞk jykÞ

(10)

with Ck as before and H the set of markers identified as
hotspots.

Finally, the best model visited is defined as

gBk ¼
n
g
ðsÞ
k : max

s
pðgðsÞk jykÞ

o
: (11)
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Note that the configuration posterior probability p(GjY) (see
File S1, section S.3) can be used as an alternative weight in
(8) and (10) or to derive the max a posteriori (MAP) config-
uration visited

GB ¼
n
GðsÞ : max

s
pðGðsÞjYÞ

o
:

Results

Simulation studies

We carried out a simulation study to compare our algorithm
with recently proposed multiple response models: MOM
(Kendziorski et al. 2006), BAYES (Jia and Xu 2007), and M-
SPLS (Chun and Kelesx 2009).

To create more realistic examples, we decided not to
simulate the X matrix, but to use real human-phased geno-
type data spanning 500 kb, region ENm014 (chromosome 7:
126,368,183–126,865,324 bp), from the Yoruba population
used in the HapMap project (Altshuler et al. 2005) as the
design matrix. After removing redundant variables, the set
of SNPs is reduced to P ¼ 498, with n ¼ 120, giving a 120 ·
498 X matrix. As noted by Chun and Kelesx (2009), high
correlations between markers might affect the performance
of variable selection procedures that do not explicitly con-
sider such a grouping structure. The benefit of using real
human data are to test competing algorithms when the pat-
tern of correlation, i.e., linkage disequilibrium (LD), is com-
plex and blocks of LD are not artificial, but they derive
naturally from genetic forces, with a slow decay of the level
of correlation between SNPs (see Figure S1).

In the simulated examples, we carefully select the SNPs
that represent the hotspots (Figure S1): (i) all hotspots are
inside blocks of correlated variables; (ii) the first four SNPs
are weakly dependent (r2 , 0.1); and (iii) the remaining
two SNPs are correlated with each other (r2 ¼ 0.46) and
also linked to one of the previous simulated hotspots (r2 ¼
0.52 and r2 ¼ 0.44, respectively), creating a potential mask-
ing effect difficult to detect. Apart from the hotspots, no
other SNPs are used to simulate transcript–SNP associations.
We simulated four cases:

SIM1: In this example we simulated q ¼ 100 transcripts
from the selected six hotspots, with some transcripts pre-
dicted by multiple correlated markers (polygenic con-
trol): for instance transcripts 17–20 are regulated by
three SNPs at the same time (see Figure S2). Altogether
we simulated 94 transcript–SNP associations in 50 dis-
tinct transcripts. The effects were simulated from a nor-
mal density with smaller variance than in Jia and Xu
(2007), bkj � N(0,0.32)with ek � N(0, 0.12In) to mimic
the smaller signal-to-noise ratio expected in genetically
heterogeneous human data.

SIM2: As in the previous example, we simulated 100
responses, but there are only three hotspots with the same
simulated association as before, leading to 64 transcript–

SNP associations in 30 distinct transcripts. Moreover we
created potential false-positive associations by simulating
transcripts 81–90 and 91–100 using a linear transformation
of transcript 20 with a mild negative correlation (in the
interval [20.5, 20.4]) and of transcript 80 with a strong
positive correlation (in the interval [0.8, 0.9]), respectively.
Since we create false-positive associations, the scenario will
inform on how different algorithms behave when correla-
tions among some transcripts are not due to SNPs.

SIM3: This simulation set-up is identical to the first scenario
for the first 100 responses, but we increase the number of
simulated responses to q ¼ 1,000, simulating the further
900 transcripts from the noise.

SIM4: This is the same as the second simulated data set for
the first 100 responses, with additional 900 responses
simulated from the noise, giving altogether q ¼ 1000
responses.

We discuss here the hyperparameters set-up. Since a pri-
ori, in addition to a large effect of a SNP that is located close
to the transcript (cis-eQTL), we expect only a few additional
control points associated with the variation of gene expres-
sion (typically trans-eQTL); in HESS we set E(pgk) ¼ 2 and
Var(pgk) ¼ 2, meaning the prior model size for each tran-
script response is likely to range from 0 to 6 (Petretto et al.
2010). Following Kohn et al. (2001), we fixed as ¼ 10210

and bs ¼ 1023, giving rise to a noninformative prior on the
error variance. We run the HESS algorithm for 6000 sweeps
with 1000 as burn-in with three chains and u ¼ 1/4. Com-
putational time is similar for the first two simulated exam-
ples, 6 hr, and 10 times greater for the last two simulated
scenarios on a Intel Xeon CPU at 3.33 GHz with 24 Gb RAM.

We run BAYES for 15,000 sweeps with 5000 as burn-in,
recording sampled values every 5 sweeps. The variance d of the
spike component 1 is set 1024, which is 100 times lower than
the noise variance. Since the code available from the authors
was written in SAS/IML, we recoded their Gibbs sampler in
Matlab. We used the default parameters for MOM, while in
M-SPLS the two tuning parameters are obtained through
cross-validation selected in the interval K ¼ 1,. . . , 10 and
h ¼ 0.01, . . . , 0.99. Each simulated example was replicated
25 times and we run the four algorithms on each replicate.

Power to detect hotspots: The identification of the hotspots
is of primary interest for all the algorithms we are comparing.
In HESS using the tail posterior probability Pr(rj .1jY), we
can rank the predictors according to their propensity to be
a hotspot, while in BAYES the posterior mean of the common
latent probability vj, E(vjjY) is utilized to prioritize important
markers. In MOM the strength for a predictor to be a hotspot
is not directly available but, as suggested by the authors,
given a marker, it can be obtained by taking a suitable quan-
tile of the transcript–marker associations distribution across
responses. We use their R function get.hotspots recording the
average of the distribution for each predictor. M-SPLS, after
cross-validation, provides a list of latent components that
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predicts most of the variability of Y. While this group cannot
be interpreted directly as the list of hotspots, we use it to test
the existing overlap between the simulated hotspots and the
latent components. Finally, differently from the analyses pre-
sented in Jia and Xu (2007) and Chun and Kelesx (2009), in
the HESS power calculation, we simply rank the evidence for
being a hotspot provided by each algorithm across the 25
replicates. Therefore we are not using any method-specific
procedure to call a hotspot, based for instance on FDR con-
siderations, that could influence the comparison results.

Figure 1 shows the ROC curves for the four algorithms
considered. HESS (blue lines) outperforms all the other
methods with sizeable power on the simulated examples.
It is not significantly affected by the dimension of the eQTL
experiment (top, q ¼ 100; bottom, q ¼ 1000). This is some-
how expected since the hotspot propensity does not depend
directly on the number of transcripts analyzed (see File S1,
section S.2.3). Spurious correlations among transcripts not
due to SNPs (right) have a negligible effect on the HESS
power, showing robust properties of our algorithm in detect-
ing hotspots under different scenarios.

The other methods show good properties when q ¼ 100,
but their power degrades sensibly when q ¼ 1000. This is
expected for BAYES (green lines) since E(vjjY) is affected by
q, while the performance of MOM (red lines) is more stable.
MOM (red dashed lines) shows good power in the simulated
examples even when the number of markers is larger than
the number of traits, a situation that MOM is not designed
for (top). Finally M-SPLS has greater power than BAYES, but
it is outperformed by both HESS and MOM in the more
sparse scenarios (bottom). Looking more closely at the list
of latent vectors identified by M-SPLS (data not shown), we
noted that the simulated hotspots at SNP 362 and 466 that
are linked to SNP 239 were rarely selected (false negative)
in both SIM1 and SIM3. On the contrary, SNP 75 is very

often included (false positive) in the list of latent vectors
in all the scenarios. This might reflect the high correlation
between SNP 362 and 466 with SNP 239, as well as the
strong dependency between SNP 75 and 30 where we sim-
ulated a hotspot. This suggests that M-SPLS has limited
efficiency in the presence of complex correlation patterns
in the design matrix. In Figure S3, Figure S4, Figure S5,
and Figure S6, interested readers can find the visual repre-
sentation of the signals detected by each algorithm and av-
eraged across the 25 replicates.

Power to detect transcript-marker associations: Figure 2
shows the ROC curves of the transcript–marker marginal
associations detected by each method. Also in this case, to
perform the power calculation, we are not using any method-
specific way to declare a significant association, since we sim-
ply record the output from each algorithm and rank it across
the 25 replicates. In particular we use the marginal probabil-
ity of inclusion p(gkj = 1jyk) (8) for HESS; the posterior
frequency �gkj ¼ SS

s¼1g
ðsÞ
kj =S for BAYES, where g

ðsÞ
kj is the value

recorded at iteration s; the transcript–marker association pro-
vided the MOM object momObj; and finally the associations
selected by bootstrap confidence interval at different type I
error levels (a = 1024, 1023, 1022, 0.05) for M-SPLS.

For transcript–marker association detection, we find that
HESS has higher power than that of the other methods in all
the simulated scenarios. As expected when more responses
are included, the power decreases slightly (bottom), while
spurious associations due to the correlation between tran-
scripts do not seem to affect the ability of HESS to distin-
guish between true and false signals (right). MOM is quite
stable across scenarios, but it reaches only half of the power
of HESS. BAYES and M-SPLS have similar behavior and their
performance degrades when q ¼ 1000. BAYES, in particular,
has very low power since the shrinkage to the null effect,

Figure 1 ROC curves for hotspots detection using HESS
(blue line), MOM (red line), BAYES (green line), and M-
SPLS (black star) in the four simulated scenarios (Figure
S2). From top to bottom, left to right: SIM1, q ¼ 100
and six hotspots; SIM2, q ¼ 100 and three hotspots;
SIM3, q ¼ 1000 and six hotspots; SIM4, q ¼ 1000 and
three hotspots. For M-SPLS, type I error and power were
calculated conditionally on the list of latent vector compo-
nents. (Top) MOM is indicated by a red dashed line to
highlight that it is not designed in the cases when the
number of markers is larger than the number of traits.
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caused by common latent probabilityvj, is particularly strong
in SIM3 and SIM4.

The different power of the methods considered can be
better understood by looking at Figure S3, Figure S4, Figure
S5, and Figure S6, where, for each simulated example, we
averaged the evidence of transcript–marker association
across replicates. HESS is able to identify the correct simu-
lated pattern, with very few false positives. When false-
positive associations are simulated, for instance, in SIM3 and
SIM4, HESS assigns on average lower posterior probability of
inclusion than for the true positive ones (Figure S4 and Figure
S6, top left). While MOM is able to identify the simulated
hotspots, it finds it difficult to separate the true transcript–
marker associations from the spurious ones (Figure S3, Figure
S4, Figure S5, and Figure S6, bottom left). The main limitation
of M-SPLS is the correct identification of the latent vectors
when highly correlated predictors are considered (Figure S3,
Figure S4, Figure S5, and Figure S6, top right). Finally BAYES
is able to identify the simulated pattern when q ¼ 100 (Figure
S3 and Figure S4, bottom right), but it seems to be too con-
servative when the number of responses is large, q ¼ 1000
(Figure S5 and Figure S6, bottom right). The higher false-
negative rate in BAYES may depend on the poor efficiency of
the MCMC sampler (which is based exclusively on the Gibbs
sampling that is not able to jump between distant competing
models) and on the spike and slab prior that is not integrated
out. The latter influences the sampling of gkj since the latent
binary vector depends on the regression coefficients (see
Figure S7 for an illustration).

Real case studies

Here we present two applications of HESS to: (i) mouse gene
expression data published in Lan et al. (2006) that is com-
monly used as a benchmark data set for detection of eQTL
(Chun and Kelesx 2009) and eQTL hotspots (Kendziorski et al.
2006; Jia and Xu 2007) and (ii) human monocytes expression

data set recently analyzed for disease susceptibility by Zeller
et al. (2010).

Mouse data set: The mouse data set has been previously
described in detail (Lan et al. 2006), and it consists of
45,265 probe sets the expression of which has been mea-
sured in the liver of 60 mice. Mice were collected from the
F2-ob/ob cross (B6 · BTBR) and genotype data were avail-
able for 145 microsatellite markers from 19 autosomal chro-
mosomes. To make our analysis comparable with previously
reported studies (Jia and Xu 2007; Chun and Kelesx 2009),
we focused on 1573 probe sets showing sizeable variation in
gene expression in the mouse population (sample variance
.0.12). Running HESS for 12,000 sweeps with 2000 as
burn-in and the same choice of the hyperparameters de-
scribed in the simulation studies, among the 145 markers
16 were identified with posterior tail probability .0.8, reg-
ulating a significant number of probe sets (Table S1). We
report the genome location of the identified hotspots in Fig-
ure 3 and show transcript–marker associations in Figure 4.
Since large hotspot propensity reveals that multiple traits
are controlled by the same marker, we focused on biologi-
cally meaningful transcript–marker associations by using
marginal probability of association .0.95 (corresponding
to local FDR 5%, Ghosh et al. 2006). Six markers were found
to control more than 5% of all analyzed probe sets as shown
in Figure 3. While marker D15Mit63 was previously
detected by BAYES and M-SPLS, three other major regula-
tory points were identified solely by our method: D13Mit91,
D18Mit9, and D18Mit202, controlling 14.1, 10.6, and 9.7%
of all analyzed probe sets, respectively (Table S2).

The regulatory hotspot at marker D13Mit91 is located
within the Kif13a (kinesin family member 13A) gene, which
is involved in intracellular protein transport and microtu-
bule motor activity via direct interaction with the AP-1 adap-
tor complex (Nakagawa et al. 2000). This hotspot is

Figure 2 ROC curves for transcript–marker associations
using HESS (blue line), MOM (red line), BAYES (green line),
and M-SPLS (black star) in the four simulated scenarios
(Figure S2). From top to bottom, left to right: SIM1, q ¼
100 and six hotspots; SIM2, q ¼ 100 and three hotspots;
SIM3, q ¼ 1000 and six hotspots; SIM4, q ¼ 1000 and
three hotspots. For M-SPLS, power is calculated condition-
ally on the list of transcript–marker associations selected
by bootstrap confidence interval at a fixed type I error (a ¼
1024, 1023, 1022, 0.05). In the top, MOM is indicated by
a red dashed line to highlight that it is not designed in the
cases when the number of markers is larger than the
number of traits.
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associated with 222 probe sets, representing 190 distinct
well-annotated genes, that are enriched for specific gene
ontology (GO) terms, including “protein localization” (P ¼
4.2 · 1026), “protein transport” (P ¼ 5.7 · 1026), and
“establishment of protein localization” (P ¼ 6.4 · 1026).
Hence, given its molecular function Kif13a is likely to be
a candidate master regulator of the genes implicated with
protein transport, and whose expression is associated with
marker D13Mit91.

The other two newly identified markers, D18Mit9 and
D18Mit202, are located on mouse chromosome 18.
D18Mit9 resides within a known QTL (Hdlq30) involved
in HDL cholesterol levels (Korstanje et al. 2004) whereas
D18Mit202 resides within a known diabetes susceptibility/
resistance locus (Idd21, insulin-dependent diabetes suscep-
tibility 21) (Hall et al. 2003).

Human data set: The human data set included 648 probe
sets, representing 516 unique and well-annotated genes
(Ensemble GRCh37), that were found to be coexpressed in
monocytes, delineating a network driven by the IRF7 tran-
scription factor in 1490 individuals from the Gutenberg
Heart Study (GHS) (for details on the network analysis,
see Heinig et al. (2010)). This IRF7-driven inflammatory
network (IDIN) was also reconstructed in a distinct popula-
tion cohort: 758 subjects from the Cardiogenics Study show-
ing significant overlap with the network in GHS. The “core”
of the network consisted of a small gene set (q ¼ 17), in-
cluding IRF7 and coregulated target genes, the expression of
which was found to be trans-regulated by a locus on human
chromosome 13q32 using MANOVA in Cardiogenics (Heinig
et al. 2010). However, this trans-regulation was not found in
the GHS study, using similar MANOVA analysis.

Here we take a new look and use HESS to analyze
the larger IDIN with 648 probe sets in the GHS population
(n ¼ 1490 individuals) and the SNP set (P ¼ 209) spanning
1 Mb on chromosome 13q32 (data available upon request
from Stefan Blankenberg under the framework of a formal-
ized collaboration via a Memorandum Transfer Agreement).
While MOM and BAYES fail to detect any signal at this locus,
using HESS we found two SNPs, rs9557207 and
rs11616269, which are detected as hotspots for the IDIN
expression with tail posterior probability 0.83 and 0.91, re-
spectively (Figure 5). These SNPs are located 45.3 kb
(rs9557207) and 25.1 kb (rs11616269) from SNP
rs9585056, which previously showed significant trans-
effect on the core gene set of the network in Cardiogenics
(P ¼ 5.0 · 1023). This region was also associated with EBI2
expression (P ¼ 2.2 · 1028), the candidate gene at this
locus, and with type I diabetes (T1D) (P ¼ 7.0 · 10210)
(Heinig et al. 2010). For the two identified hotspots, we
looked in detail at each transcript–marker association and
compute their BF as given in (9). We observe that 26 and 13
transcripts show clear evidence of associations (BF . 10,
Kass and Raftery 2007) in the two hotspots identified (Table
S3) delineating the extent of regulatory effects. To further

calibrate this evidence, we investigated BF for marker–
transcript associations in a comparable simulated set-up,
that of SIM3. Using the threshold BF . 10 would lead to
declaring ,5% false positive marker–transcript associations
in the identified hotspots (data not shown). Note that most
of these transcripts (80%) are found only in the network
inferred in GHS and not with the Cardiogenics network,
suggesting a complex pattern of regulatory effects around
locus rs9585056 which is highlighted in a specific manner
in each population. These population-specific regulatory
effects could reflect differences in monocytes selection pro-
tocols between GHS and Cardiogenics (see Heinig et al.
(2010) for details). However, the identification of hotspots
at the 13q32 locus by HESS in GHS represents a significant
replication of the findings previously reported, which
reflects the increased power of HESS over alternative
methods.

Discussion

We have presented a new hierarchical model and algorithm,
HESS, for regression analysis of a large number of responses
and predictors and have applied this to hotspot discovery in
eQTL experiments. Simulating a variety of complex scenarios,
we have demonstrated that our approach outperforms cur-
rently used algorithms. In particular, HESS shows increased
power to detect hotspots when a large number of transcripts
are jointly analyzed. This is due to the propensity measure rj
that we use, which quantifies the latent hotspot effect inde-
pendently of the response dimensionality. One improvement
of HESS over vanilla MCMC-based algorithms is in the search
procedure that efficiently probes alternative models and
assesses their importance, thus providing a reliable model

Figure 3 Proportion of transcripts associated with each marker in the
mouse data example (n ¼ 60, P ¼ 145, and q ¼ 1573). Transcript–marker
association was declared at 5% local FDR with marginal probability of
inclusion .0.95. The 16 red triangles indicate markers (two of them are
overlapping and hence are not distinguishable) that have been identified
as hotspots with tail posterior probability .0.8.
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space exploration (Bottolo and Richardson 2010). We have
also illustrated the potential of HESS to discover regulatory
hotspots in two eQTL studies that encompass diverse genetic
contexts (animal model and human data). In contrast to other
methods, using HESS, we were able to replicate an established
regulatory control of a large inflammatory network in humans
(Heinig et al. 2010). Moreover, in the mouse data set, we
identified a new candidate (Kif13a) for the regulation of
a set of genes implicated in protein transport, which was not
detected by other approaches.

Our model is embedded in the linear regression frame-
work with additive effects. One distinct feature of our
formulation is the multiplicative decomposition of the selec-
tion probabilities and its hierarchical set-up, which allows
other structures and/or different types of prior information to
be included. For example, specific weights pkj (suitable nor-
malized) could be added in (5), vjk ¼ vk · rj · pkj, to provide
additional prior information about the regulation of kth tran-
script. This may include cis-acting genetic control or auxiliary
information on regulatory effects of the jth SNP (i.e., evolu-
tionary conservation, coding, noncoding, genomic location,
etc.) (Lee et al. 2009). Likewise, additional structure on the
responses (e.g., KEGG pathways membership, predicted tar-
gets of transcription factors, protein complexes, etc.) could be
included using k-indexed weights, vk, to favor detection of
hotspots for similar responses.

Another possible extension of our method is the inclusion
of interactions in the linear model and their efficient
detection. Recent advances in this direction have employed
either a stepwise search for interactions between prese-
lected main effects (Wang et al. 2011) or partition models
with which to discover modules or clusters of transcript–
marker responses (Zhang et al. 2010). Such approaches
could be embedded in our variable selection algorithm.

The current Matlab version of HESS represents a first step
toward a more efficient implementation in high-level coding

languages (currently undergoing), taking advantage of the
existing C++ version of ESS algorithm (Bottolo et al. 2011).
The approach that we propose here is ideally suited after
prioritizing candidate genomic regions or gene networks, as
shown in the discussed human case study. The flexibility to
incorporate prior biological knowledge makes our method
suitable for a wide range of analyses beyond eQTL hotspots
detection, including genetic regulation of miRNA targets
and metabolic and epigenetic phenotypes.

Figure 4 Heat map of the marginal probabilities of inclu-
sion for each transcript–marker pair in the mouse data
example (n ¼ 60, P ¼ 145, and q ¼ 1573). The 16 red
triangles indicate markers that have been identified as
hotspots with tail posterior probability .0.8.

Figure 5 Tail posterior probability for each marker in the human data
example (Gutenberg Heart Study, n ¼ 1490, P ¼ 209, and q ¼ 648). Red
triangles indicate markers that have been identified as hotspots with tail
posterior probability .0.8. The vertical gray line highlights the physical
position of annotated SNP rs9557217 and rs9585056 that were previ-
ously associated with IDIN network in the Cardiogenics Study cohort and
EBI2 expression (Heinig et al. 2010). Thick horizontal bars on the top of
the figure display physical position of genes in the 1-Mb region obtained
from Ensemble database.
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S.1 Notation

We briefly recall here the notation that was used along the paper. Moreover we introduce some

new notation to easy the the illustration of the MCMC scheme.

Let Y and X the n × q and n × p matrix of the responses and predictors, respectively. Let

Γ = {γlkj , 1 ≤ l ≤ L, 1 ≤ k ≤ q, 1 ≤ j ≤ p} the matrix of latent binary values, where L is

the number of simulated chains, q is the number of responses and p is the number of predictors

and let Γk = (γ1k, . . . ,γlk, . . . ,γLk)
T the L × p latent binary matrix for the kth response in

expanded state-space, where γlk = (γlk1, . . . , γlkj , . . . , γlkp)
T . Similarly let Ω = {ωlkj , 1 ≤ l ≤

L, 1 ≤ k ≤ q, 1 ≤ j ≤ p} the matrix of selection probability with ωlkj = ωlk × ρlj and let Ωk =

(ω1k, . . . ,ωlk, . . . ,ωLk)
T the L×p selection matrix for the kth response in expanded state-space,

where ωlk = (ωlk1, . . . , ωlkj, . . . , ωlkp)
T . For a given chain l, let ωl = (ωl1, . . . , ωlk, . . . , ωlq)

T

and ρl = (ρl1, . . . , ρlj, . . . , ρlp)
T the ‘row’ and the ‘column’ effect, respectively. Finally the

temperature ladder for each regression equation k is denoted by tk = (t1k, . . . , tlk, . . . , tLk)
T

with 1 = t1k < t2k < . . . < tLk.
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S.2 Technical details of MCMC implementation

S.2.1 Full conditionals

Given (6), to sample the binary latent value γlkj , the selection probability ωlkj = ωlk × ρlj and

the scaling coefficient τ , the tempered full conditionals in the expanded state-space are:

• p(γlk| · · · ) ∝ p(yk|X,γlk, τ)
1/tlk

∏p
j=1 p(γlkj|ωlkj)

1/tlk

• p(ωlk| · · · ) ∝ p(ωlk)
1/tlk

∏p
j=1 p(γlkj|ωlkj)

1/tlk

• p(ρlj| · · · ) ∝ p(ρlj)
∏q

k=1 p(γlkj|ωlkj)
1/tlk

• p(τ | · · · ) ∝ p (τ)
∏L

l=1

∏q
k=1 p(yk|X,γlk, τ)

1/tlk

Note that in the full conditional p(ρlj| · · · ) the prior density p(ρlj) is not tempered and the reason

will be explained in Supporting Information S.2.3.

S.2.2 Γ update

The update of the elements of the q × p latent binary matrix Γ is of paramount importance and

efficient algorithms are required in order to visit the very large model space (2p)q and to escape

from local modes. In the following we provide some technical details omitted from the main

text of the local and global moves that we found useful to implement. At each sweep of the

algorithm each/both of moves can be applied to all the q regression equations or to a random

without replacement subgroup of them (see Richardson et al. (2011) for alternative subgroup

selection with adaptive probability).
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Local move

We first introduce the single chain sampling scheme and then we extend the results for multiple

chains. There are many ways to update locally γk, but we found useful to apply an extension of

Bottolo and Richardson (2010) proposal, where traditional samplers used in Bayesian variable

selection (i.e. MC3, Gibbs sampler and Reversible Jump) are replaced by a Metropolis-within-

Gibbs sampler known as Fast Scan Metropolis-Hastings (FSMH). LetLk(j=1) = p(yk|X,γk(j=1), τ)

and Lk(j=0) = p(yk|X,γk(j=0), τ) with γk(j=1) = (γk1, . . . , γkj = 1, . . . , γkp)
T and γk(j=0) =

(γk1, . . . , γkj = 0, . . . , γkp)
T the marginal likelihood once the regression coefficients βk and

the residual error variance σ2
k are integrated out. Moreover let p(γkj = 1|ωkj) = ωkj and

p(γkj = 0|ωkj) = 1− ωkj . If a Gibbs sampler update is performed, a new value of γkj is drawn

from a Bernoulli distribution with probability

θkj =
ωkjLk(j=1)

(1− ωkj)Lk(j=0) + ωkjLk(j=1)

(S.1)

if, in the previous iteration, γkj = 0 since by independence p(γkj = 1|γk\j,ωk) = p(γkj =

1|ωkj) (with an obvious modification if γkj = 1 in the previous iteration). However in a sparse

framework, where pγk
� p, this probability is dominated by ωkj and if ωkj is small (because

for instance ωk or ρj or both are small) also θkj will be small. For instance, it easy to show that

when pγk
� p and therefore by Kohn et al. (2001) ak � bk, the sampled value of ωk is, on

average, very small

E(ωk|yk) =
pγk

+ ak
p+ ak + bk

.

It turns out that, if γkj = 0, it is likely that also the new sampled value will be zero. Kohn et al.

(2001) propose to split the acceptance probability of the Metropolised version of (S.1) (to add a
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new covariate in the regression)

1 ∧ ωkjLk(j=1)

(1− ωkj)Lk(j=0)

Qkj(1 → 0)

Qkj(0 → 1)
,

where Qkj(· → ·) is the proposal density, into two parts: firstly, sampling a proposed value of

γkj , γ∗
kj , from a Bernoulli distribution with probability ωkj and then, if γ∗

kj �= γkj , accept the new

value with probability

1 ∧ Lk(j=1)

Lk(j=0)

since Qkj(0 → 1) = ωkj and Qkj(1 → 0) = 1− ωkj , with an obvious modification if a deletion

is proposed. The advantage of this scheme is that the time consuming evaluation of the marginal

likelihood Lkj is limited to the set of variables where γ∗
kj �= γkj .

The same sampling scheme can be extended to a parallel tempering set-up as illustrated in

Bottolo and Richardson (2010). In this case the Metropolis-within-Gibbs acceptance probability

of the jth predictor in the kth regression and the lth chain is

1 ∧
L
1/tlk
lk(j=1)

L
1/tlk
lk(j=0)

,

where L
1/tlk
lk(j=1) = [p(yk|X,γlk(j=1), τ)]

1/tlk and similarly for L1/tlk
lk(j=0), since adding (deleting) a

covariate in the regression equation is proposed with probability Qlkj(0 → 1|tlk) = ω̃lkj(tlk)

(Qlkj(1 → 0|tlk) = 1− ω̃lkj(tlk)), with

ω̃lkj(tlk) =
ω
1/tlk
lkj

ω
1/tlk
lkj + (1− ωlkj)1/tlk

the renormalised probability [p(γlkj = 1|ωlkj)]
1/tlk = ω

1/tlk
lkj and tlk the temperature attached to

the kth regression in the lth chain. Further discussion and advantages of this sampling scheme

over MC3, Reversible Jump and Gibbs sampler in a multiple chain set-up when the number of
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predictors is very large with respect to the number of truly associated variables are presented in

Bottolo and Richardson (2010).

Global moves

We recall that global moves are bold moves that try to swap part or the whole state of two ran-

domly selected chains among the population of chains (Liang and Wong, 2000). In the following

we present the accepted probability of crossover operator (partial swap), exchange operator and

all-exchange operator (full swap).

Suppose that in the kth regression two new latent binary vectors γ∗
lk and γ∗

rk are generated

from two preselected chains, l and r, according to some crossover operator (Liang and Wong,

2000; Bottolo and Richardson, 2010). The proposed population of chains in the kth regression

Γ∗
k = (γ1k, . . . ,γ

∗
lk, . . . ,γ

∗
rk . . . ,γLk)

T is accepted with probability

1 ∧ exp {f(γ∗
lk|ωlk, τ)/tlk + f(γ∗

rk|ωrk, τ)/trk}
exp {f(γlk|ωlk, τ)/tlk + f(γrk|ωrk, τ)/trk}

Qk(Γ
∗
k,Γk|Ωk, τ, tk)

Qk(Γk,Γ∗
k|Ωk, τ, tk)

,

where f(γlk|ωlk, τ) = log(p(yk|X,γlk, τ))+
∑

j log(p(γlkj|ωlkj)) and Qk(Γk, ·|Ωk, τ, tk) is the

proposal density which is defined as the product of the selection probability and the crossover

operator probability (Liang and Wong, 2000). The transition density depends on the selection

probabilities Ωk in the kth regression, the scaling coefficient τ and the kth regression tempera-

ture ladder tk.

The exchange operator can be seen as special case of the crossover operator where the whole

information contained in the two preselected chains with uniform probability l and r are tenta-

tively swapped with probability

1 ∧ exp {f(γrk|ωlk, τ)/tlk + f(γlk|ωrk, τ)/trk}
exp {f(γlk|ωlk, τ)/tlk + f(γrk|ωrk, τ)/trk}
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since Qk(Γk,Γ
∗
k|Ωk, τ, tk) = Qk(Γ

∗
k,Γk|Ωk, τ, tk) because the selection probability is uniform

over the L chains (random selection without replacement).

Finally, in the all-exchange operator the chains whose states are swopped are selected at

random with probability equal to

phk =
p̃hk∑1+L(L−1)/2

h=1 p̃hk
, (S.2)

where in (S.2) each pair (l, r < l) is denoted by a single number h, p̃hk = p̃(l,r)k, including the

rejection move, h = 1 with p̃(l,r)k = exp{(f(γrk|ωrk, τ)− f(γlk|ωlk, τ))(1/tlk − 1/trk)}.

S.2.3 Ω update

For each chain l, l = 1, . . . , L, we update the elements of the q × p selection probability matrix

Ω by using a Metropolis-within-Gibbs sampler with adaptive proposals. Let ω∗
lk and ρ∗lj the

proposed new values of the kth row effect and jth column effect in the lth chain respectively.

The acceptance probability of the two parameters is

1 ∧
[
(ω∗

lk)
pγlk (1− ω∗

lk)
p−pγlk

ω
pγlk
lkj (1− ωlkj)

p−pγlk

Beta(ω∗
lk; aωk

, bωk
)|J(λ−1(ω∗

lk))|
Beta(ωlk; aωk

, bωk
)|J(λ−1(ωlk))|

]1/tlk
Qlk(λ

∗
lk, λlk)

Qlk(λlk, λ∗
lk)

(S.3)

and

1 ∧ Ga(ρ∗lj; cρj , dρj)|J(ϕ−1(ρ∗lj))|
Ga(ρlj; cρj , dρj)|J(ϕ−1(ρlj))|

q∏
k=1

[
(ω∗

lkj)
γlkj(1− ω∗

lkj)
1−γlkj

ω
γlkj
lkj (1− ωlkj)1−γlkj

]1/tlk
Qlj(ϕ

∗
lj, ϕlj)

Qlj(ϕlj, ϕ∗
lj)

, (S.4)

where in (S.3) pγlk
= γT

lk1p, λlk = logit(ωlk), J(λ−1(ωlk)) is the Jacobian of the inverse trans-

formation evaluated in ωlk and Beta(·) is the beta density function, while in (S.4) J(ϕ−1(ρlj))

is the Jacobian of the inverse transformation evaluated in ρlj , ω∗
lkj = ωlk × ρ∗lj , and Ga(·) is the

gamma density function. As a technical point, since the prior density p(ρlj) cannot be indexed
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by k, in order to write the acceptance probability (S.4), in our model the prior for ρlj is not

tempered.

We sample the proposed new values ω∗
lk and ρ∗lj after suitable transformation from Qlk(λlk, ·) =

φ(λlk, s
2
lk(b)) and Qlj(ϕlj, ·) = φ(ϕlj, s

2
lj(b)), respectively, where slk(b) and slk(b) are the adap-

tive proposals’ standard deviations at batch b and φ(·) is the normal density function. Following

Roberts and Rosenthal (2009), asymptotic convergence is obtained enforcing the diminishing

adaptation condition and imposing the bounded convergence condition. For the former con-

dition, after the batch bth of 50 sweeps, say, the proposals’ standard deviation are updated as

follow: slk(b + 1) = slk(b) ± δs(b) and slj(b + 1) = slj(b) ± δs(b), where we add (subtract)

to the current values slk(b) and slj(b) the quantity δs(b) = min{0.01, b−1/2} if the acceptance

frequency of (S.3) and (S.4) are higher (lower) than the optimal acceptance rate (0.44), respec-

tively. The latter condition is fulfilled assuming that Lλ < slk < Uλ and Lϕ < slj < Uϕ for

some large positive (negative) values of Uλ and Uϕ (Lλ and Lϕ).

S.2.4 τ updates

The variable scaling coefficient is common to all the q regression equations and to all L chains.

A new value τ ∗ is obtained using a Metropolis-with-Gibbs with acceptance probability

1 ∧
Ga(τ ∗; 1/2, n/2)|J(ψ−1(τ ∗))|

L∏
l=1

q∏
k=1

p(yk|X,γlk, τ
∗)1/tlk

Ga(τ ; 1/2, n/2)|J(ψ−1(τ))|
L∏
l=1

q∏
k=1

p(yk|X,γlk, τ)1/tlk

Q(ψ∗, ψ)
Q(ψ, ψ∗)

,

where ψ = log(τ), J(ψ−1(τ)) is the Jacobian of the inverse transformation evaluated in τ ,

Ga(·) is the gamma density function and Q(ψ, ·) = φ(ψ, 1). As in (S.4), the prior density is not

tempered since we are sampling a common value across the q regressions and the L chains. The
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rational of this choice, for a given k, is illustrated in detail in Bottolo and Richardson (2010).

S.2.5 Temperature placement

During the burn-in, for each regression equation k, we automatically tune the temperature ladder

in order to reach a specified acceptance rate of the exchange operator. In particular we chose

as temperature ladder the geometric scale, such that the ratio of two consecutive temperatures

is constant, t(l+1)k/tlk = rk. Then after batch bth, say 100 sweeps, we update rk as follows:

rk(b+ 1) = rk(b)± δr, where we add (subtract) to the current values rk(b) the quantity δr if the

acceptance frequency of the exchange operator are higher (lower) than the optimal acceptance

rate (0.50). For details on how to fix the value of δr interested reader can refer to Bottolo and

Richardson (2010). For a discussion of different temperature scales, see Atchadé et al. (2010).

S.3 Post-processing

For a fixed k,

p(γ
(t)
k |yk) =

1

S

S∑
s=1

p(yk|X,γ
(t)
k , τ (s))p(τ (s))

p∏
j=1

p(γ
(t)
kj |ω(s)

kj )p(ρ
(s)
j )

is the model posterior probability for the kth regression, where γ
(t)
k = (γ

(t)
k1 , . . . , γ

(t)
kq )

T is latent

binary vector recorded at the tth sweep of the algorithm, p(yk|X,γ
(t)
k , τ (s)) is the marginal

likelihood and τ (s), ω(s)
kj = ω

(s)
k × ρ

(s)
j and ρ

(s)
j are the values of the parameters recorded at the

sth sweep.

When the q regressions are jointly considered, the configuration posterior probability is de-
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fined as

p(Γ(t)|Y ) =
1

S

S∑
s=1

p(τ (s))

q∏
k=1

p(yk|X,γ
(t)
k , τ (s))p(ω

(s)
k )

p∏
j=1

p(γ
(t)
kj |ω(s)

kj )p(ρ
(s)
j )

with Γ(t) the configuration of the latent binary matrix at sweep tth.
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Figure S.1: Heat-map of the pattern of correlation, linkage disequilibrium (LD) for Yoruba
population, HapMap project, in the region ENm014 spanning 500-Kb (chrom 7: 126,368,183-
126,865,324 bp). Red squares indicate the marker where the hot-spots have been simulated
(SNP 30, 161, 225, 239, 362 and 466).
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Figure S.2: Map configuration in the four simulated scenarios. From top to bottom, left to right:
SIM1, SIM2, SIM3 and SIM4. SIM1, q = 100 transcripts simulated with SNP 30 and 239 influ-
encing transcripts 1-20 and 71-80, SNP 161 influencing transcripts 17-20, SNP 225 influencing
transcripts 91-100, and finally eQTLs 362 and 466 influencing transcripts 81-90. Altogether 94
transcript-SNP associations are simulated in 50 distinct transcripts; SIM2, 100 responses simu-
lated with only three hot spots (30, 161, 239) and the same simulated pattern of association as
in the first scenario leading to 64 transcript-SNP associations in 30 distinct transcripts; SIM3,
the simulation set-up is identical to the first scenario for the first 100 responses, but the number
of simulated responses is increased to q = 1, 000, simulating further 900 transcripts from the
noise; SIM4, as in the second simulated data set for the first 100 responses, with additional 900
responses simulated from the noise, and altogether q = 1, 000. The symbol ‘G’ in the y-axis
identifies groups of transcripts that are influenced by the same pattern of markers. SIM1 and
SIM2, G1: transcripts 1-16; G2: transcripts 17-20; G3: 21-70; G4: transcripts 71-80; G5: tran-
scripts 81-90; G6: transcripts 91-100. SIM3 and SIM4 as before with G7: transcripts 101-1000.
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Figure S.3: Heat-map of the signals detected by each method in the first simulated exam-
ple, SIM1, and averaged across the 25 replicates. In M-SPLS the significant (non-significant)
transcript-marker association is recoded as 1 (0). From top to bottom, left to right: HESS, M-
SPLS, MOM and BAYES. The symbol ‘G’ in the y-axis identifies groups of transcripts that are
influenced by the same pattern of markers. Red triangles indicate where the hot-spots have been
simulated.
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Figure S.4: Heat-map of the signals detected by each method in the second simulated exam-
ple, SIM2, and averaged across the 25 replicates. In M-SPLS the significant (non-significant)
transcript-marker association is recoded as 1 (0). From top to bottom, left to right: HESS, M-
SPLS, MOM and BAYES. The symbol ‘G’ in the y-axis identifies groups of transcripts that are
influenced by the same pattern of markers. Red triangles indicate where the hot-spots have been
simulated.
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Figure S.5: Heat-map of the signals detected by each method in the third simulated exam-
ple, SIM3, and averaged across the 25 replicates. In M-SPLS the significant (non-significant)
transcript-marker association is recoded as 1 (0). From top to bottom, left to right: HESS, M-
SPLS, MOM and BAYES. The symbol ‘G’ in the y-axis identifies groups of transcripts that are
influenced by the same pattern of markers. Red triangles indicate where the hot-spots have been
simulated.
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Figure S.6: Heat-map of the signals detected by each method in the fourth simulated exam-
ple, SIM4, and averaged across the 25 replicates. In M-SPLS the significant (non-significant)
transcript-marker association is recoded as 1 (0). From top to bottom, left to right: HESS, M-
SPLS, MOM and BAYES. The symbol ‘G’ in the y-axis identifies groups of transcripts that are
influenced by the same pattern of markers. Red triangles indicate where the hot-spots have been
simulated.
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Figure S.7: Trace plot of the latent binary values obtained from BAYES (top) and HESS (bottom)
in SIM1 for the 10 true positive associations simulated in the third hot-spot (j = 225, k =

91, . . . , 100). For the 25 replicates, the output (γkj) of each algorithm was piled up giving rise
to a vector of 50,000 (2,000 × 25) and 125,000 (5,000 × 25) sweeps, respectively. Red dot
and blue cross indicate γkj = 0 and γkj = 1, respectively. HESS correctly identifies the 10
transcript-marker associations as indicated by a large majority of blue crosses. Good MCMC
mixing is clear from the sequence of blue crosses interrupted by red dots and vice versa. On the
contrary, BAYES misses the simulated associations (false negative) and gets stuck in γkj = 0

producing long stripes of consecutive red dots. Overall, the different efficiency in the MCMC
mixing between BAYES and HESS is apparent from the diverse coloured stripe patterns.






