
INVESTIGATION

Experimental Designs for Robust Detection
of Effects in Genome-Wide Case–Control Studies

Roderick D. Ball1

Scion (New Zealand Forest Research Institute Limited), Rotorua 3046, New Zealand

ABSTRACT In genome-wide association studies hundreds of thousands of loci are scanned in thousands of cases and controls, with
the goal of identifying genomic loci underpinning disease. This is a challenging statistical problem requiring strong evidence. Only
a small proportion of the heritability of common diseases has so far been explained. This “dark matter of the genome” is a subject of
much discussion. It is critical to have experimental design criteria that ensure that associations between genomic loci and phenotypes
are robustly detected. To ensure associations are robustly detected we require good power (e.g., 0.8) and sufficiently strong evidence
[i.e., a high Bayes factor (e.g., 106, meaning the data are 1 million times more likely if the association is real than if there is no
association)] to overcome the low prior odds for any given marker in a genome scan to be associated with a causal locus. Power
calculations are given for determining the sample sizes necessary to detect effects with the required power and Bayes factor for biallelic
markers in linkage disequilibrium with causal loci in additive, dominant, and recessive genetic models. Significantly stronger evidence
and larger sample sizes are required than indicated by traditional hypothesis tests and power calculations. Many reported putative
effects are not robustly detected and many effects including some large moderately low-frequency effects may remain undetected.
These results may explain the dark matter in the genome. The power calculations have been implemented in R and will be available in
the R package ldDesign.

THE goal of genome-wide association studies (GWAS) is
to understand the genetic basis of quantitative traits and

complex diseases, by relating genotypes of large numbers of
SNP markers to observed phenotypes. Results of GWAS to
date suggest that the traits of interest are governed by many
small effects (e.g., Wellcome Trust Case Control Consortium
2007; Diabetes Genetics Initiative of Broad Institute of
Harvard and MIT 2007; Gudbjartsson et al. 2008; Lettre
et al. 2008; Weedon et al. 2008; Lango Allen et al. 2010).
Previously, we gave Bayesian power calculations for ge-
nome-wide association studies for quantitative traits (Ball
2005). This approach ensures power to detect effects of
a specified size with a given Bayes factor, where the Bayes
factor is chosen large enough to overcome the low prior
odds for effects. These were the first results showing that
much larger sample sizes were needed (e.g., thousands,
even for a modest Bayes factor) than had been used at the
time (cf. Luo 1998). However, these calculations do not

apply to a binary phenotype such as presence or absence
of a disease, e.g., coronary artery disease or type II diabetes,
or case–control studies. Case–control studies, where a fixed
(e.g., approximately equal) number of cases and controls are
sampled, are used to study diseases that may not have high
prevalence in the general population. This approach has
higher power than a random population sample that may
otherwise have only a small number of cases. In this article,
we extend Bayesian power calculations for genome-wide
association studies to case–control studies. Power calcula-
tions are given for dominant, recessive, and additive genetic
models for biallelic observed marker loci in linkage disequi-
librium with biallelic causal loci.

Genome-wide association studies

GWAS aim to understand the genetic basis of quantitative
traits and complex diseases by detecting and locating SNPs
in linkage disequilibrium (LD) with causal loci or, alterna-
tively, developing models predictive of phenotype.

Experimental design is a key component to any study.
Without sufficient power, effects may not be detected, and
those that are detected may not be robustly detected. Effects
may be subject to selection bias (Miller 1990; Ball 2001)
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where overestimated effects are overrepresented among
the selected (or “significant”) effects, inflating the variance
explained. Selection bias is a problem whenever the power
to detect the true size of effect is not high. The fact that we
observe only the estimated size of effect that may be subject to
selection bias represents an additional difficulty. Selection bias
can be overcome using Bayesian methods that allow for model
uncertainty (e.g., Ball 2001; Sillanpää and Corander 2002).

The power of an experiment to detect effects of various sizes
is an important consideration when interpreting the results of
GWAS, since it bears on the proportion of undetected effects.

Spurious associations

The measure of statistical evidence is also critical in consid-
eration of spurious associations. There have been many
published spurious associations (reviewed in Terwilliger
and Weiss 1998; Altshuler et al. 2000; Emahazion et al.
2001; Ball 2007a). In many of these, p-values were used,
and it would have been apparent from a Bayesian analysis
that the evidence was weak, e.g., with a Bayes factor ,1
meaning that the data were more likely to be observed un-
der the null hypothesis, H0, of no effect than under the
alternative hypothesis, H1, that there is a real effect.

Even in larger studies (e.g., Diabetes Genetics Initiative of
Broad Institute of Harvard and MIT 2007; Wellcome Trust
Case Control Consortium 2007), using the apparently highly
stringent threshold (P = 5 · 1027, the then de facto standard),
evidence for effects near the threshold (about half of the most
significant effects reported), while strong, was not strong
enough to overcome prior odds of, e.g., 1/50,000 that might
apply to SNPs in a genome scan (cf. the scenario in Figure 1
below). Even (in fact, especially) with large sample sizes, power
and spurious associations are important considerations. While
larger and larger samples will eventually detect any effect of
given size, there will be more and more possibly spurious
effects “detected” at or near the threshold of significance.

There are two main approaches to power calculations
for GWAS: frequentist (e.g., Purcell et al. 2003; Menashe
et al. 2008) and Bayesian (Ball 2004, 2005). We briefly
review frequentist and Bayesian measures of evidence
with reference to recent GWAS. We start from first prin-
ciples to make a clear and coherent argument and address
common misconceptions.

Frequentist measures of evidence

In the traditional (frequentist) approach to experimental
design, a threshold a (often a = 0.05) is selected, and the
sample size chosen so that the experiment has good power,
i.e., the probability of detecting effects of a specified size or
greater is reasonably high (e.g., 0.8).

This approach relies on the efficacy of the p-value as
a measure of evidence. Implicit in the approach is the belief
that a p-value P , a represents good evidence. This may not
be the case. A number of authors have pointed out the prob-
lems with using p-value for testing scientific hypotheses
(e.g., Berger and Berry 1988; Ball 2007a).

Yet the common misconception persists that P , 0.05
represents good evidence among users of frequentist meth-
ods. For example, “Posterior odds of 10:1 seem acceptable
which justifies the use of P , 0.05 for testing provided that
the prior odds are close to evens” (Dudbridge and Gusnato
2008, p. 233). This does not consider the fact that the Bayes
factor (discussed below), when P = 0.05, may not even be
greater than one. The value of the conditional alpha (ac)
(Sellke et al. 2001), which is a more appropriate value of a
to use when P = p is observed, would be

ac$
�
1þ ½2eplogðpÞ�21

�21
(1)

¼ 0:29 ðif P ¼ 0:05Þ; (2)

which is substantially .0.05.
With this approximation, a p-value of 0.05 corresponds

to a Bayes factor of only �3, or 3:1 odds and not 19:1 as
the value 0.05 might suggest. A p-value of 0.05 may represent
weak evidence regardless of the prior used (cf. Berger and
Berry 1988), and the problem gets worse with larger sample
sizes (Table 3 in Ball 2005); e.g., for a t-test with n = 100,
a p-value of 0.05 may correspond to a Bayes factor of #1.

The p-value has some of the desired characteristics of
a measure of evidence. From a given experiment, smaller
p-value correspond to stronger evidence. This monotonicity
property also holds for other statistics, e.g., the t- or F-statistics.
The p-value represents a standardization of these statistics, at
least under H0, to a uniform random variable. The p-value
does not, however, successfully standardize evidence across
different experiments that may have different experimental
designs, sample sizes, allele frequencies, etc. The p-value is
not the probability of being wrong and is not similar to the
Bayesian posterior probability Pr(H0 j data). The latter proba-
bilities are generally considerably higher regardless of the
prior used (Berger and Berry 1988). The reason the p-value
is difficult to relate to quantities of direct interest, such as the
probability of a real effect, is that the p-value is the probability
of an unobserved event; e.g.,

P ¼ Pr
�
Trep $ tobs jH0

�
; (3)

where T is a test statistic, tobs is its observed value, and Trep is
the value of T in a hypothetical replicate of the experiment.

Figure 1 Example parameters leading to prior odds and Bayes factor
required.
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Summarizing the data by the observed p-value amounts to
conditioning on this unobserved event. The event that was
observed is {T = tobs}.

Many authors have provided sophisticated adjustments to
p-values (see, e.g., Dudbridge and Gusnato 2008 and refer-
ences therein). However, the key problem of what threshold
to use remains unresolved. A comparison-wise threshold of
a = 0.05 is clearly (in hindsight) too weak, but there is no
reason why an experimentwise a = 0.05 is the right or
optimal choice, even after adjustments for the effective num-
ber of comparisons or a permutation test. A lower, more
stringent, threshold eliminates more false positives, but also
reduces power to detect the true positives. Underestimating
the threshold needed means that many experiments are un-
derpowered to detect effects with sufficient evidence. An
apparently low p-value often does not represent strong ev-
idence. This often becomes apparent only when Bayes fac-
tors or posterior probabilities are calculated.

In early association studies there were many spurious
associations, some with apparently low p-values. Around the
time of the Wellcome Trust Case Control Consortium (2007)
and Diabetes Genetics Initiative of Broad Institute of
Harvard and MIT (2007) studies, P = 5 · 1027 became
a de facto standard. Such associations from three large sam-
ple meta-analyses for human height (Gudbjartsson et al.
2008; Lettre et al. 2008; Weedon et al. 2008) have been
termed “robustly detected” yet of the 54 “significant” asso-
ciations only 3 were replicated across all three studies. A
probable explanation is low power (Visscher 2008),
suggesting these effects have not been robustly detected.

Since then, lower and lower thresholds are being used,
representing an admission of the inadequacy of previous
thresholds. For example, Dudbridge and Gusnato (2008) ar-
gue that an experimentwise P = 0.05 threshold should be
used, after adjusting for the equivalent number of indepen-
dent comparisons leading to a recommended threshold P =
5 · 1028 for individual comparisons in a Western European
population. This coincides with the current de facto standard
for genome-wide significance of P = 5 · 1028 generally re-
quired for journal publications (P. Visscher, personal commu-
nication) although the National Human Genome Research
Institute catalog of genome-wide association studies
(Hindorff et al. 2011) admits associations with P, 1 · 1025.

Dudbridge and Gusnato (2008, p. 233) note that “at the
time of writing the WTCCC reported successful replication of
10 associations from 11 attempts” but that this does not
contradict the need for a lower threshold, because only
a few of the 10 successfully replicated associations had
p-values near the threshold.

Bayesian measures of evidence

Bayesian statistics are statistics soundly based on probability
theory. Despite centuries of use, no better alternative has
been found for making decisions under uncertainty. Bayes’
theorem is used to combine prior information, data, and
a statistical model (likelihood), to obtain information about

model parameters. Where more than one model is consid-
ered, e.g., corresponding to two hypotheses, H0, H1, the
Bayes factor represents the strength of evidence in the data,
for H1 over H0, while posterior probabilities for models (or
odds) represent our probabilities after combining prior in-
formation with data.

The advantages of Bayesian measures of evidence are
that prior knowledge is incorporated transparently and that
the posterior distributions of parameters and posterior
probabilities of alternate hypotheses are directly relevant
for making a decision. Bayesian measures include Bayes
factors and posterior probabilities. Posterior probabilities
represent our knowledge about unknown parameters after
analyzing the data. Posterior odds are the ratio of posterior
probabilities for two models or hypotheses.

Let y denote the observed data. From Bayes’ theorem, it
follows that the posterior odds are given by

Pr ðH1 j yÞ
Pr ðH0 j yÞ ¼

Pr ðy jH1Þ
Pr ðy jH0Þ ·

Pr ðH1Þ
Pr ðH0Þ: (4)

The Bayes factor is defined as the ratio

B ¼ Pr ðy jH1Þ
Pr ðy jH0Þ: (5)

Comparing (4) and (5), we see that

posterior odds ¼ Bayes factor · prior odds: (6)

From (6), we see that the Bayes factor is clearly interpretable
as the strength of evidence, in the data, for a real effect. This
interpretation is valid regardless of sample size, statistical
model, or experimental design. Increased posterior odds can
be obtained either by getting a larger Bayes factor (e.g., by
using a more powerful experiment) or by increasing prior
odds (e.g., utilizing knowledge of candidate genes and path-
ways, results from other studies, etc.). Prior odds represent
the scientist’s prior judgement of the odds before the exper-
iment was carried out. Observers with different prior odds
can easily compute their posterior odds using (4).

A quasi-Bayesian approach to setting the threshold

A quasi-Bayesian argument has been used to justify the
threshold of 5 · 1027 used in the Wellcome Trust Case
Control Consortium (2007) study: “for a class of tests sig-
nificant when a statistic T . t, the posterior odds may be
expressed in terms of the prior odds as

Pr ðH1jT.tÞ
Pr ðH0jT.tÞ ¼

Pr ðT.t jH1ÞPrðH1Þ
Pr ðT.t jH0ÞPrðH0Þ

¼ 12b

a
·
Pr ðH1Þ
Pr ðH0Þ;

(7)

where a, b are the type-I and type-II error rates. . .Assuming
106 independent regions of the genome, 10 disease-causing
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genes and average power 50% to detect an associated gene,
posterior odds of 10:1 in favor of association would be
achieved by a nominal p-value of 5 · 1027 . . .” (Dudbridge
and Gusnato 2008, p. 228).

Note that 1 2 b is the power, denoted by P below.
This recognizes the importance of prior odds, and the

implied “Bayes factor” Bfreq of

Bfreq ¼
12b

a
¼ 106 (8)

is of the right order of magnitude for recent GWAS.
However, effects detected at or near the specified threshold
(P � a = 5 · 1027 rather than P , a) will have a signifi-
cantly lower Bayes factor. For example, using the approxi-
mate Bayes factor formula below with a conservative default
prior, we obtain a Bayes factor of B = 4318.6. This is a sub-
stantially lower Bayes factor and not high enough to obtain
posterior odds greater than one in a genome scan in the
absence of additional prior information.

The problem with the argument above is that a is a valid
error rate only if set pre-experimentally. Once P has been
observed, it is an error to set a = P. Regardless of whether a
was set pre-experimentally, once P has been observed for an
association it is an error to replace the observation {T= tobs}
by the unobserved event {T . tobs}. According to Fisher
(1959, p. 55), we must use all the information. From
a Bayesian perspective, effects at differing loci are a priori
exchangeable but once differing values of T have been ob-
served they are not a posteriori exchangeable, and hence they
cannot be treated collectively as in (7) above.

The argument given in the Wellcome Trust Case Control
Consortium (2007, Box 1, p. 664) was that (7) applies if all
effects are assumed to of the same size; however, this works
only if the p-value are in some sense an “average” of a dis-
tribution of p-values with P # a and not if P = a. A more
appropriate value of a to use in (7) would be ac, leading to

Bfreq ¼ 12b

ac
¼ 0:5

1:97 ·  1025 ¼ 25356; (9)

which is still somewhat higher than the approximate Bayes
factor with prior information equivalent to a sample of size a=
1 and approximately equal to the approximate Bayes factor
with prior information equivalent to a sample of size a = 43.

Power

In the Bayesian context we define the power, P, as the probabil-
ity of detecting an effect with at least the specified Bayes factor.

When designing experiments with power to detect effects
with a given type-I error rate, frequentists are specifying the
maximum p-value among effects considered detected. When
designing experiments with power to detect effects with
a given Bayes factor, we are specifying the minimum Bayes
factor among effects considered detected.

To robustly detect effects, we design experiments with
power to detect effects with a given Bayes factor, where the

Bayes factor is large enough to overcome prior odds for the
expected number of effects of the given detectable size, to
obtain reasonable posterior odds.

For illustration, we consider the scenario shown in Figure
1, suggesting that a Bayes factor of the order of 1 · 106

would be required. This scenario would apply for recent
GWAS with a population with the extent of LD similar to
that of a diverse human population. The Bayes factor re-
quired, and also the number of markers required, increases
and the prior odds decrease as the extent of LD decreases or
the expected number of causal loci decreases.

In the Methods section we derive the Bayesian power
calculation for case–control studies. The key to the power
calculation is a closed-form expression for an (asymptotic)
approximate Bayes factor, which we derive using the Savage–
Dickey density ratio, i.e., the ratio of prior to posterior den-
sities at zero. Approximate Bayes factors of this type for
testing genetic associations were first given in Ball
(2007a) and subsequently by Wakefield (2007) (reviewed
in Stephens and Balding 2009).

Note that formulas for Bayes factors can also be obtained
using the method of Bayes factors based on test statistics
(Johnson 2005, 2008) by assuming a prior for the test sta-
tistic values and treating the test statistic as data. However,
here we use a prior for the effect being tested (i.e., the log-
odds ratio at the causal locus), rather than a prior for the
test statistic (a statistic at the marker locus), and our ap-
proximate Bayes factors are based on an asymptotic normal
approximation to the posterior.

In the Results section we show retrospective power cal-
culations for associations from several previous studies, in-
cluding power of case–control studies for detecting the
APOE locus for Alzheimer’s disease and the Wellcome Trust
Case Control Consortium (2007) GWAS SNP associations.
Power curves for a range of values of minor allele frequency,
odds ratio, and allele frequency are shown graphically. R
functions have been written to enable users to carry out
the power calculations without needing to understand the
technical details. R examples are shown in Appendix B.

Methods

We first derive a generic form for the approximate Bayes
factor. The generic approximate Bayes factor is given in
terms of a normalized test statistic (Zn), sample size (n), and
equivalent number of sample points in the prior (a). We
assume biallelic loci. For each genetic model (dominant,
recessive, and additive) for a case–control study we solve
for the expected value of Zn for the specified size of effect in
terms of the log-odds ratio and its standard error, disease
prevalence, allele frequencies, and linkage disequilibrium
coefficient. For simplicity, we first consider the dominant
or recessive models, where the causal locus is observed, de-
riving the generic form of the Bayes factor (Equation 21).

Further details are given in Appendix A, including deriva-
tions for the additive model, expressions for the sampling
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variance of the odds ratio at the observed locus in terms of
the linkage disequilibrium coefficient and allele frequencies,
and an expression for a in terms of a prior for the log-odds
ratio at the causal locus.

Contingency tables for the observed counts and corre-
sponding row probabilities are shown in Tables 1 and 2,
where pij are the probabilities within rows. For the dom-
inant model, X = 0 for genotype aa, and X = 1 for geno-
types Aa, AA. For the recessive model, X = 0 for genotypes
aa, Aa, and X = 1 for genotype AA. For the additive model,
we need to consider 2 · 3 contingency tables (Appendix A).

The Savage–Dickey density ratio (Dickey 1971) estimate
of the Bayes factor for comparing nested models (e.g., H0:
u = 0 vs. H1: u 6¼ 0) is given by the ratio of prior to posterior
densities at 0,

B ¼ pðu ¼ 0Þ
gðu ¼ 0 j yÞ ðBayes’ theoremÞ; (10)

where u is the parameter being tested, and p(u), g(u |y) are
the prior and posterior distributions for u. The formula is
exact in nested models (i.e., u = 0 vs. u 6¼ 0) with a common
prior for “nuisance parameters” (i.e., parameters not being
tested) (not shown), if we integrate over nuisance parame-
ters to obtain p(u), g(u |y). The formula is approximate if
we condition on nuisance parameters.

In a case–control study the parameter we wish to test is
the log-odds ratio. The test statistic ðĥÞ and sampling distri-
bution are given by

ĥ ¼ log
�
n11n22
n12n21

�
(11)

¼ log p̂11 2 log p̂12 2 log p̂21 þ log p̂22 (12)

ĥ � N
�
h;s2

n
� ðsampling distributionÞ; (13)

where

h ¼ log p11 2 log p12 2 log p21 þ log p22 (14)

s2
n ¼ 1

n1p11
þ 1
n1p12

þ 1
n2p21

þ 1
n2p22

(15)

(Menashe et al. 2008).
The normalized test statistic and variance are given by

s2
1 ¼ ns2

n ¼ 1
c

�
1
p11

þ 1
p12

�
þ 1
12 c

�
1
p21

þ 1
p22

�
(16)

Zn ¼ ĥffiffiffiffiffiffi
nŝn

p ¼ ĥ

ŝ1
� N

�
h

s1
;
1
n

�

ðasymptotic sampling distributionÞ;
(17)

where c is the proportion of controls in the sample.
The generic form of the approximate Bayes factor is

calculated as follows. Assume a prior, with information
equivalent to a sample points,

pðzÞ � N
�
0;
1
a

�
: (18)

The posterior density is given by

gðz j Zn ¼ znÞ ffi N
�

n
nþ a

zn;  
1

nþ a

�
ðBayes’ theoremÞ

(19)

and the Bayes factor is given by

B ¼ pðz ¼ 0Þ
gðz ¼ 0 j ZnÞ ðSavage-DickeyÞ (20)

B �
ffiffiffi
a

pffiffiffiffiffiffiffiffiffiffiffi
nþ a

p   exp
�

n2Z2n
2ðnþ aÞ

�
: (21)

Note the following:

1. In (19) we use zn to represent the observed value of Zn,
which is considered fixed in the posterior calculation, but
we use Zn in (20) and (21) to represent a random future
value.

2. From (20) it is apparent that the effect of the prior is not
negligible asymptotically. It is not recommended to use
a noninformative prior, but a = 1, i.e., a prior with in-
formation equivalent to a single sample point, is often
a good conservative “default”.

3. From (21), it is apparent that, for fixed a, the Bayes factor
for a given p-value [p ¼ 2ð12Fð ffiffiffi

n
p

ZBÞÞ] depends on
sample size n and prior information a. As n / N, the
value of the “noncentrality parameter” (nZ2

B) needs to go
to infinity (albeit slowly due to the exponential) to

Table 1 Contingency table for a case–control study with two
genotypic classes

Counts

X ¼ 0 X ¼ 1

Control n11 n12 n1
Case n21 n22 n2

Table 2 Row probabilities for a case–control study with two
genotypic classes

Row probabilities

X ¼ 0 X ¼ 1

Control p11 p12
Case p21 p22
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maintain a fixed value of B. This is in essence Lindley’s
paradox (Lindley 1957). A corollary is that we should use
prior information if available. In practice, before consid-
ering extremely large sample sizes, smaller experiments
should be done (e.g., a series of geometrically increasing
sample sizes) in which case prior information would be
increasing, e.g., a may be O(n).

4. When considering linkage disequilibrium (Appendix A),
a is replaced by the corresponding value ax at the marker,
which is larger, depending on allele frequencies and dis-
equilibrium. Hence, even for the same sample size, Bayes
factors and p-values may give different rankings of effects
(cf. Ball 2005; Stephens and Balding 2009).

5. In the absence of prior estimates of location, since the
sign of effects is unknown, it is natural to use a symmetric
prior centered at 0. Where prior estimates of location are
available, such as from a previous study, (19) and (21)
can be adjusted accordingly.

6. The normal prior is convenient and allows a range of
prior variances.

Let ZB be the solution to (21) for Zn:

Z2B ¼ nþ a
n2

  log
�nþ a

a
  B2

�
: (22)

The power is given by

P � 12F

� ffiffiffi
n

p �
ZB 2

h

s1

��
: (23)

To apply (22) and (23) we need expressions for s2
1 in

terms of h, a. To incorporate linkage disequilibrium between
the observed and causal loci, we need expressions for the
log-odds ratio (denoted by hx) at the observed locus in
terms of the log-odds ratio (h) at the causal locus. Addition-
ally, we need expressions for a in terms of the prior variance,
s2
h; of h. The required expressions are calculated in terms of

the prior variance ðs2
hÞ for h, disease prevalence, linkage

disequilibrium coefficients, and allele frequencies at the
causal locus in Appendix A. Examples and power curves
are shown in the next section. Example power calculations
in R are shown in Appendix B.

Results

Example 1: Alzheimer’s/APOE

We consider the APOE locus associated with Alzheimer’s
disease (Strittmatter and Roses 1996). This was a previously
detected locus that was used to illustrate the potential of
a GWAS approach. Previous calculations used simulations
(Nielsen and Weir 2001; Ball 2007a, Example 8.6). To illus-
trate the deterministic power calculations of this article, we
reduce to a biallelic locus by amalgamating the low-risk
alleles e2, e3, reducing the genotypes to aa, Aa, AA corre-

sponding to zero, one, or two copies of the high-penetrance
e4 allele, respectively. Reduced genotype frequencies and
penetrances are shown in Table 3.

For the marker SNP2 considered by Nielsen and Weir
(2001), the minor allele frequency is P = 0.15 and for the
reduced APOE locus the minor allele frequency is q = 0.137.
The coefficient of linkage disequilibrium between SNP2 and
e4 is D = 0.0717. The maximum LD for these allele frequen-
cies is Dmax = 0.1164. We calculate the power of detecting
the association at the SNP marker locus SNP2 with the ob-
served level of disequilibrium (D = 0.0717) and also at the
APOE locus itself (D = Dmax).

Results of power calculations for detecting the APOE–
Alzheimer’s association with Bayes factors B = 1, 106 are
shown in Table 4. The marker is assumed to be in partial LD
(D = 0.0717) similar to SNP2 or in complete LD (D =
0.1164). Despite the large odds ratio, a sample of size n =
200, which had been suggested by the frequentist calcula-
tions, is sufficient only for power P � 0.5 to detect associ-
ations with a Bayes factor 1, while a sample of size of the
order of 1000 is necessary to obtain a Bayes factor of 106

with power P = 0.8. Despite the odds ratio being much
higher for the recessive model, the power is similar to that
of the dominant model. For similar odds ratios, power
would be much lower for the recessive model (cf. power
curves in Figures 5–9 below). Results are qualitatively sim-
ilar to the results from simulations (Ball 2007a), which in-
dicated a slightly higher sample size of 1200 for power of
0.95 to obtain B = 106.

Note that the odds ratio for the additive model is the
increase in odds per copy of the risk allele (Q), or the square
root of the increase from qq to QQ, while the odds ratio for
the dominant or recessive model is the full increase in odds
ratio from qq to QQ.

Example 2: Wellcome Trust Case–Control
Consortium SNPs

P-values, odds ratios, and approximate Bayes factors for
three Wellcome Trust Case–Control Consortium (WTCCC)
loci are shown in Table 5. The diseases are rheumatoid
arthritis (RA) and Crohn’s disease (CD). The very low
p-value for SNP rs6679677 corresponds to a very large
Bayes factor:.2.1 · 1022. Evidence for the other two effects
with p-values around the WTCCC threshold of 5 · 1027

while quite strong (B . 1000) is not enough to overcome
the low prior odds for associations (e.g., B . 106), unless
there is other evidence or prior knowledge.

Plots of power vs. odds ratio for the Wellcome Trust Case
Control Consortium (2007) case–control studies are shown

Table 3 Reduced genotype frequencies and penetrances for the
APOE locus

aa Aa AA

Frequency 0.746 0.237 0.019
Penetrance 0.052 0.122 0.600
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in Figure 2 for the effects at maximum LD (D9 = 1) and
in Figure 3 for D9 = 0.5 for effects at half the maximum
LD (D9 = 0.5). The size of the odds ratio that can be
detected with power 0.8 is shown in Table 6. While effects
with odds ratio (OR) = 1.3 are detectable at the maximum
LD with P = q = 0.5, the detectable odds ratios increase
substantially at lower LD, lower q, and lower p/q.

In contrast, Wellcome Trust Case Control Consortium
(2007, p. 662) claimed “The power of this study . . . aver-
aged across SNPs with minor allele frequencies above 5% is
estimated to be 43% for alleles with a relative risk of 1.3
increasing to 80% for a relative risk of 1.5, for a p-value
threshold of 5 · 1027. ”

On the face of it this suggests the study can detect effects
with minor allele frequency (MAF) . 5%; however, alleles
at MAF = 5% are included in an average over a population
of alleles at higher frequencies. Moreover, this population of
SNPs may not be representative of actual causal loci (cf.
Yang et al. 2010).

The power to detect effects when the MAF is actually 5%
is shown in Table 7. For the dominant model, effects with
relative risk r = 1.3 are detected only with P � 0.5 with
Bayes factor B = 1. Good power at higher Bayes factors is
obtained only for the higher values of relative risk, e.g., r =
2.0 for P = 0.98 for B = 106.

Note that at low allele frequencies and high odds ratios
the odds ratio estimator (Equations 11 and A6) may be
inefficient, particularly for the additive model, due to small
probabilities in the denominator. For the additive model, the
genotypes Aa, AA (or Qq, QQ) can be amalgamated (assum-
ing A is the low-frequency allele), giving a more efficient

estimator. Since the genotype AA is at a low frequency
(2.5 · 1023), this is approximately equivalent to the domi-
nant model with the same odds ratio.

Example 3: WTCCC CNVs

Wellcome Trust Case Control Consortium (2010) tested
3432 copy number variant (CNV) polymorphisms for
associations with eight diseases in the Wellcome Trust Case
Control Consortium (2007) case–control population. Of the
12 replicated associations (Wellcome Trust Case Control
Consortium 2010, Table 2) reported, 6 were from the HLA
region. Some of these had very high Bayes factors, but, given
the high LD in the HLA region these cannot definitively be
attributed to a CNV. Two others were from the IRGM locus
used as a positive control.

Bayes factor calculations for 3 of the 12 (non-HLA, non-
IRGM) “replicated” CNV associations from Wellcome Trust
Case Control Consortium (2010, Table 2) are shown in Fig-
ure 4. The diseases are RA, type I diabetes (T1D), and type II
diabetes (T2D). Since Bayes factors were already given, we
set the value of the prior variance parameter, a, in the ge-
neric Bayes factor (Equation 21) so that the approximate
Bayes factors agreed with those published (except for the
T2D association where a much higher value of a was indi-
cated, so we used a value of a = 28, similar to the other two
associations), used the same value of a in calculating the
Bayes factor for the replication (p-value only published),
and then calculated a combined Bayes factor as the product
of the original Bayes factor and the Bayes factor from the
replication.

The highest combined Bayes factor for the non-HLA, non-
IRGM loci was �13,000. Thus, even after replication, there
were no new associations definitively attributable to CNVs,
with Bayes factors high enough to obtain respectable poste-
rior odds.

Power curves

Power is plotted vs. sample size (log10n, n = ncases +
ncontrols) for the dominant (Figure 5), recessive (Figure 6),
and additive (Figure 7, Figure 8, and Figure 9) models.
Power is plotted at the maximum LD for the given allele
frequencies (D9 = 1), for various values of odds ratio
and minor allele frequencies, for the dominant and recessive
models. For the additive model the effect of various values
of LD (D9 = 0.5, 0.8, 1) is also shown. As expected, power
increases with increasing n, and odds ratio, and decreases
with decreasing D9. Power is low at lower allele frequencies,

Table 4 Power (P) of case–control studies to detect associations
between APOE and Alzheimer’s disease with a given Bayes factor

Model D D9 na B P
Additive OR=3.90 0.0717 0.61 100 1.0 0.83

0.1164 1.00 100 1.0 0.94
0.0717 0.61 200 1.0 0.96
0.1164 1.00 200 1.0 0.998
0.0717 0.61 1000 106 0.96
0.1164 1.00 1000 106 0.999

Dominant OR=3.37 0.1164 1.00 100 1.0 0.70
0.1164 1.00 200 1.0 0.93
0.1164 1.00 800 106 0.999

Recessive OR=20.2 0.1164 1.00 100 1.0 0.50
0.1164 1.00 200 1.0 0.76
0.1164 1.00 800 106 0.999

a n = ncases + ncontrols.

Table 5 p-values, odds ratios, and approximate Bayes factors for 3 WTCCC loci (3 of �24 reported)

Disease Locus SNP Trend P ORhet ORhom MAF Ba

RA 7q32 rs11761231 3.9 · 1027 1.44 1.64 0.370 5488
RA 1p13 rs6679677 4.9 · 10226 1.98 3.32 0.096 2.1 · 1022

CD 10q21 rs10761659 1.7 · 1026 1.23 1.55 0.460 1329
a Approximate Bayes factor (Equation 21) with a ¼ 1, n ¼ 5000.
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particularly for the recessive model; e.g., n = 100,000 is
required to detect an effect with OR = 2 when the minor
allele frequency is at 0.05. A sample size approaching n =
100,000 is also required to detect the lower odds-ratio

effects (OR = 1.1) even at intermediate allele frequencies.
Even at maximum LD, recessive effects at low allele frequen-
cies (MAF = 0.05) and lower odds ratios are not detectable
even with n = 106.

Figure 2 Power of case–control studies
with ncases ¼ 2000, ncontrols ¼ 3000 to
detect effects in the additive model with
a Bayes factor B ¼ 106. Power is plotted
vs. odds ratio for various values of minor
allele frequency at the causal locus (q ¼
0.1, 0.2, 0.5) and ratio of minor allele
frequency at the marker to minor allele
frequency at the causal locus (p/q ¼
0.25, 0.5, 1). Linkage disequilibrium is
assumed to be the maximum possible
for the given allele frequencies (D9 ¼ 1).

Figure 3 Power of case–control studies
with ncases ¼ 2000, ncontrols ¼ 3000 to
detect effects in the additive model with
a Bayes factor B ¼ 106. Power is plotted
vs. odds ratio for various values of minor
allele frequency at the causal locus (q ¼
0.1, 0.2, 0.5) and ratio of minor allele
frequency at the marker to minor allele
frequency at the causal locus (p/q ¼
0.25, 0.5, 1). Linkage disequilibrium is
assumed to be half the maximum possi-
ble for the given allele frequencies (D9 ¼
0.5).
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Discussion

The goal of GWAS to understand the genetics of quantitative
traits and complex diseases and to predict the phenotypes
has not yet been achieved. To date, only a small percentage
of the variation has been explained by putative SNP
associations.

We have demonstrated, with conservative assumptions,
the sample size required to detect SNP effects with respect-
able posterior probabilities. We have derived power calcu-
lations for the power as a function of sample size, effect size,
allele frequencies, linkage disequilibrium between marker
and causal locus, and Bayes factor required. The number of
markers required depends on the extent of linkage disequi-
librium and genome size. The Bayes factor required depends
on the expected number of causal loci.

We have seen that much larger sample sizes may be
needed, particularly with lower allele frequencies, disparate
allele frequencies between markers and causal loci, in-
complete LD, and/or recessive inheritance. Lack of power
to detect such effects may explain the large unexplained
variance—the so-called “dark matter in the genome”, from
GWAS to date.

Although the proportion of variance explained by puta-
tive loci to date is small, a model with random SNP effects
explains nevertheless �50% of the variance in human height
(Yang et al. 2010). Yang et al. showed, by simulations, that
[as was known from power calculations (Ball 2004, 2005)],

if the set of causal loci were at lower minor allele frequen-
cies than the set of SNPs used, the proportion of variance
explained decreases. Extrapolating from the variance
explained by current SNPs, they showed that the random-
effects model could potentially explain all the additive ge-
netic variance for human height, hence explaining the “dark
matter” in the genome. Their simulations consider the re-
gression of genetic covariance (Gij) for the causal loci on that
for the SNP loci (Aij). This rests on the statement “The
effects of the SNPs are treated statistically as random, and
the variance explained by all the SNPs together is estimated.
This approach . . . does not attempt to test the significance of
individual SNPs but provides an unbiased estimate of the
variance explained by the SNPs in total” (Yang et al. 2010,
p. 565).

However, accuracy of predictions on independent data
was not demonstrated. When fitting a large number of
random SNP effects, the “variance explained” is not neces-
sarily attributable to individual causal loci in LD with the
SNPs. The variance explained by the random-effects model
pertains to the data to which the model is fitted and not to
predictions on independent samples. Although close rela-
tives were removed, the random-effects model, with large
numbers of SNPs (many more than population sample
points), may nevertheless be detecting relatedness between
individuals. Despite a high variance explained, the model

Table 6 Minimum odds ratio detectable with power P ¼ 0.5, 0.8 to obtain a Bayes factor B $ 103, 106 in case–control studies with ncases ¼
2000, ncontrols ¼ 3000, for the additive model

B ¼ 1000 B ¼ 106

D9 ¼ 0.5 D9 ¼ 1 D9 ¼ 0.5 D9 ¼ 1

q p/q P ¼ 0.5 P ¼ 0.8 P ¼ 0.5 P ¼ 0.8 P ¼ 0.5 P ¼ 0.8 P ¼ 0.5 P ¼ 0.8

0.5 1.00 1.45 1.56 1.22 1.27 1.61 1.72 1.27 1.34
0.2 1.00 1.78 1.96 1.37 1.45 2.05 2.25 1.48 1.57
0.1 1.00 2.68 3.12 1.76 1.93 3.39 a 2.02 2.22
0.5 0.50 2.14 2.42 1.50 1.60 2.59 2.89 1.67 1.79
0.2 0.50 3.16 a 1.91 2.13 a a 2.26 2.54
0.1 0.50 a a a a a a a a

0.5 0.25 a a 2.34 2.68 a a 2.87 3.28
0.2 0.25 a a a a a a a a

0.1 0.25 a a a a a a a a

Minimum detectable odds ratio is shown for various values of minor allele frequency at the causal locus (q ¼ 0.1, 0.2, 0.5) and ratio of minor allele frequency at the marker
to minor allele frequency at the causal locus (p/q ¼ 0.25, 0.5, 1) and linkage disequilibrium (D9 ¼ 0.5, 1).
a Minimum OR . 3.5.

Table 7 Power of case–control studies with ncases ¼ 2000, ncontrols ¼
3000 to detect effects in the dominant model with minor allele
frequency of 0.05, with Bayes factors B $ 1000, 106 for various
values of relative risk (r), at maximum LD (D ¼ Dmax ¼ 0.0475)

r OR B = 1 B = 1000 B = 106

1.3 1.34 0.61 0.06 2.5 · 1023

1.5 1.58 0.99 0.67 0.20
2.0 2.25 1.00 1.00 0.98
2.5 3.00 1.00 1.00 1.00

Odds ratios (OR) were calculated from relative risk assuming a baseline risk q0 ¼ 0.1.

Figure 4 Combined Bayes factor calculations for three Wellcome Trust
Case Control Consortium (2010) CNVs.
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may nevertheless have poor predictive accuracy (possibly
less than due to putative associations found from GWAS to
date) on independent individuals in a diverse population.

The extent of linkage disequilibrium (effective population
size) is critical to the efficacy of the random-effects model.
In an animal population of low effective population size

Figure 5 Power to detect effects in the
dominant model with Bayes factor B ¼
106. Power is plotted vs. sample size
(log10n) for various values of minor allele
frequency (MAF ¼ 0.05, 0.2, 0.5) and
odds ratio (OR ¼ 1.1, 1.2, 1.5, 2). Link-
age disequilibrium is assumed to be the
maximum possible for the given allele
frequencies (D9 ¼ 1).

Figure 6 Power to detect effects in the
recessive model with Bayes factor B ¼
106. Power is plotted vs. sample size
(log10n) for various values of minor allele
frequency (MAF ¼ 0.05, 0.2, 0.5) and
odds ratio (OR ¼ 1.1, 1.2, 1.5, 2). Link-
age disequilibrium is assumed to be the
maximum possible for the given allele
frequencies (D9 ¼ 1).
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reasonable prediction accuracy may be obtained, reflecting
the regression of Gij on Aij. In such a population it is not
necessary to detect the marker closest to a causal locus;
rather, the effect would be shared among markers in a re-
gion, giving an effective increase in power. In contrast, in

a diverse human population (with a fairly small number of
markers within extent of LD of a given locus), the additive
variance Aii itself may be low, e.g., if there were a relatively
small number of causal loci poorly tagged by the SNPs (due
to low power). Moreover, the actual distribution of SNP

Figure 7 Power to detect effects in the
additive model with Bayes factor B ¼
106. Power is plotted vs. sample size
(log10n) for MAF ¼ 0.05, for various val-
ues of linkage disequilibrium (D9 ¼ 0.5,
0.8, 1) and odds ratio (OR ¼ 1.1, 1.2,
1.5, 2).

Figure 8 Power to detect effects in the
additive model with Bayes factor B ¼
106. Power is plotted vs. sample size
(log10n) for MAF ¼ 0.05, for various val-
ues of linkage disequilibrium (D9 ¼ 0.5,
0.8, 1) and odds ratio (OR ¼ 1.1, 1.2,
1.5, 2).
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effect sizes may be quite different from the random-effects
model assumptions, in which case the random-effects model
theory would not apply.

Without sufficient power and high enough Bayes factors,
a number of putative associations may not be robustly
detected. They may be spurious and/or their effects over-
estimated. The good news is that this means there may still
be large-effect SNPs of moderate to low MAF remaining to
be discovered.

Replication is important, but replication by itself does not
imply effects are “real”. Even after replication, the evidence
still needs to be quantified, e.g., in terms of Bayes factors
and posterior probabilities. The need to quantify evidence
after replication is exemplified by the Wellcome Trust Case
Control Consortium (2010) CNVs, where, after excluding
the high-LD HLA region and the positive control locus IRGM,
no new CNVs with combined Bayes factors B $ 14,000 were
found from .24,000 disease–CNV associations tested.

The reader may have noted the appearance of similar
quantities in Bayes factor calculations to frequentist calcu-
lations. For example, the classical F-statistic in the Spiegelhal-
ter and Smith (1982) Bayes factor and in the nZ2

n factor in the
exponent of the expression for the approximate Bayes factor
(Equation 21) is similar to the noncentrality parameter in the
chi-square test. Where the likelihood is characterized by a suf-
ficient statistic, this statistic will feature in both the Bayes
factors and the frequentist statistics. This does not, however,
mean that the Bayesian and frequentist approaches are equiv-
alent. The statistic values and interpretation are different.

We have seen there are substantial differences between
frequentist and Bayesian methods in interpretation of

evidence and sample sizes required. What threshold to use
is unresolved in the frequentist domain and is likely to
remain so because the threshold needed for a given Bayes
factor depends on sample size and allele frequencies.

Experimentwise thresholds can be computed with permu-
tation tests; however, there is no reason an experimentwise
threshold should apply. We are not searching for a single
effect vs. no effect; rather, we are searching for the set of
causal loci, of which there are expected to be a number.
Hence, although testing single markers along the genome
involves multiple tests, the problem of determining which
set of loci is causal is, intrinsically, a model selection problem.
This has been considered in the QTL mapping context (Ball
2001; Sillanpää and Corander 2002), where LD is generated
by recombinations within a family. The same considerations
apply in association studies when LD is generated in a popu-
lation. The “model” is a regression on the set of causal loci, or
nearby markers, and probabilities need to be evaluated for
alternative models. Typically many models are consistent
with the data. In association studies the method is best ap-
plied to a “window” of markers corresponding roughly to the
extent of linkage disequilibrium.

An alternative to using p-values is the false discovery rate
(Benjamini and Hochberg 1995). This is preferable since
we are interested in the probability that effects are real.
However, the false discovery rate (FDR) is in essence a
poor man’s posterior probability—the false discovery rate
(modulo complexities of “estimating the prior” and assump-
tions) is an estimate of 1 minus the average posterior prob-
ability for a set of effects. Like p-values, the FDR can be
misleading in that the posterior probability for effects near

Figure 9 Power to detect effects in the
additive model with Bayes factor B ¼
106. Power is plotted vs. sample size
(log10n) for MAF ¼ 0.5, for various val-
ues of linkage disequilibrium (D9 ¼ 0.5,
0.8, 1) and odds ratio (OR ¼ 1.1, 1.2,
1.5, 2).
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the threshold will be considerably lower than the average.
Moreover, it is suboptimal to replace the individual posterior
probabilities by the average: individual posterior probabili-
ties for effects below the threshold will differ; hence the
effects are not a posteriori exchangeable, and the individual
posterior probabilities contain more information. According
to Fisher (1959, p. 55), we must use all the information.

Dudbridge and Gusnato (2008) estimate the equivalent
number of independent tests and propose adjusting for this
number of multiple comparisons. This quantity is compara-
ble to the total number of markers here since we consider
marker spacing comparable to the extent of linkage disequi-
librium. When there are substantially more markers, the
natural generalization is to consider the power of detecting
an association with one or more markers within a window of
size comparable to the extent of linkage disequilibrium.
Since there may be a number of markers in the window
putatively associated with the trait, the analysis would nec-
essarily use a multilocus approach (e.g., Ball 2001), estimat-
ing the posterior probability of all models with one or more
markers in the window. Developing power calculations for
this scenario is a topic for future research; however, we
anticipate only a moderate increase in power for dense
markers compared to markers spaced at about the extent
of linkage disequilibrium, with most of the increase in power
coming from a higher probability of a marker being near
maximum LD (D9 = 1) with a QTL.

It has been stated that a “naive” Bayesian analysis
would be similar to a frequentist analysis (Dudbridge
and Gusnato 2008). This may be the case for estimation
where estimates with a noninformative prior are similar to
frequentist maximum-likelihood estimates. This is not the
case for inference, where we need the probability that an
effect is real, where it does not make sense to use a non-
informative prior. The use of p-values is anticonservative;
e.g., the use of the conditional a (ac) (Sellke et al. 2001) is
more conservative than using a, and the use of the Bayes
factor (Equation 21) with a = 1 is more conservative than
using ac in (9).

This use of lower and lower thresholds in frequentist
GWAS analyses represents a use of prior knowledge, e.g.,
based on experience from studies, e.g., considering what
was “detected” and what previously reported associations
were spurious with previous thresholds. This use of prior
knowledge by frequentists is interesting, given that the fre-
quentist rationale for using frequentist rather than Bayesian
methods is to avoid use of prior distributions to be “objec-
tive”. Unlike Bayesian methods, this use of prior knowledge
is not transparent and probably inefficient.

Part of the power calculation involves the prior number
of causal effects and the sizes of effects, which are unknown.
Nevertheless there is prior information. Since the heritability
of the traits of interest is generally known, the number of
effects greater than a given size can be bounded—e.g., if the
heritability is 10%, there can be at most 10 loci each explain-
ing $1% of the variance. At the same time, effects less than

a detectable size in the given experiment can and should be
neglected. Considering the size of effects detected in pre-
vious smaller studies and the power of these studies gives an
upper bound on the size of effects, at least for similar minor
allele frequencies.

Furthermore, prior information on effect sizes will be and
is emerging as more results become available. Prior in-
formation can be obtained from other studies, e.g., of other
traits or populations. Prior information can also be elicited
from “experts”. Prior elicitation is an important but relatively
neglected area (O’Hagan et al. 2006). Experts may consider
evidence from similar or related experiments, traits, and
populations; from bio-informatics; and from known gene-
pathway relationships, etc. How much weight to give each
type of evidence is, like any judgment, inevitably subjective
(cf. Berger and Berry 1988). This sort of prior information is
currently used by readers of journal articles—if there is
a plausible biological explanation for an effect, it tends to
be believed. Just how much weight is being given to prior
information in such circumstances is, however, unclear.

We recommend interpreting results with posterior proba-
bilities (shades of gray), rather than as significant or non-
significant on the basis of a threshold, and using posterior
probabilities as a basis for making a decision, using Bayesian
decision theory (e.g., De Groot 1970; Ball 2007b). In decision
theory, the expected utility (benefit) of any decision (e.g., to
replicate or not to replicate or to carry out map-based cloning
or functional testing) is the average over the posterior distri-
bution of the benefit for given values of parameters. The
optimal decision is the one that gives the maximum expected
utility. Even if the Bayes factor is not high enough to give high
posterior odds, an effect may be worth following up.

Effects without strong enough evidence to give respectable
posterior odds (e.g., $0.8) include published effects with p-
values near the thresholds of 5 · 1027. A Bayes factor of the
order of 106 is required for respectable posterior odds. Effects
near the threshold, with Bayes factors of the order of 1000,
require further evidence, e.g., replication and/or justification
for higher prior odds before we believe they are probably real.
For example, B $ 1000 in a genome scan may yield a poste-
rior probability of 1/50 for an effect that would be worth
following up, if the expected benefits, assuming the effect is
real, are .50 times the cost of follow-up. Bayes factors B $

1000 obtained in both the genome scan and replicate studies
should (conservatively) combine to give B $ 106 and hence
respectable posterior odds in the scenario above (Figure 1).
Calculations using (21) with a = 1 (not shown) show that
even the current de facto standard of 5 · 1028 does not
correspond to Bayes factors .105 for sample sizes .1000.
For sample sizes of 100,000 as in recent meta-analyses of
human height (Gudbjartsson et al. 2008; Lettre et al. 2008;
Visscher 2008; Weedon et al. 2008) a threshold of 3.9 ·
10210 would be needed to obtain a Bayes factor of 106.

The scenario in Figure 1 is, of course, not the only possi-
bility. A higher extent of linkage disequilibrium would result
in lower Bayes factors being needed, while higher Bayes
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factors and more markers would be needed for a more di-
verse African population. Lower Bayes factors may be needed
if there was more prior information either on the size of
possible effects or on their number. Candidate genes mapping
into QTL regions may have higher prior probability (Ball
2007b).

R functions for the calculations used in this article will be
made available in a future version of the R package ldDesign
(Ball 2004).
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Appendix A: Equations for Dominant, Recessive,
and Additive Models Allowing for LD

To incorporate LD, consider biallelic marker and causal loci
with allele frequencies 1 2 q, q for alleles {a, A}, and 1 2 p,
p for alleles {q, Q}, respectively. Denote the row probabili-
ties at the observed (marker) locus and causal locus by pij,
qij, respectively (cf. Table 2 or for the additive model Table
A2 below). Let D denote the linkage disequilibrium coeffi-
cient such that

PrðAQÞ ¼ pqþ D: (A1)

To distinguish between the marker and the causal locus
let hx denote the log-odds ratio at the marker locus and h

the log-odds ratio at the causal locus. Similarly let ax, a de-
note the prior equivalent sample size at the observed and
causal loci, respectively. When incorporating LD, the Bayes
factor and power calculations are based on the estimates
and standard errors at the observed locus, as above, but
the assumed true effect size (log-odds ratio) and prior val-
ues are at the causal locus.

We assume a prior for h is given as

h � N
�
0;s2

h

�
: (A2)

Recall that s2
1 ¼ ns2

n is n times the sampling variance of
the estimated log-odds ratio (Equation 16). If we wish to
specify the prior in terms of the equivalent sample size, then

a ¼ s2
1

s2
h

(A3)

and

ax ¼ s2
1

s2
hx

(A4)

so that

ax ¼ a ·  
s2
h

s2
hx

: (A5)

Since we still use the estimated log-odds ratio at the
marker locus, our estimated odds ratio is still the same as
(11) above; i.e.,

ĥx ¼ log 
�
n11n22
n12n21

�
(A6)

¼ log p̂11 2 log p̂12 2 log p̂21 þ log p̂22 (A7)

for the dominant or recessive models.
Expressions for h;  ̂h, and s2

1 involve the cell probabilities
pij. To solve for the Bayes factors these will be expressed in

terms of qij, which in turn will be solved for in terms of
prevalence (n), baseline risk (q0), and relative risk (r),

n ¼ Pr ðcaseÞ (A8)

q0 ¼ Pr ðcase j qqÞ; (A9)

where the prevalence and baseline risk are related by

n ¼
8<
:

q2q0r2 þ 2ð12 qÞq  q0rþ ð12qÞ2q0 ðadditive modelÞ�
2q2 q2

�
q0rþ ð12qÞ2q0 ðdominant modelÞ

q2q0rþ
�
12 q2

�
q0 ðrecessive modelÞ

(A10)

and the log-odds ratio and relative risk are related by

h ¼ log
�
r
12 q0
12 rq0

�
: (A11)

The prior variance for hx is related to that for h by

s2
hx

¼
�
@hx
@h

�2

s2
h: (A12)

To incorporate LD into the power calculations (Equations
22 and 23) we need expressions for hx;  s

2
1, and ax. For the

dominant or recessive models these are given in terms of pij
by Equations 11 and 16 with h replaced by hx together with
(A5). For the additive model these are given in terms of pij
by (A46)–(A48) below together with (21)–(23) and (A5).
To determine ax we also need to solve for @hx=@h (Equa-
tions A5 and A12). The partial derivatives will be taken re-
garding q0 as a function of r, given implicitly by (A10), with
n regarded as fixed. This also uses the partial derivative of h
with respect to r given by

@h

@r
¼ ð@q0  = @rÞ

�
r22 r

�
2 q0 þ 1�

q202 q0
�
r2 þ ð12 q0Þr

: (A13)

The required equations for each model are given in the
following subsections.

Equations for the Dominant Model with LD

Dominant model, expression for the partial derivative
›hx=›h

hx ¼ log p112 log p122 log p21 þ log p22; (A14)

and hence

@hx
@h

¼
0
@ 1
p11

X2
j¼1

@p11
@q1j

@q1j
@r

2
1
p12

X2
j¼1

@p12
@q1j

@q1j
@r

2
1
p21

X2
j¼1

@p21
@q2j

@q2j
@r

þ 1
p22

X2
j¼1

@p22
@q2j

@q2j
@r

1
A,

@h

@r
: (A15)
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Dominant model, equations for pij

p11 ¼ q11
ð12qÞ2 ðDþ ð12pÞð12qÞÞ2 2 q12

2qð12 qÞ
h
ðDþ ð12pÞð12qÞÞ2 2 ð12pÞ2

i
(A16)

p12 ¼ 2
q11

ð12qÞ2 ½ðDþ ð12pÞð12qÞÞ2 2 ð12qÞ2� þ  q12
2qð12 qÞ½ðDþ ð12pÞð12qÞÞ2

þ 12 ð12pÞ2 2 ð12qÞ2�
(A17)

p21 ¼ q21
ð12qÞ2ðDþ ð12pÞð12qÞÞ2 2 q22

2qð12 qÞ½ðDþ ð12pÞð12qÞÞ2 2 ð12pÞ2�� (A18)

p22 ¼2
q21

ð12qÞ2
h
ðDþ ð12pÞð12qÞÞ2 2 ð12qÞ2

i

þ q22
2qð12 qÞ

h
ðDþ ð12pÞð12qÞÞ2þ12 ð12pÞ2 2 ð12qÞ2

i
: (A19)

Dominant model, equations for qij

q11 ¼ ð12qÞ2ð12 q0Þ
12 n

; (A20)

q12 ¼
�
2q2 q2

�ð12 q0rÞ
12 n

; (A21)

q21 ¼ ð12qÞ2q0
n

; (A22)

q22 ¼
�
2q2 q2

�
q0r

n
: (A23)

Dominant model, equation for q0 in terms of q,r

q0 ¼ 2
n

ðq2 2 2qÞr2 q2 þ 2q2 1
: (A24)

The partial derivatives @pij=@qij can be read from the coef-
ficients of qij in (A16)–(A19).

Dominant model, partial derivatives ›qij / ›r

@q11
@r

¼ 2
ð12qÞ2
12 n

� @q0
@r

; (A25)

@q12
@r

¼ 2

�
2q2 q2

�
12 n

�
�
@q0
@r

rþ q0

�
; (A26)

@q21
@r

¼ ð12qÞ2
n

� @q0
@r

; (A27)

@q22
@r

¼
�
2q2 q2

�
n

�
�
@q0
@r

rþ q0

�
: (A28)

Dominant model, partial derivative ›q0/ ›r

@q0
@r

¼ 2

�
q22 2q

�
q0

ðq2 22qÞr2 q2 þ 2q2 1
: (A29)

Equations for the Recessive Model with LD

Recessive model, expression for the partial derivative
›hx=›h

hx ¼ log p11 2 log p12 2 log p21 þ log p22 (A30)

and hence

@hx
@h

¼
0
@ 1
p11

X2
j¼1

@p11
@q1j

@q1j
@r

2
1
p12

X2
j¼1

@p12
@q1j

@q1j
@r

2
1
p21

X2
j¼1

@p21
@q2j

@q2j
@r

þ 1
p22

X2
j¼1

@p22
@q2j

@q2j
@r

1
A,@h

@r
: (A31)

Recessive model, equations for pij

p11 ¼ q11
12 q2

�
ðDþ pqÞ2þ12 p2 2 q2

�
2

q12
q2

�
ðDþ pqÞ2 2 q2

�
(A32)

p12 ¼ 2
q11

12 q2
�
ðDþ pqÞ22 p2

�
þ q12

q2
ðDþ pqÞ2 (A33)

p21 ¼ q21
12 q2

�
ðDþ pqÞ2þ12 p2 2 q2

�
2

q22
q2

�
ðDþ pqÞ2 2 q2

�
(A34)

p22 ¼ 2
q21

12 q2
�
ðDþ pqÞ2 2 p2

�
þ q22

q2
ðDþ pqÞ2: (A35)

Recessive model, equations for qij

q11 ¼
�
12 q2

�ð12 q0Þ
12 n

; (A36)

q12 ¼ q2ð12 q0rÞ
12 n

; (A37)

q21 ¼
�
12 q2

�
q0

n
; (A38)

q22 ¼ q2q0r
n

: (A39)
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Recessive model, equation for q0 in terms of q,r

q0 ¼ n

q2r2 q2 þ 1
: (A40)

The partial derivatives @pij=@qij can be read from the coef-
ficients of qij in (A32)–(A35).

Recessive model, partial derivatives ›qij / ›r

@q11
@r

¼ 2

�
12 q2

�
12 n

� @q0
@r

; (A41)

@q12
@r

¼ 2
q2

12 n

�
@q0
@r

rþ q0

�
; (A42)

@q21
@r

¼
�
12 q2

�
n

� @q0
@r

; (A43)

@q22
@r

¼ q2

n
�
�
@q0
@r

rþ q0

�
: (A44)

Recessive model, partial derivative ›q0 / ›r

@q0
@r

¼ 2
q2q0

q2r2 q2 þ 1
: (A45)

Equations for the Additive Model with LD

For the additive model (additive on the log-odds-ratio scale)
we have the 2 · 3 contingency tables (Table A1 and Table A2).

For the additive model, let hx be the log-odds ratio for aa vs.
Aa. By assumption this is the same as the odds ratio for Aa vs.
AA. Averaging the estimates for these two comparisons gives

ĥx ¼ 1
2
log

�
n11n23
n13n21

�
(A46)

¼ 1
2
ðlog p̂11 2 log p̂13 2 log p̂21 þ log p̂23Þ; (A47)

where the terms in p12, p22 cancel, and

s2
1 ¼ 1

2c

�
1
p11

þ 1
p13

�
þ 1

2ð12 cÞ
�

1
p21

þ 1
p23

�
: (A48)

Note that for low allele frequencies the estimator (A46)
may be inefficient due to low probabilities for the genotype

AA. Our software uses a weighted average of the two odds
ratios, where the weighting is chosen to maximize the non-
centrality parameter.

Additive model, expression for the partial derivative
›hx=›h

hx ¼
1
2
ðlog p11 2 log p13 2 log p21 þ log p23Þ (A49)

and hence

@hx
@h

¼ 1
2

0
@ 1
p11

X3
j¼1

@p11
@q1j

@q1j
@r

2
1
p13

X3
j¼1

@p13
@q1j

@q1j
@r

2
1
p21

X3
j¼1

@p21
@q2j

@q2j
@r

þ 1
p23

X3
j¼1

@p23
@q2j

@q2j
@r

1
A,@h

@r
:

(A50)

Additive model, equations for pij

p11 ¼ q11ðDþ ð12pÞð12qÞÞ2
ð12qÞ2 þ q12ðð12 pÞq2DÞðDþ ð12 pÞð12 qÞÞ

ð12 qÞq

þ q13ðð12pÞq2DÞ2
q2

;

(A51)

p12 ¼ 2q11ðpð12 qÞ2DÞðDþ ð12 pÞð12 qÞÞ
ð12qÞ2

þ  
q12ððDþ ð12 pÞð12 qÞÞðDþ pqÞ þ ðpð12 qÞ2DÞðð12 pÞq2DÞÞ

ð12 qÞq
þ  

2q13ðð12 pÞq2DÞðDþ pqÞ
q2

;

(A52)

p13 ¼ q11ðpð12qÞ2DÞ2
ð12qÞ2 þ q12ðpð12 qÞ2DÞðDþ pqÞ

ð12 qÞq þ q13ðDþ pqÞ2
q2

;

(A53)

p21 ¼ q21ðDþ ð12pÞð12qÞÞ2
ð12qÞ2 þ q22ðð12 pÞq2DÞðDþ ð12 pÞð12 qÞÞ

ð12 qÞq

þ q23ðð12pÞq2DÞ2
q2

;

(A54)

p22 ¼ 2q21ðpð12 qÞ2DÞðDþ ð12 pÞð12 qÞÞ
ð12qÞ2

þ  
q22ððDþ ð12 pÞð12 qÞÞðDþ pqÞ þ ðpð12 qÞ2DÞðð12 pÞq2DÞÞ

ð12 qÞq
þ  

2q23ðð12 pÞq2DÞðDþ pqÞ
q2

;

(A55)

Table A1 Contingency table for a case–control study with three
genotypic classes

Counts

aa Aa AA Total

Control n11 n12 n13 n1
Case n21 n22 n23 n2

Table A2 Row probabilities for a case–control study with three
genotypic classes

Row probabilities

aa Aa AA

Control p11 p12 p13
Case p21 p22 p23
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p23 ¼ q21ðpð12qÞ2DÞ2
ð12qÞ2 þ q22ðpð12 qÞ2DÞðDþ pqÞ

ð12 qÞq þ q23ðDþ pqÞ2
q2

:

(A56)

Additive model, equations for qij

q11 ¼ ð12qÞ2ð12 q0Þ
12 n

; (A57)

q12 ¼ 2ð12 qÞqð12 q0rÞ
12 n

; (A58)

q13 ¼ q2
�
12 q0r2

�
12 n

; (A59)

q21 ¼ ð12qÞ2q0
n

; (A60)

q22 ¼ 2ð12 qÞq  q0r
n

; (A61)

q23 ¼ q2q0r2

n
: (A62)

Additive model, equation for q0 in terms of q,r

q0 ¼ n

q2r2 þ ð2q2 2q2Þrþ q2 2 2qþ 1
: (A63)

The partial derivatives @pij=@qij can be read from the coef-
ficients of qij in (A51)–(A56).

Additive model, partial derivatives ›q0 / ›r

@q11
@r

¼ 2
ð12qÞ2
12 n

� @q0
@r

; (A64)

@q12
@r

¼ 2
2ð12 qÞq
12 n

�
@q0
@r

rþ q0

�
; (A65)

@q13
@r

¼ 2
q2

12 n

�
@q0
@r

r2 þ 2q0r
�
; (A66)

@q21
@r

¼ ð12qÞ2
n

� @q0
@r

; (A67)

@q22
@r

¼ 2ð12 qÞq
n

�
@q0
@r

rþ q0

�
(A68)

@q23
@r

¼ q2

n

�
@q0
@r

r2 þ 2q0r
�
: (A69)

Additive model, partial derivative ›q0 / ›r

@q0
@r

¼ 2qq0
qr2 qþ 1

: (A70)

Appendix B: Example Power Calculations Using ldDesign
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