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ABSTRACT

Mitochondrial DNA replication is performed by a
simple machinery, containing the TWINKLE DNA
helicase, a single-stranded DNA-binding protein,
and the mitochondrial DNA polymerase c. In
addition, mitochondrial RNA polymerase is required
for primer formation at the origins of DNA replication.
TWINKLE adopts a hexameric ring-shaped structure
that must load on the closed circular mtDNA
genome. In other systems, a specialized helicase
loader often facilitates helicase loading. We here
demonstrate that TWINKLE can function without a
specialized loader. We also show that the mitochon-
drial replication machinery can assemble on a closed
circular DNA template and efficiently elongate a DNA
primer in a manner that closely resembles initiation
of mtDNA synthesis in vivo.

INTRODUCTION

During DNA replication, helicases unwind the
double-stranded DNA (dsDNA) ahead of the DNA poly-
merase and thus create the single-stranded DNA (ssDNA)
template used to synthesize the complementary DNA
strand. TWINKLE is the replicative helicase required
for in vivo synthesis of human mitochondrial DNA
(mtDNA) (1). On its own, TWINKLE can unwind short
stretches of dsDNA in the 50 to 30 direction (2). In com-
bination with mtDNA Polymerase g (POLg) and the mito-
chondrial ssDNA-binding protein (mtSSB), TWINKLE
forms a processive replication machinery, a replisome,

that can synthesize ssDNA molecules of >16 kb (3).
Mitochondrial DNA is divided into a heavy (guanine-rich)
and a light (cytosine-rich) strand. Heavy-strand DNA syn-
thesis is initiated at the origin of heavy strand mtDNA
replication (oriH), located in the main non-coding region
of the mtDNA molecule (4). After the replication machin-
ery has completed about two-thirds of heavy-strand DNA
synthesis, it passes the origin of light strand mtDNA rep-
lication (oriL) and the parental H strand is exposed as a
single strand. In its ssDNA conformation, oriL forms a
stem-loop structure and the mitochondrial RNA polymer-
ase (POLRMT) can initiate primer synthesis from a
poly-dT stretch in the single-stranded loop region (5,6).
Primer synthesis proceeds for �25 bp, after which
POLRMT is replaced by POLg, and light-strand DNA
synthesis is initiated (6–8).

POLRMT also generates the primers required for initi-
ation of heavy-strand mtDNA synthesis. The 30-end of the
primer is defined by transcription termination at a
conserved sequence element (conserved sequence block
II) in the mitochondrial DNA control region (9–12).
This site-specific termination event is caused by
G-quadruplex structures formed in nascent RNA upon
transcription of CSB II (13). Most DNA synthesis
events initiated at oriH do not proceed to full circle, but
are terminated at the termination-associated sequences
(TAS), situated a few hundred base pairs downstream of
the initiation site. The newly synthesized DNA strand
stays stably hybridized to the parental strand, forming a
triple-stranded structure, a displacement loop (D-loop)
(4,8). In order to initiate DNA synthesis at oriH,
TWINKLE and the other mitochondrial replication
factors must be able to load in the D-loop region of the
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closed mtDNA molecule. How the mitochondrial
replisome accomplishes this process and if additional
factors are required, have so far not been studied.

Replicative helicases assemble into ring-shaped hexamer
structures with a ring diameter of �12–14 nm (14). Most
of them form hexamers even in the absence of DNA, but
the presence of a cofactor (NTP or Mg2+) is often needed
for oligomerization. The central channel of the hexameric
ring has a diameter varying between 2 and 4.5 nm, and
accommodates one DNA strand while the second strand
is excluded (14–16). Due to their ring-shaped appearance,
replicative DNA helicases have to be loaded onto the
ssDNA during initiation of replication and in most cases
loading involves the action of accessory proteins, denoted
helicase loaders (17). Some helicases are present in
solution in monomeric form and are assembled around
the DNA with the help of helicase loaders, whereas
other DNA helicases form preformed hexameric rings
that must be opened by a helicase loader to load onto
the ssDNA. For instance, in Escherichia coli, the DnaB
helicase forms a very stable hexamer that is loaded onto
the ssDNA with the help of the DnaC loader in an ATP
dependent manner. This event is facilitated by an inter-
action of the DnaC–DnaB complex with DnaA, the rep-
lication initiation protein (18,19). Interestingly, some
helicases such as the viral protein SV40 T antigen and
T7gp4 can load onto DNA without the aid of a loading
factor (14,20,21). Even if a distinct factor is not needed,
a separate domain of the helicase itself facilitates the
loading process. In addition to its helicase domain,
T7gp4 contains a primase domain and it has been sug-
gested that the DNA binding site of the primase domain
acts as a helicase loader by making the initial contact with
the DNA. DNA binding by the primase domain is
followed by a conformational change in the T7gp4
protein, which leads to opening of the ring and entrance
of DNA into the central channel, followed by closure of
the ring.

TWINKLE forms a stable hexamer or heptamer and
unwinds duplex DNA in the 50 to 30 direction(22,23).
Similar to T7gp4, TWINKLE requires a fork-like struc-
ture with both a 50- and a 30-single-stranded stretch of
DNA to efficiently initiate DNA unwinding (2,24,25).
All unwinding experiments performed so far with
TWINKLE have been performed with templates contain-
ing a free 50- end. This allows threading of the oligomeric
TWINKLE onto the DNA without the need of a change
in the protein conformation to let the DNA pass through
and bind to the central channel of the protein. TWINKLE
is a stable hexameric helicase in solution even in the
absence of Mg2+ or NTP or at high ionic force (22).
Therefore there must be a precise mechanism that
enables TWINKLE to load onto circular DNA in vivo,
prior to initiation of mtDNA synthesis (4). In the
present study we have investigated the loading of
TWINKLE onto a circular ssDNA in vitro. Our results
show that TWINKLE is able to load onto circular ssDNA
without the help of a loading factor and can support ini-
tiation of DNA replication on a closed circular dsDNA
substrate in combination with only POLg.

MATERIALS AND METHODS

Recombinant proteins

For purification of POLg A, POLg B and TWINKLE, we
infected Sf9 cells with recombinant baculoviruses
encoding versions of the individual proteins lacking the
N-terminal mitochondrial targeting signal, but with a
His6-tags at the C-terminus. A non-tagged mtSSB
protein, lacking the N-terminal mitochondrial targeting
signal was expressed the same way. POLg A and B were
purified separately as described (26). TWINKLE and
mtSSB was purified as in (27). For purification of the
T7gp4 protein with a N-terminal His6-tag, we cloned the
T7gp4-A gene into the pET-20 b vector (Stratagene) and
the protein was expressed in E. coli [BL21(DE3)pLysS].
The bacterial culture was grown in LB medium at 37�C to
an A600 of 0.8. Isopropyl b-D-thiogalactopyranoside was
added to a final concentration of 1mM and the cells were
cultured for three additional hours at 30�C and harvested
by centrifugation. Cells were frozen in liquid nitrogen,
thawed in lysis buffer (50mM NaH2PO4 pH 8.0,
300mM NaCl, 10mM imidazole) and incubated on ice
for 30min in the presence of 1mg/ml lysozyme. The cells
were then disrupted by sonication (6� 20 s) and
centrifuged at 10 000g for 30min. The cleared lysate
obtained was mixed with 2ml of Ni2+-NTA matrix
superflow (Qiagen) equilibrated with buffer A (25mM
Tris–HCl pH 8.0, 10% glycerol, protease inhibitors,
10mM b-mercaptoethanol, 0.4M NaCl, 10mM imid-
azole) and incubated rotating for 60min at 4�C. The
Ni2+-NTA matrix was collected by centrifugation (1500g
for 10min), resuspended in buffer A (10mM imidazole),
poured onto a column and washed with 10 column
volumes of buffer A. The protein was eluted with buffer
A containing 250mM imidazole and fractions containing
the proteins were combined. T7gp4 was further purified on
Heparin Sepharose and Mono Q (GE Healthcare) in a
buffer containing 25mM Tris–HCl pH 8.0, 10%
glycerol, 1mM DTT, 0.5mM EDTA, protease inhibitors
and 0.2M NaCl. For both columns, the protein was eluted
using a 0.2 to 1.2M NaCl gradient. The purity of T7gp4,
estimated by SDS–PAGE with Coomassie blue staining,
was >95%.

NTPase activities

NTPase activities were determined by colorimetry using
the ‘malachite green phosphate assay kit’ (BioAssay
Systems). In this assay, the inorganic phosphate liberated
during nucleotide hydrolysis forms a colored product with
malachite green. The formation of the colored product
was measured on a spectrophotometer at 620 nm. Before
the reaction was performed, TWINKLE was dialyzed
against a buffer containing 25mM Tris–HCl pH 7.5,
10% glycerol, 0.5mM EDTA, 1mM dithiothreitol and
400mM NaCl for 4 h at 4�C. The NTP hydrolysis
reaction was performed in a 20 ml reaction mixture con-
taining 20mM Tris–HCl pH 7.5, 4.5mM MgCl2, 1mM
dithiothreitol, 0.5mM of the indicated nucleotide and
200 fmol of TWINKLE hexamer in the presence or
absence of 188 fmol M13mp18 ssDNA. The final NaCl
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concentration was 50mM. The reactions were incubated
at 25�C or 42�C for 45min. The reaction mixture was then
diluted 4-fold in water and terminated by the addition of
20 ml of Malachite Green Reagent. After 20min of incu-
bation at room temperature for color development, the
absorbance at 620 nm was measured on a spectrophotom-
eter. The quantity of phosphate released was determined
using a standard curve generated with free phosphate ac-
cording to the instructions of the manufacturer.

Helicase assay

DNA substrates used for the different helicase assays were
prepared by annealing the following oligonucleotides
(60 nt) to M13mp18 ssDNA (7249 nt): 50-tailed template:
ACA TGA TAA GAT ACA TGG ATG AGT TTG GAC
AAA CCA CAA CGT AAA ACG ACG GCC AGT
GCC; and 30-tailed template: GTA AAA CGA CGG
CCA GTG CCC AAC ACC AAA CAG GTT TGA
GTA GGT ACA TAG AAT AGT ACA. The DNA sub-
strates formed contain a 20-bp double-stranded region
and a 40-nt single-stranded tail (Figure 2A). The
reaction mixture (15 ml) contained 20mM Tris–HCl pH
7.5, 5mMMgCl2, 4mM DTT, 100 mg/ml BSA, 3mM
NTP, 5 fmol of DNA substrate, and the amount of
TWINKLE indicated in the figure legends. Individual re-
actions were incubated for 45min at the temperature
indicated in the figure legends and stopped by the
addition of 3 ml of stop solution [90mM EDTA (pH
8.0), 6% SDS, 30% glycerol, 0.025% bromophenol and
0.025% xylene cyanol]. The reaction products were
separated by electrophoresis through a 10%
non-denaturing polyacrylamide gel. The gel was dried
onto DE81 (Whatman) and autoradiographed overnight
at �80�C with an intensifying screen.

DNA replication assay

The bubble template used for the DNA replication assay
was produced as described (28), but with some modifica-
tions. ssDNA produced from pBluescript II SK+ and
pBluescript II SK� was isolated according to the manu-
facturer’s protocol (Stratagene). Single-stranded SK�

DNA was linearized by annealing an oligonucleotide
(50-TTC GAT ATC AAG CTT ATC GAT ACC-30) and
then cleaving the partial duplex with HindIII. Linear SK�

ssDNA and circular SK+ ssDNA were then mixed in a
1:1.25 ratio and annealed over night at 37�C. The
material was run on a 1% agarose gel and the annealed
product was purified with a gel extraction kit (Qiagen).
After T4 DNA ligase treatment, the ligated DNA
(bubble template) was gel purified as above. The bubble
template was hybridized to an oligonucleotide (50-GGCG
AA CGT GGC GAG AAA GGAAGG G-30), which was
complementary to the ssDNA-bubble, in a 1:1 molar
ratio. The mixture was incubated at 65�C and then left
to cool to 20�C.
The DNA replication reaction mixture (15ml) contained

20mM Tris–HCl pH 7.5, 7mM MgCl2, 5mM DTT,
100mg/ml BSA, 4mM UTP, 100mM dATP, 100 mM
dTTP, 100 mM dGTP, 1 mM dCTP, 2 mCi [a-32P] dCTP,
70/220 fmol POLg A/B and 10 fmol of bubble template.

The incubation temperatures as well as the amount of
TWINKLE and mtSSB are indicated in the figure
legends. Reactions were terminated at the indicated times
by addition of 200 ml of stop buffer (10mMTris–HCl pH 8,
200mM NaCl, 1mM EDTA, 0.1mg/ml glycogen). The
samples were treated with 200 mg/ml of Proteinase K and
incubated at 42�C for 1 h. After ethanol precipitation the
pellets were dissolved in 10 ml H2O and 10 ml gel-loading
buffer (98% formamide, 10mM EDTA pH 8, 0.025%
xylene cyanol FF, 0.025% bromophenol blue), heated at
95�C for 3min and separated on a 6% denaturing poly-
acrylamide gel in 1� TBE.

Electrophoresis mobility shift assay

The ssDNA-binding affinity of TWINKLE was
assayed by an electrophoresis mobility shift assay
(EMSA) using three different probes: a ssDNA linear
substrate (50-GAT37CAT ACCCCTATGAGGGGTATG
T38AT-30); a dsDNA linear substrate (50-GAT37 CAT AC
CCCTATGAGGGGTATG T38AT-30 annealed to
50-ATA38 CAT ACC CCT CAT AGG GGT ATG
A37TC-3

0); and a closed circular ssDNA substrate
(50-GAG GGG TAT GT80 CAT ACC CCT AT-30). The
three probes were labeled in the 50 end with [g-32P] ATP
using the T4 polynucleotide kinase. The closed circular
substrate was constructed by treating the oligonucleotide
with CircLigaseTMssDNA ligase (Epicentre). Unligated
oligonucleotides were removed by addition of
Exonuclease I to the sample, followed by incubation for
1 h at 37�C. The closed circular oligonucleotides were
separated on a 10% denaturating polyacrylamide gel
and purified by extraction (29). Binding reactions were
carried out in 15 ml volumes containing 10 fmol of the
indicated DNA template, 20mM Tris–HCl pH 7.5,
5mM MgCl2, 4mM DTT, 100 mg/ml BSA, 10% glycerol
and 3mMUTP (UTP was omitted from the reaction when
indicated in the figure legend). Proteins were added as
indicated in the figure legends and reactions were
incubated at 4�C or 42�C for 10min. The final NaCl con-
centration was 50mM. When indicated TWINKLE was
cross-linked at 4�C for 10min (1 ml of 10% glutaraldehyde
was added to the reaction mixture). The samples were
loaded directly on a 6% native polyacrylamide gel in
0.5� TBE or, when indicated, 3 ml of stop buffer [90mM
EDTA (pH 8.0), 6% SDS, 30% glycerol, 0.25%
bromophenol blue, 0.25% xylene cyanol) was added and
the samples were heated at 95�C for 5min prior to
loading.

RESULTS

TWINKLE can load on closed circular ssDNA

TWINKLE is a stable hexamer/heptamer in solution
(22,23). We wanted to investigate if the TWINKLE
oligomer could load on a circular ssDNA template, i.e. a
DNA template without free ends. To this end, we engin-
eered a 100-nt long ssDNA substrate that adopted a
circular conformation through annealing of a short com-
plementary region (9 bp, Supplementary Figure S1A).
The template was radioactively labeled using
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polynucleotide kinase and subsequently ligated to create a
circular substrate. The substrate was treated with exo-
nuclease I to remove any contaminating linear DNA mol-
ecules and subsequently purified by denaturing
polyacrylamide gel electrophoresis (Supplementary
Figure S1B). We incubated this DNA template with
TWINKLE for 10min at the indicated temperatures and
monitored binding by separation on a non-denaturing
polyacrylamide gel (Figure 1A, upper panel). As
controls in the binding reactions, we used linear dsDNA
(100 bp, Figure 1A, middle panel) and ssDNA (100 nt,
Figure 1A, lower panel) molecules, which contained free
50-ends on which TWINKLE could be threaded. We
found that TWINKLE could bind the linear substrates
at both 4�C and 42�C. Interestingly, under the same

conditions, TWINKLE could also bind to the closed
circular ssDNA template (Figure 1A, upper panel). We
concluded that TWINKLE did not need a free 50-end in
order to load on ssDNA. The TWINKLE helicase prep-
arations used for these experiments did not contain any
apparent nuclease activities (data not shown).
We next examined if DNA was located in the center of

the TWINKLE hexameric ring. To this end we used
glutaraldehyde, which preferentially will create protein–
protein cross-links. If DNA is located in the central
channel, a cross-linked TWINKLE hexameric ring will
remain locked onto a circular DNA molecule also after
treatment with sodium dodecyl sulfate (SDS), whereas it
will fall of a DNA substrate with free ends. In the absence
of SDS treatment, cross-linked TWINKLE remained

A

without UTP with UTP

ssDNA

TWINKLE (pmol):

Cross-linked

SDS-treated

1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  

+ 4 °C + 4 °C+ 4 °C+ 42 °C + 42 °C+ 42 °C

0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2

dsDNA

B

SDS-treated:
Cross-linked:

TWINKLE:

-  -  -  +  -  -  -  +
-  -  +  +  -  -  +  +
-  +  +  +  -  +  +  +

Ciruclar

1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  

1   2   3   4   5   6   7   8   9  10  11  12    13    14  15  16  17  18  19  

       1     2     3     4      5     6     7     8     

Figure 1. TWINKLE can efficiently load onto circular DNA substrates. TWINKLE interactions with circular ssDNA, linear ssDNA and linear
dsDNA. (A) TWINKLE–DNA interactions were monitored by EMSA using 32P-labeled circular ssDNA (100 nt, upper panel), linear dsDNA
(100 bp, middle panel) or linear ssDNA (100 nt, lower panel) as described in ‘Materials and Methods’ section. Incubation temperatures and the
amount of TWINKLE (0.1 or 0.2 pmol) are indicated at the top of the figure. Lanes 7–12 and 14–19, were cross-linked with glutaraldehyde and lanes
14–19; were further treated with SDS and heated at+95�C for 5min. (B) The binding of TWINKLE to circular ssDNA is nucleotide independent.
Binding reactions between TWINKLE and closed circular ssDNA in the absence (lanes 1–4) or presence of UTP (lanes 5–8) were performed as
described in ‘Materials and Methods’ section. Lanes 1 and 5, DNA substrate alone; lanes 2–4 and 6–8, were incubated with 200 fmol TWINKLE at
+4�C; lanes 3–4 and 7–8, were cross-linked with glutaraldehyde; and lanes 4 and 8 were further treated with SDS and heated at +95�C for 5min.
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bound to both the linear and circular substrates
(Figure 1A). The amount of shifted linear DNA was
however lower after treatment with the cross-linking
agent (middle and lower panels) compared to the
circular template (upper panel). This finding suggests
that cross-linked TWINKLE can dissociate from the
linear substrate by falling off one of the ends, but once
dissociated, the cross-linked oligomer will have difficulties
in reloading onto the DNA substrates. Furthermore, when
the cross-linked samples were treated with SDS
and heated at 95�C for 5min, we could only observe
binding of TWINKLE to the circular template.
Glutaraldehyde-treatment of TWINKLE prior to incuba-
tion with the template prevented binding to circular
ssDNA (data not shown). These results thus demonstrate
that the TWINKLE hexamer is locked onto the circular
template, supporting the notion that ssDNA is located
in the central channel of the TWINKLE ring
(Figure 1A, lanes 14–19). SDS-treatment completely abol-
ished binding to the linear template, suggesting that there
are no apparent cross-links between protein and DNA
under the conditions used for these experiments.
We also performed a competition experiment in the

absence of a cross-linking agent, to compare the stability
of TWINKLE binding to linear and circular ssDNA tem-
plates. As a non-radioactive competitor we used 100-fold
molar excess of the linear ssDNA substrate. We observed
no apparent disassembly of TWINKLE from the circular
ssDNA (60min incubation at 25�C), whereas TWINKLE
binding to linear ssDNA was lost already after 1min in-
cubation (data not shown). The high stability of the
TWINKLE hexamer on circular ssDNA is in good agree-
ment with the processive nature of TWINKLE observed
at the mtDNA replication fork in the presence of POLg
and mtSSB (3).
Finally, we investigated if a nucleotide cofactor could

influence TWINKLE binding to the circular template.
Our experiments demonstrated that TWINKLE binding
to ssDNA is not stimulated in the presence of a nucleotide
cofactor (Figure 1B). From our experiments, we could
thus conclude that TWINKLE could bind and encircle
ssDNA independently of nucleotides and additional
loading factors. Our findings are partially in conflict
with a previous report from our laboratory, which
demonstrated that ATP or a non-hydrolyzable ATP
analog (ATPgS) could stimulate TWINKLE binding to
ssDNA (22). The molecular explanation for the discrep-
ancy between our current findings and previous reports is
still unclear, but it is possible that older purification
methods generated a somewhat unstable TWINKLE
protein conformation, which could be activated/stabilized
by addition of a nucleotide cofactor (22,27). Others have
also demonstrated that TWINKLE can efficiently inter-
act with linear ssDNA in the absence of a nucleotide
cofactor (23).

TWINKLE can initiate unwinding on a closed circular
ssDNA molecule

We next investigated if TWINKLE could initiate DNA
unwinding on a circular DNA substrate. We constructed

two different substrates, by annealing radioactively
labeled 60-nt long oligonucleotides to a circular
single-stranded M13 DNA molecule. One substrate con-
tained a duplex region of 20-bp and a 40-nt 50-single-
stranded overhang (Figure 2A, lanes 1–9). On the
50-tailed substrate, the TWINKLE ring can be threaded
on the free ssDNA tail and as would be expected, the
substrate was efficiently unwound, resulting in the accu-
mulation of a displaced labeled oligonucleotide
(Figure 2A, lanes 3–5). For comparison, we used the
T7gp4 protein, which was also able to unwind the
50-tailed substrate (Figure 2A, lanes 7–9). The helicase
activity of T7gp4 was measured in the presence of dTTP
instead of ATP, since the T7gp4 protein preferentially
utilizes dTTP to unwind duplex DNA in vitro (24,30,31).

We next used a substrate with a duplex region of 20-bp
and a 40-nt 30-single-stranded overhang (Figure 2A, lanes
10–18). TWINKLE and T7gp4 are both 50 to 30 helicases
and to unwind the 30-tailed substrate they would need to
load onto the closed circular DNA strand. The 30-tailed
substrate is therefore more similar to the in vivo situation,
where TWINKLE is expected to load onto a closed
circular mtDNA molecule. T7gp4 was perfectly able to
unwind the 30-tailed substrate (Figure 2A, lanes 16–18),
which corroborates previous studies showing that T7gp4
could load onto circular DNA without help of any acces-
sory factors (24). In contrast, TWINKLE did not display
strand displacement activity on the 30-tailed substrate in
the presence of ATP as a source of energy (Figure 2A,
lanes 12–14). Since we had previously demonstrated that
UTP was a better energy source than ATP for the
TWINKLE helicase activity (2), we also performed the
assay in the presence of UTP (Figure 2B). Interestingly,
we now found that TWINKLE was able to unwind the
30-tailed substrate, albeit with lower efficiency than that
observed for the 50-tailed substrate (Figure 2B, compare
lanes 6 and 12). The results thus suggest that TWINKLE
can be loaded on a circular ssDNA and perform displace-
ment activity, but with very low efficiency, under the con-
ditions used.

Temperature dependency of TWINKLE-helicase activity
on circular DNA

The observation that TWINKLE can load on a
circular ssDNA and perform unwinding in presence of
UTP but not ATP (Figure 2B) might suggest that
TWINKLE needs more energy to perform this task. We
therefore monitored DNA unwinding as a function of
increasing temperatures, ranging from 20�C to 45�C
(Figure 3A). TWINKLE could effectively unwind the
50-tailed DNA substrate even at low temperatures
and already at 20�C, >50% of the template was
unwound (Figure 3A, lane 3). Nearly no strand displace-
ment activity could be measured at the low temperatures
on the 30-tailed DNA substrate (Figure 3A, lanes 11 and
12). However, at higher temperature, TWINKLE was able
to unwind the duplex DNA (Figure 3A, lanes 15 and 16)
with almost the same efficiency as that observed for the
50-tailed DNA substrate. At 37�C, we observed 57%
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unwinding of the 30-tailed DNA substrate compared to
90% unwinding for the 50-tailed template.

Nucleotide dependency of the unwinding activity of
TWINKLE

We next investigated the effects of different nucleotide
cofactors on TWINKLE unwinding (Figure 3B). With
the exception of CTP and dCTP, TWINKLE could use
all nucleotides tested as an energy source to unwind the
50-tailed substrate at 25�C. The highest levels of unwinding
were observed in the presence of ATP, UTP, GTP and
dATP (Figure 3B, upper left panel). The overall enzyme
activity was higher at 42�C, but the nucleotide dependence
was the same as that observed at 25�C (Figure 3B, lower
left panel). Interestingly, we observed no unwinding on the
30-tailed substrate when the reaction was conducted at

25�C (Figure 3B, upper right panel), regardless of the nu-
cleotide used. In contrast, at 42�C (or at 37�C, data not
shown), TWINKLE was able to unwind the 30-tailed
template with a similar nucleotide preference as the one
observed with the 50-tailed substrate.

Nucleotide hydrolysis of TWINKLE

Our results so far demonstrated that TWINKLE is less
effective on the 30-tailed than on the 50-tailed substrate,
but the observed difference was apparently not due to in-
effective loading of TWINKLE on the circular template
(Figure 1). Instead, the difference could be due to a
problem with translocation on ssDNA, since TWINKLE
may need to translocate extensive regions of ssDNA
before it reaches duplex DNA and can initiate unwinding
on the 30-tailed substrate, whereas it only needs to

--

A

-- --
T7 gp4

B

       1      2      3     4      5     6      7     8      9     10    11    12    13   14   15     16    17    18 

5‘ -tailed substrate 

+   +   +   -   -   -      +   +   +   -   -   -
-   -   -   +   +   +      -   -   -   +   +   +
-   -   +   -   -   +      -   -   +   -   -   +

      1      2       3       4       5       6               7      8       9      10     11     12

3‘ -tailed substrate

ELKNIWTELKNIWT T7 gp4

S

P

S

P

etartsbus deliat- ‘3 etartsbus deliat- ‘5

ATP
UTP

TWINKLE

5’ 3’

32 °C

32 °C

Figure 2. TWINKLE can load onto a circular ssDNA and unwind duplex DNA. (A) Helicase activity of TWINKLE and T7gp4. The DNA
substrates used in this study are composed of a 20-bp duplex region and a 40-nt single-stranded overhang (50 or 30). The helicase activity is
measured as the ability of the protein to separate the annealed 60-nt radiolabeled oligonucleotide from the circular M13ssDNA. The reactions were
performed at 32�C as described in ‘Materials and Methods’ section using the 50-tailed substrate (lanes 1–9) or the 30-tailed substrate (lanes 10–18) in
the presence of 3mM ATP and increasing amounts of TWINKLE (150, 300 and 600 fmol) or 3mM dTTP and increasing amounts of T7gp4 (250,
500 and 1000 fmol). Lanes 1 and 10, 50-tailed and 30-tailed substrates heated to 100�C before loading; lanes 2 and 6, untreated 50-tailed
DNA substrate; lanes 11 and 15, untreated 30-tailed DNA substrate; S, double-stranded substrate; P, single-stranded product. (B) Loading of
TWINKLE on ssDNA in presence of UTP. Helicase activity of TWINKLE (300 fmol) was measured at 32�C using the 50-tailed substrate (lanes
1–6) or the 30-tailed substrate (lanes 7–12) in presence of 3mM ATP or 3mM UTP. Lanes 1, 4, 7 and 10, DNA substrates heated to 100�C before
loading.
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translocate a short 40-nt long stretch on the 50-tailed sub-
strate. In agreement with this notion, ssDNA has previ-
ously been shown to be a relatively poor stimulator of the
TWINKLE ATPase activity, compared to that observed
with the related T7gp4 protein (32). This low stimulatory
effect could be explained by inefficient translocation of
TWINKLE on an ssDNA template. To compare the
ability of different nucleotides to stimulate the transloca-
tion of TWINKLE, we therefore measured ssDNA de-
pendent hydrolysis in the presence of different
nucleotides (Figure 3C). At 25�C and in absence of
DNA (Figure 3C, light gray bars), the nucleotide hydroly-
sis activity of TWINKLE is very low in the presence of
CTP, dCTP and dTTP, slightly higher in presence of GTP,
UTP and dGTP and maximal in presence of ATP or
dATP. In the absence DNA (Figure 3C, white bars), the
nucleotide hydrolysis rates at 42�C are roughly similar to
those measured at 25�C, demonstrating that higher tem-
perature does not have any major impact on TWINKLE
nucleotide hydrolysis in isolation. We next added ssDNA
to monitor stimulation of the NTPase activity.
Interestingly, addition of ssDNA did not stimulate the
NTPase activity further at 25�C, except in the presence
of UTP (Figure 3C, dark gray bars). Furthermore, even
if ssDNA has a general stimulatory effect on the NTPase
activity at 42�C, the stimulation is the strongest for ATP,
GTP, UTP and dATP and less pronounced for dGTP.
The NTP requirements observed in these data were in
nice agreement with those observed for DNA unwinding
on the 30-tailed substrate (Figure 3B). This close correl-
ation supports the notion that poor translocation explains
why TWINKLE unwinds the 30-tailed substrate with
lower efficiency compared to the 50-tailed substrate.

TWINKLE in combination with POLc can support DNA
replication on a circular dsDNA template

Given our findings, it should be possible to initiate DNA
synthesis using only mtDNA replication factors and a
closed template that mimicked the in vivo situation. To
address this possibility, we designed a ‘bubble template’,
a double-stranded circular DNA template containing a
non-annealed region of 457 nt (a ‘bubble’). To initiate
DNA synthesis, the replication machinery requires a
primer and we therefore annealed a 25-nt long oligo-
nucleotide in the ‘bubble’ region (Figure 4A). POLg can
bind to the annealed primer and can synthesize DNA until
it reaches the double-stranded region, leading to the for-
mation of a 129-nt product (indicated in Figure 4B and
C). POLg displays a delicate balance between its DNA
polymerase and 30 to 50 exonuclease activities. In our re-
actions we used dNTP concentrations >1 mM, which
favors net polymerization and prevents the exonuclease
activity (26,33). Addition of TWINKLE to the reaction,
allowed for DNA unwinding and for continued DNA syn-
thesis into the dsDNA region of the bubble template. In
the presence of TWINKLE we observed the formation of
long DNA products (Figure 4B, lanes 2–4). We could thus
conclude that TWINKLE can be loaded on a structure
that is similar to the D-loop structure in vivo and
support DNA synthesis. In the experiments we used

UTP as the source of energy, but ATP and GTP could
also support initiation of DNA replication on the bubble
DNA template (Supplementary Figure S1C).
To further verify that TWINKLE could support initi-

ation of DNA synthesis on a circular substrate, we per-
formed time course experiments at 25�C and 42�C.
At 25�C, POLg was able to utilize the primer and syn-

thesize DNA until it reached the double-stranded region
(Figure 4C, upper panel lanes 2–6). Addition of
TWINKLE did not have any significant effect on the
DNA synthesis reaction (Figure 4C, upper panel lanes
7–11). In contrast, when the temperature is increased to
42�C (and to 37�C, data not shown), TWINKLE supports
the DNA synthesis by POLg and allows the polymerase to
utilize dsDNA (Figure 4C, lower panel lanes 9–11). We
conclude from these experiments that TWINKLE is
unable to efficiently translocate on a DNA template at
lower temperatures even in the presence of POLg.

mtSSB does not prevent loading of TWINKLE on ssDNA

In vivo, the long stretches of ssDNA formed during
mtDNA replication are stabilized and protected by the
mitochondrial ssDNA binding protein (mtSSB). In some
other systems e.g. bacteriophage T4 and HSV 1,
specialized enzymes (gene 59 and UL8 respectively) are
required to load the replicative helicase on SSB coated
ssDNA (34,35). We therefore investigated if ‘coating’ by
mtSSB could prevent TWINKLE from loading and
initiating unwinding on a ssDNA template. The tailed
DNA substrates (Figure 2A) were therefore pre-incubated
with mtSSB, before TWINKLE was added to the reac-
tions. We found that TWINKLE could efficiently load
and unwind the duplex DNA even when ssDNA was
fully coated by mtSSB (Figure 5A, 1�). Only at very
high mtSSB concentration (4-fold excess, 4�), a slight in-
hibition of the unwinding activity could be noticed
(Figure 5A, lanes 9–18).
We also monitored if mtSSB could affect initiation of

DNA synthesis on the bubble template. As observed in
Figure 5B, mtSSB did not prevent loading of
TWINKLE and initiation of DNA synthesis on the
bubble template, even if a slight reduction in DNA syn-
thesis levels could be observed at very high mtSSB con-
centrations (Figure 5B, lane 6). We could therefore
conclude that TWINKLE can support DNA synthesis
on an mtSSB coated DNA substrate.

DISCUSSION

In mitochondria, transcription and initiation of DNA rep-
lication are linked. The mitochondrial RNA polymerase
(POLRMT) is not only required for transcription but also
generates the RNA primers used to initiate DNA synthesis
at oriH and oriL (4,6,12,36). Leading-strand DNA syn-
thesis initiated at oriH is primed by an RNA primer of
�100-nt formed by transcription from the light-strand
promoter (LSP) (12,37,38). The majority of the DNA syn-
thesis events initiated at oriH is terminated �600-bp
downstream the origin and the products stay stably
hybridized to the parental strand, forming a
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triple-stranded structure, denoted the displacement loop
(D-loop) (4). Even if our laboratories have reconstituted
both mitochondrial transcription and mtDNA replication
in vitro, we have so far not been able to couple these two
events and obtain transcription-dependent initiation of
DNA replication at oriH in vitro. One possible explan-
ation for this observation could be the need for a

helicase loading factor that actively loads TWINKLE on
to the closed mtDNA template. In the current manuscript,
we demonstrate that this is not the case, since similar to
T7gp4, TWINKLE can load onto DNA by itself (14,39).
TWINKLE can efficiently place itself onto circular
ssDNA even in absence ofNTPs as a source of energy.
Since TWINKLE is a closed circular hexamer/heptamer
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Figure 4. TWINKLE in combination with POLg can support DNA replication on a circular dsDNA template. (A) The bubble template was
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in solution there must be a transient parting of one of the
subunit interfaces to insert DNA in to the central channel
(22,23). We also demonstrate that TWINKLE efficiently
can load and translocate on mtSSB-coated substrates.
This finding is in contrasts to other systems, e.g. bacterio-
phage T4 and Herpes simplex virus type I, in which SSB
coated substrates have been shown to inhibit the helicase

activity. In these systems but not in the bacteriophage T7
system, a specific protein is required to assemble the
helicase onto SSB-coated ssDNA (34,35). It should be
emphasized that even if our findings conclusively demon-
strate that TWINKLE can function in the absence of a
specialized helicase-loading factor, we cannot exclude the
possibility that other factors influence, e.g. stimulate
helicase loading in vivo.
As also demonstrated here, TWINKLE binds in a very

stable manner to a circular ssDNA molecule. This finding
suggests that once the hexameric ring has closed around
the ssDNA in the central channel, TWINKLE becomes
processive and stays on the DNA until it reaches a free
DNA end or DNA replication is terminated. Given
the physical properties of the protein, it would be of
interest to investigate the behavior of TWINKLE when
the replisome encounters a roadblock, such as DNA
damage. Does TWINKLE stall until other enzymes take
care of the damage and then restarts unwinding? Or are
there specialized proteins required for the regulated disas-
sembly of TWINKLE at a stalled replication forks or after
DNA replication has been completed? These questions
may also be of relevance for our understanding of
normal mtDNA replication and D-loop formation. The
mechanisms that govern replication termination and the
fate of the replication machinery at the end of the D-loop
are still not understood in mammalian cells. In sea urchin,
mtDBP protein has been suggested to terminate DNA
synthesis at a specific site in the genome and stimulate D
loop formation (40). MtDBP displays a contrahelicase
activity, which can inhibit the activity of the replicative
helicase and thus block replication fork progression (41).
In mammalian cells, a related mechanism may exist, since
short conserved DNA elements, denoted TAS are located
at the 30 end of the nascent D-loop H strand (42). In
addition, an unidentified 48-kDa protein has been shown
bind to the TAS sequence in bovine mitochondria (43).
The fate of TWINKLE and other components of the
mitochondrial replisome at the mammalian TAS
sequence remain unclear. Does TWINKLE encounter a
contrahelicase related to mtDBP and does this lead to
dissociation of TWINKLE from the template, or does
the mitochondrial replisome remain bound at the TAS
sequence, waiting for a signal that leads to continued
DNA synthesis? In the current report, we have
demonstrated that it is possible to initiate DNA synthesis
on a closed circular template with an artificial D-loop
structure. With this bubble template, we can now intro-
duce specific mtDNA elements and investigate their effects
of mtDNA replication. We can thus investigate if the TAS
sequence itself promotes site-specific termination of DNA
synthesis or if an additional TAS-binding protein is
required. Using our reconstituted in vitro system and the
bubble template, we can directly search for protein factors
required for TAS-dependent termination of DNA replica-
tion in mitochondrial extracts.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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