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ABSTRACT

Finding conserved motifs in genomic sequences
represents one of essential bioinformatic
problems. However, achieving high discovery per-
formance without imposing substantial auxiliary
constraints on possible motif features remains a
key algorithmic challenge. This work describes
BAMBI—a sequential Monte Carlo motif-
identification algorithm, which is based on a
position weight matrix model that does not require
additional constraints and is able to estimate such
motif properties as length, logo, number of in-
stances and their locations solely on the basis of
primary nucleotide sequence data. Furthermore,
should biologically meaningful information about
motif attributes be available, BAMBI takes advan-
tage of this knowledge to further refine the discov-
ery results. In practical applications, we show that
the proposed approach can be used to find sites of
such diverse DNA-binding molecules as the cAMP
receptor protein (CRP) and Din-family site-specific
serine recombinases. Results obtained by BAMBI in
these and other settings demonstrate better statis-
tical performance than any of the four widely-used
profile-based motif discovery methods: MEME,
BioProspector with BioOptimizer, SeSiMCMC and
Motif Sampler as measured by the nucleotide-level
correlation coefficient. Additionally, in the case of
Din-family recombinase target site discovery, the
BAMBI-inferred motif is found to be the only one
functionally accurate from the underlying biochem-
ical mechanism standpoint. C++and Matlab code is
available at http://www.ee.columbia.edu/�guido/
BAMBI or http://genomics.lbl.gov/BAMBI/.

INTRODUCTION

Gene expression underlies most essential cellular processes
and is typically controlled by complex networks of regu-
latory interactions. Two of the basic mechanisms directly
involved in regulating gene expression are transcription
factor binding and site-specific recombination (1). In
both cases, the proteins involved often attach to highly
specific nucleic acid sequences, which leads to the activa-
tion or repression of gene expression either through epi-
genetic interactions between transcription factors and
components of RNA polymerase machinery or via
recombinase-mediated genetic and genomic modifications
of relevant DNA regions.
As individual binding sites are subject to context-

specific optimizations of protein affinities as well as
neutral alterations by random mutagenesis, nucleotide se-
quences of various site instances can display a significant
degree of heterogeneity. Even so, each instance may be
expected to preserve certain core sequence features—
such as nucleotide patterns responsible for the specificity
of transcription factor binding or relative positions of
bases where recombinase-induced DNA strand breaks
can occur—making them identifiable as a motif. A key
question in understanding the genomic organization and
gene-regulatory network structure of biological systems
thus comprises the discovery of conserved motifs within
available sequence data. Still, although nucleic acid motif
discovery (whereby one attempts to infer the identity and
locations of conserved patterns in a given set of nucleotide
sequences) has been the subject of much research in recent
years, it remains a highly multifaceted and computation-
ally challenging problem (2).
The principal subject of this work is further develop-

ment of basic methodology for motif discovery within
nucleic acid sequences. Following the discussion in
Tompa et al. (2), we focus on analyzing primary
sequence data—in the absence of any auxiliary
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information. Notably, this does not preclude but rather
encourages the subsequent integration of our method
with other heterogeneous approaches—such as those
involving comparative sequence analysis, expression level
data, chromatin immunoprecipitation results, and
others—that synergistically complement each other by
identifying interactions across different scales and
domains of system organization. [For example, the
cMonkey scheme successfully combines motif discovery
by the antecedent MEME algorithm (3) with novel devel-
opments in biclustering of expression data to generate
cumulative improvements in gene regulatory network pre-
dictions (4).]
Along with performance, one of the essential require-

ments for a biologically useful discovery algorithm is its
broad applicability—both with respect to the lack of con-
straints on motif features as well as the universality of
supported sequence databases. For instance, while a
number of techniques have been developed for identifying
a motif that appears only once in each sequence of a
database, the same motif may and often has to be
present at multiple sites in the genome. This is particularly
significant in the case of recombinases, like those of the
Din family, that require two or more separate sites to
provide counterparts for strand exchange as well as in
the case of primary regulon mediators, like cAMP-CRP,
that must have multiple genomic targets in order to enable
the sophisticated control patterns observed (1)—thus de-
manding that the motif discovery algorithm be able to
identify several instances of the same motif in a given
sequence. Furthermore, based on the extent of experimen-
tal evidence, the method should also accommodate scen-
arios where a priori knowledge of such motif features as
length or composition is likely to either be incomplete,
uncertain or even entirely absent. The algorithm also
needs to be versatile and scalable to be of meaningful
practical utility. For example, since motif instances may
be located near as well as far from any gene transcription-
al start site, the technique must be capable of handling
long sequences as well as short ones.
Many previously proposed solutions have been

pattern-driven exhaustive searches, with the motif discov-
ery question stated as an (l, d)-motif problem (5). In this
approach, the motif is assumed to be of length l and have
at most d mismatches between the true/empirical consen-
sus sequence and its individual instances. Examples are
WINNOWER (5), where the solution reduces to finding
large cliques in multipartite graphs; and CONSENSUS
(6), which uses a greedy technique to solve the problem.
Another variant of this methodology is a sample-driven
search that trades off sensitivity for computational effi-
ciency by looking for patterns hidden in data subsets—
such as employed by YMF (7), an enumerative algorithm
that looks for motifs with highest z-scores; and Weeder
(8), which uses extended enumeration that is better
adapted to longer patterns. While potentially highly
accurate, the main shortcoming of such methods is that
they do not scale well with the size of the site, effectively
limiting pattern-driven approaches to motifs no longer
than 10–12 nt (9).

An alternative is offered by profile-based methods that
model motifs in statistical terms. A motif is then described
by a position weight matrix (PWM), where each column
relates to the distribution of all possible nucleotides at a
given position. That is, in the case of DNA-drawn se-
quences and a motif of length M, the PWM is typically
a 4�M matrix (often graphically represented as a logo),
whose columns correspond to probability vectors of
finding A, T, C or G at the corresponding nucleotide
position. This matrix is not known a priori and is
usually estimated before or jointly with the discovery of
locations of individual motif instances. Examples of such
technique are MEME (Multiple EM for Motif Elicitation)
(3,10,11), which utilizes expectation-maximization (EM)
framework to discover an unknown number of different
motifs that appear an unknown number of times; several
algorithms—including BioProspector (12), AlignACE
(13), Gibbs Motif Sampler (14), MotifSampler (15) and
SeSiMCMC (16)—that rely on Gibbs sampling; and
Liang et al.’s approach (17), where a deterministic sequen-
tial Monte Carlo-based method is developed.

In this work, we present a Bayesian Algorithm for
Multiple Biological Instances of motif discovery
(BAMBI), which is able to detect an unknown motif of
an unknown length with an unknown number of instances
in a sequence database. The algorithm uses a profile-based
approach—modeling a motif via PWM, which is
estimated concurrently with the discovery task—and can
work solely on the basis of nucleotide sequence data.
(However, if additional experimental evidence, results of
alternative motif discovery algorithms, or other sources of
prior knowledge regarding any PWM components are
available, BAMBI is flexible-enough to be able to
include this information in its analysis.) Unlike earlier
works, such as Liang et al. (17) that has developed a de-
terministic sequential Monte Carlo algorithm, our
approach is able to independently estimate the putative
motif size as well as to discover its multiple instances or
to establish their absence in each of the database se-
quences—all within the Bayesian framework. The result-
ing method, BAMBI, displays better statistical
performance than MEME, BioProspector (which is aug-
mented with BioOptimizer (18) wherever there is uncer-
tainty about motif length), SeSiMCMC and Motif
Sampler in three diverse settings, including being the
only algorithm that leads to a biochemically meaningful
result in the recombinase binding site discovery case.

MATERIALS AND METHODS

This section provides an overview of basic methodology
and a general description of the implementation used by
the BAMBI algorithm—with specific mathematical details
being provided in the Supplementary Data.

We are seeking to discover nucleotide motifs, which are
sets of patterns conserved when compared to a collection
of non-specific genomic segments. A database of nucleo-
tide sequences—where each sequence may contain one,
several, or no instances of motif—along with an upper
limit on the total number of such instances in each
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sequence serve as problem inputs. For example, in the case
of the CRP database (discussed later in further detail) the
supplied input is a set of 105 nt-long DNA segments from
non-coding regions upstream of 18 Escherichia coli genes.
The desired output is the number, length and locations of
CRP-binding sites within each sequence.

Overview

As noted earlier, the innate heterogeneity observed among
instances of individual binding sites—which is driven by
local context optimization requirements, mutagenesis,
fluctuations in measurement fidelity, etc.—makes the de-
termination of motif sequences a statistically uncertain
problem. While these variations may be ascribed to an
amalgamation of random processes, the ensuing probabil-
istic nature of the motif discovery problem can be
captured through the use of the hidden Markov model
(HMM) framework. That is, given a database of nucleic
acid strand segments, we consider the information in
question—namely, the number, length and locations of
individual motif instances in each sequence—to be unob-
servable directly (i.e. ‘hidden’). Instead, the available data
consists solely of base sequences themselves, wherein motif
patterns of interest—which remain to be ‘discovered’—
may (or may not) be embedded. The approach used for
the discovery process is based on Bayesian inference—a
powerful and flexible technique able to utilize a broad
range of data toward elucidating various hidden/
unknown system parameters—which, in our case,
focuses on motif lengths, logos and instance locations.
(Therein, one starts with a probabilistic model that
reflects the knowledge regarding parameter values of
interest as available a priori, if any. This ‘prior’ distribu-
tion is then updated to the ‘posterior’ one by conditioning
on any additionally obtained information through the use
of Bayes’ probability formula, which results in a posteriori
estimates of parameters that are progressively more con-
strained with each new observation.)

Significantly, although Bayesian techniques have been
previously applied to the problem of identifying patterns
in nucleic acid sequences, BAMBI implements this
approach by treating entire sequences contained in the
database (rather than single bases or smaller segments
within them) as individual observations. This potentially
allows an algorithm to better capture the more subtle
structural features present within individual motif logos,
which may account for the improved results demonstrated
by BAMBI in discovering the binding motif of Din-family
recombinases as discussed below.

However, while generally more informative, the use of
such larger data elements comes with substantial addition-
al computational costs, which inhibit efficient model esti-
mation. Here, we overcome this impediment through the
use of a sequential Monte Carlo technique. This approach
generates estimates of hidden variables by finding approxi-
mations of their posterior distribution given observations.
Ideally, one might have liked to approximate this poster-
ior distribution by obtaining samples from it, but this is
generally impossible—e.g. due to the referenced computa-
tional complexity. Instead, samples (called ‘particles’) are

first drawn from an alternative distribution (called ‘im-
portance distribution’) and a weight is then attached to
each sample in such a way as to compensate for any
mismatch between the true posterior and the importance
distribution, which completes the method. (Given the
broad freedom in choosing the importance distribution,
here we have selected one that is suitable for a sequential
method—that is, it enables processing of each observation
individually—see Supplementary Data for more detail.)

Bayesian algorithm for multiple biological instances

As outlined in the previous section, when using BAMBI
to identify the motif and find all of its instances, we look
to process one sequence from the input database at a
time in a sequential manner. To this end, we represent
the system as a HMM, where the hidden state corresponds
to the ‘state vector’, xt, which is the concatenation of the
number of motifs in the current sequence and their
locations. (Note that the dimension of the state vector
differs across individual sequences in the database due
to the varying numbers of motif instances they contain.)
The t-th sequence is considered to be the observation at
step/time t, for which the corresponding state vector is to
be estimated. The transition probability from the state at
time t� 1 to the state at time t depends on the unknown
distribution of the number of instances of the motif in a
sequence, which we described by a vector: j=[�0 . . . �N],
where N is the upper bound on the number of motif
instances in the sequence database. Similarly, for a given
state, the emission probability is considered to be
dependent on an unknown PWM, which describes the dis-
tribution of nucleotides at each position of the motif.
These nucleotides are regarded as being denoted by
letters drawn from a given alphabet, which is typically
taken to be: {A,C,G,T/U} (although accounting for
methylation, other nucleoside modifications, or experi-
mental use of non-standard bases may lead to alternative
representations). We let the probability of finding any
specific letter at the j-th position of an M-long motif be
denoted by hj. Taken across all positions in the motif,
j=1, . . . ,M, this information can be represented as a
PWM: h=[h1, . . . , hM]. Finally, while more complicate
models can be utilized when necessary, in this article
nucleotides not belonging to a motif are assumed to
be independent and identically distributed according to a
given background distribution: h0, which is estimated
in a problem-specific manner by collecting statistics
over the embedding DNA segments, employing results
of other methods as input, using uniform or other
heuristics, etc.
BAMBI looks to estimate the number and position of

motif instances in each sequence without prior knowledge
of j or the PWM. Given all sequences from first to t-th
and the background distribution of nucleotides outside of
motifs, h0, this information is encapsulated by the (hidden)
state vector, xt. Here, we propose to infer these hidden
states, within a Bayesian framework, that is, we use
prior distributions to model and handle the unknown par-
ameters of the system. In particular, we assume the PWM
h consists of M independent random vectors (one for each

PAGE 3 OF 11 Nucleic Acids Research, 2011, Vol. 39, No. 21 e146

http://nar.oxfordjournals.org/cgi/content/full/gkr745/DC1


position of the motif), which are distributed according to a
Dirichlet distribution (19). The Dirichlet distribution is the
multivariate generalization of the beta distribution, which
is a univariate distribution notable for being able to
assume a broad variety of shapes—from uniform to
unimodal to bimodal—depending on the values of its
two parameters, thus allowing for characterization of a
broad variety of probabilistic systems. The Dirichlet dis-
tribution is defined for non-negative variables that sum to
one—a condition satisfied by each column of the PWM.
Moreover, this distribution has the advantage of being the
conjugate prior of the categorical (discrete) distribution,
that is, both prior and posterior distributions of hi will
be distributed according to the same distribution.
The Dirichlet distribution has previously been used for
modeling the PWM (17). The distribution of the number
of instances j of the motif in each sequence is also repre-
sented as a random vector following a Dirichlet
distribution.
Within the context of this model, a sequential Monte

Carlo method is then used to approximate the distribution
of the hidden states up until time step t given observations,
which is the distribution of the quantity of interest
conditional on the sequences from first to t-th. However,
as the measurement model depends on an unknown vector
h and the state transition depends on an unknown vector
j, we modify the approximation procedure to average out
the influence of these two unknown parameters. To this
end, we show in the Supplementary Data how the result-
ing set of expressions can be computed in closed forms to
enable a highly efficient solution for the problem of
finding instances of a motif in a set of unaligned
sequences.
The class-based resampling scheme presented in (20) is

employed to estimate the unknown length of the motif,
M, jointly with the number and location of motif instances
for each sequence by using the augmented hidden state
vector to include the length of the motif. As the length
of the motif is not expected to change from sequence to
sequence, a static dynamics is used for M. Finally, to
avoid letting the algorithm be stuck with one potentially
incorrect motif length, this scheme is applied to each of the
possible considered motif lengths.
As the complexity of the sequential estimation process

increases with the dimension of the state vector, we
propose a fast version of the method that divides the in-
ference process in two stages. In the first stage, we use the
sequential Monte Carlo method in order to decide
whether there is at least one or no instance of the motif
in each sequence, and to obtain an estimate of the PWM h.
The number of instances of the motif in each sequence is
then determined by the second stage, where the estimate of
the PWM is used as a prior for a sequence of binary hy-
pothesis (21) as shown in the Supplementary Data.
Notably, the Bayesian framework proposed here can be

easily adapted for use with and/or refinement of results
arising from other motif discovery algorithm by modifying
the PWM prior based on this information. (If no such
algorithm is available, estimation of the PWM is initiated
with an uninformative prior.)

RESULTS

We have applied BAMBI to several motif discovery
problems, using both empirical as well as synthetic data,
and evaluated its performance on the basis of the
nucleotide-level correlation coefficient (nCC)—a robust
measure that captures both the sensitivity and the specifi-
city of a method (22). While there are a number of alter-
native statistics that can potentially be used to compare
performances of various bioinformatics algorithms,
greatest nCC score has been suggested by Tompa et al.
after an extensive study (2) as the reportable metric for
subsequent assessment of motif discovery tools. It is
defined as:

nCC ¼
TP � TN� FP � FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞðFPþ TNÞðTNþ FNÞðFNþ TPÞ

p

where TP/TN are the total number of nucleotides in the
input database that are estimated to be true positives/
negatives and FP/FN are the total number of nucleotides
estimated to be false positives/negatives, based on an em-
pirically established baseline standard.

In all instances, the performance of the presented algo-
rithm has been further compared against four popular
nucleic acid motif discovery methods: BioProspector,
MEME, SeSiMCMC and Motif Sampler.

In all the applications, BAMBI was initialized by setting
the parameters of the corresponding Dirichlet distribution
at each position in the PWM to be 1. This transforms the
Dirichlet distribution into a uniform distribution, as no
information about the motif is assumed. Similarly, the
parameters of the Dirichlet distribution corresponding to
the distribution of the number of instances of the motif in
each sequence is initialized as follows. The parameter cor-
responding to the case of no instance of the motif is set to
1, and the parameter corresponding to the case of having
one instance is set to be equal to the average length of the
input sequences. This allows the algorithm to have a good
number of particles with an instance of the motif while
having some with no instance as well when processing the
first sequences. Finally, the number of particles is set to be
20 times the average length of the input sequences.

Synthetic database

Synthetic data was used to test each algorithm for differ-
ent motif lengths. For every considered motif length, 10
databases were generated, each containing 25 sequences of
200 nucleotides. All sequences were seeded with 0, 1 or 2
instances of the motif with probabilities 0.1, 0.3 and 0.6,
respectively. When a sequence has one or two instances of
the motif, their locations are randomly selected using a
uniform distribution. Nucleotides belonging to an
instance of the motif were drawn from a distribution
that has 0.7 probability for a dominant nucleotide and
0.1 for the remaining three nucleotides. The identity of
the dominant nucleotide for each position was chosen
randomly. For the positions in the sequence not belonging
to a motif, the nucleotides are equiprobable, i.e. there is a
probability of 0.25 for each nucleotide. The total nCC is
computed for each motif lengths between 14 and 20.
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The results produced by the BAMBI algorithm have
been compared with those generated by MEME,
BioProspector, SeSiMCMC and Motif Sampler. All five
algorithms have been given the exact motif length in each
test. When applying Motif Sampler, the true background
distribution is supplied as an input to the algorithm. The
resulting values of nucleotide-level correlation coefficients
are given as a function of motif length in Figure 1. It is
seen that the algorithm proposed here achieves higher per-
formance than the other four methods for all tested motif
lengths.

Real databases

We have analyzed two types of empirical DNA sequence
data and compared the performance of BAMBI to that of
MEME, BioProspector, SeSiMCMC and Motif Sampler.
The first application is a transcription factor binding site
data set, which consists of 18 short sequences that contain
zero to two motif instances. The second is a site-specific
recombinase binding data set, which comprises only
10 sequences, but of considerably greater length (see
Table 1) that contain two instances of the motif. This
represents two completely different experimental scenarios
where the Bayesian motif discovery is tested and
compared with other approaches.

For these two data sets, we set Motif Sampler to
estimate the background distributions as an order 1
Markov model from the input sequences. When analyzing
the synthetic data set, the true background distribution
was supplied, but in the case of the real data sets, such
distributions are unknown.

cAMP receptor protein database. Site-specific cAMP-CRP
binding to DNA represents the prototypical model of gene
regulation by a transcription factor (1,23). In large part,
this may be attributed to cAMP receptor protein (CRP)
being an essential component of catabolite repression
system, with research history in E. coli dating back to
Monod’s investigation of the ‘glucose effect’ (23). It also
constitutes an example of a regulon, which plays a major

role in directing bacterial energy metabolism (1) and
whose significance has been recently further brought to
fore by bioremediation and bioenergy applications
(23,24). In fact, the identity of both CRP binding sites
and amino-acid residues responsible for interacting with
them have been so well-understood as to allow novel
in silico-designed and in situ-engineered protein–DNA
pairs binding with sufficient specificity to enable transcrip-
tion factor activity (25). Here, we apply BAMBI as well as
MEME, BioProspector with BioOptimizer, SeSiMCMC
and Motif Sampler algorithms to identify the presence
of CRP regulatory binding sites in 18 DNA sequences—
each 105 nt in length. It has been experimentally
determined that there are 23 instances of the motif of
length 22 in the set (26).
For the purposes of our analysis, the length m of the

motif is considered to be unknown, requiring the use of
respective procedures noted earlier. We impose a lower
and upper bound on m of 17 and 27—respectively—and
set the number of possible instances of the motifs to be
between 0 and 2. (If another algorithm supplies more than
two instances of a motif in a sequence, only the two
highest scoring ones are kept to facilitate the comparison.)
In the case of Motif Sampler, the length of the motif is
supplied as an input to the method, as it cannot deal with
uncertainty regarding this parameter.
Figure 2 shows the estimated probability mass function

of the different values of m after applying BAMBI to the
entire database. As can be seen from the results, the
BAMBI algorithm has estimated the most likely motif
length to be 21 bp long, whereas the true motif length is

Figure 1. Performance comparison of different methods using synthetic data with varied motif length.

Table 1. Statistics of the recombinase database

Number of Sequences 10
Shortest Sequence (nucleotides) 546
Longest Sequence (nucleotides) 4335
Average Sequence Length (nucleotides) 2436.4
Total Data set Size (nucleotides) 24364

PAGE 5 OF 11 Nucleic Acids Research, 2011, Vol. 39, No. 21 e146



considered to be 22 bp, as noted earlier. By comparison,
both MEME and BioProspector with BioOptimizer have
estimated the length of the motif to be 24 bp, with
SeSiMCMC yielding 19 bp.
The estimated PWM logos for different motif discovery

algorithms along with the one inferred from measured
data are shown in Figure 3. The CRP motif contains
two highly conserved inverted repeat sub-structures: ‘TG
TGA’ and ‘TCACA’, which are likewise shown to be
present in all of the logos.
The net results achieved by the BAMBI algorithm—as

compared with those of MEME as well as BioProspector
with BioOptimizer, SeSiMCMC and Motif Sampler (with
the latter having been supplied with known motif
length)—are given in Table 2, where M̂ is the estimated
motif length. It can be seen that BAMBI is performing
better by both the statistical significance criterion (nCC)
as well as based on the estimated motif length
M̂, for which BAMBI gives an estimate closest to the
experimentally determined value.

Din-family of site-specific serine recombinases
database. Site-specific recombination is a process by
which well-defined sequences (‘recombination sites’) on
the same or two different DNA molecules come together
and undergo strand exchange, usually catalyzed by
specialized enzymes called recombinases (sometimes con-
textually referred to as ‘invertases’ or ‘integrases’). Based
on the location/orientation of sites and other conditions, a
recombination reaction results either in the inversion or
excision/integration of the intervening DNA segment (27).
The latter generally contains promoters, alternative
coding sequences, or other elements regulating gene ex-
pression; so that a recombination event causes initiation/
cessation of transcription or/and synthesis of a different
message RNA. Thus, site-specific recombination offers an
organism or a virus an ability to generate mutually exclu-
sive genetic states through ‘programmed’ DNA rearrange-
ments. This type of gene regulatory mechanism has the
advantage of being absolute—i.e. expression is impossible

when the gene is lacking a correctly oriented promoter or
is physically separated into several non-functional
pieces—which may be critically important should
presence of even one copy of the wrong protein become
highly disadvantageous as, for example, might be the case
for a pathogen targeted by antibodies directed against that
protein (1,28). Recombination may also have a further
advantage of facilitating rapid and optimized adaptation
to such critical environmental conditions without the need
to rely on slow and frequently deleterious process of
random mutagenesis (29). Indeed, gene regulatory
networks driven by site-specific recombination appear to
be particularly enriched among pathogens, including
uropathogenic E. coli—the predominant cause of urinary
tract infections—and Salmonella Typhimurium (28,29).

Importantly, such environmental conditions may often
be rare or difficult to reproduce in the lab—e.g. when they
involve intra-host pathogen dynamics (28)—causing po-
tentially critical genomic rearrangements to remain phe-
nomenologically undetected. One alternative could be to
analyze genomic sequences directly for the presence of
recombination sites through bioinformatics means. This
approach may be further enabled by the fact that virtually
all identified site-specific recombinases belong to one of
just two basic families, named serine or tyrosine after the
amino acid residue that forms the covalent protein–DNA
linkage in the reaction intermediate (27). The serine family
comprises three primary subfamilies characterized by
sequence, structural and recombination site homology
(29,30). Here, we use motif discovery algorithms to infer
the DNA recombination site (dix) of Din serine subfamily,
which includes such notable recombinase examples as Hin
(responsible for flagellar phase variation in Salmonella),
Gin (determination of phage Mu host specificity) as well
as a number of other bacterial and phage systems.

All known Din family members recognize a 26 bp-long
minimal recombination sites (29,31), with the list used in
this study given in Table 3. Specific sequence sources
employed to assemble the segment database used for site
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Figure 2. Length PDF estimated by BAMBI for the CRP binding site motif.
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motif discovery comprised: Salmonella enterica serovar
Typhimurium D23580 (GenBank FN424405);
Bacteriophage Mu (GeneBank AF083977);
Enterobacteria phage P1 (GenBank AF234172);
prophage e14 of E. coli K12 (GenBank K03521); E. coli

plasmid p15B (GenBank X62121); Dichelobacter nodosus
VCS1001 (A198) (GenBank U02462); and Shigella sonnei
[GenBank D00660 – revised from S. boydii, but functional
in S. sonnei A. Tominaga (personal communication)]. To
generate the standardized data set, seven sequences listed
above were further cut, making sure two instances of the
motif remained inside each segment. As there are 20 in-
stances of the motif, this resulted in 10 sequences being
used as the input to the algorithm (see Supplementary
Data). Specific details of the so obtained database are
shown in Table 4.
The number of nucleotides previous to the first instance

of the motif is chosen from a uniform distribution between
0 and 50. The number of nucleotides to keep after the
second instance of the motif was chosen analogously.

Figure 3. Logos of the CRP binding site motif. Empirical (‘True’) versus those inferred by the different algorithms. (A) True motif logo, (B)
BAMBI’s motif logo, (C) MEME’s motif logo, (D) BioProspector’s motif logo, (E) SeSiMCMC’s motif logo and (F) Motif Sampler’s motif logo.

Table 2. Performance comparison using the CRP database

BAMBI MEME BioProspector
(+BioOptimizer)

SeSiMCMC Motif
Sampler

M̂ 21 24 24 19 –
nCC 0.6763 0.5358 0.5745 0.63633 0.5590

The value of M was found to be 22 empirically.
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Note that the two instances of the motif present in each
sequence are often oriented in opposite directions, so the
analysis has been extended in a straightforward manner to
account for characteristics specific to double-stranded
DNA by searching for sites located on the reverse com-
plement as well. This is implemented within the context of
the BAMBI hidden Markov model by replacing each
double-stranded entry in the sequence database with one
that is a concatenation of the corresponding forward and
reverse strands (both in the 50-to-30 orientation). As
BAMBI is able to discover both the number and locations
of multiple motif instances, running the algorithm over the
modified database identifies sites located on either strand.
The logos estimated by the different algorithms are pre-

sented in Figure 4. It can be seen that BAMBI, MEME,
and BioProspector find similar consensus sequences, while
SeSiMCMC and Motif Sampler do not. A quantitative
significance comparison of the results—given in
Table 5—shows that the BAMBI algorithm achieves the
best statistical performance, and that both SeSiMCMC
and Motif Sampler were not able to find the motif.
Furthermore, only the BAMBI algorithm has been able

to identify a functionally meaningful and biochemically
correct recombination site. This is because, while for a
transcription factor the inferred site only needs to
specify preferred binding locations, in the recombinase
case the DNA sequence itself has a functional role in
gene expression regulation and so requires accurate

identification of both the motif as well as strand
breakage/exchange positions within it. As a result, any
spatial shifts in the binding motif location away from
the true sequence are likely to have a dramatic and dele-
terious effect on the product of site-specific recombin-
ation—e.g. by either putting an alternative coding
sequence out of frame, removing a portion of the
promoter region in the course of an inversion/excision
or inhibiting strand exchange altogether. Thus, a shifted
sequence prediction—no matter how close to the true
motif in the statistical sense—cannot be deemed correct
or acceptable in the biochemical sense as it undermines
either bioengineering/synthetic biological implementation
or systems biological analysis of the recombination
products and their function.

In the case of the Din subfamily recombinase sites, the
strand breakage/exchange reaction occurs through a stag-
gered cut between the two ‘core’ residues, which necessar-
ily have to be symmetrically and centrally located within
the recombinase binding motif [see Table 3 and, for
example, (29)]. As may be seen by comparing the
inferred logos (Figure 4) among themselves or with the
empirically established consensus Din binding site
(Table 3), only the motif discovered by BAMBI accurately
identifies the spatial location of the dix sequence, while the
predictions of both MEME and BioOptimizer are shifted
right by 3 bp. Given that the overall length of the motif is
26 bp, such a difference may not appear to be particularly
significant statistically (e.g. as reflected by the nCC per-
formance measure, Table 5). However, this is not the case
biochemically, because such shifts generally lead to the
incorrect determination of the identity of the two middle
residues—the location of strand exchange—and so result
in a non-functional recombinase site. For instance, outside
of the two central residues, the rest of the motif must
largely be palindromic in order to accommodate the sym-
metric binding of two recombinase molecules, whose di-
merization is generally required for strand exchange.
However, in MEME- and BioOptimizer-discovered
binding motifs, the lateral shift relative to the true empir-
ically known sequence substantially breaks this critical
symmetry. Furthermore, the 2 bp central residue pair

Table 3. Target sites of Din-family recombinases

dix (consensus) TTC———AAAC– –A –GTTT———GAA

hixL TTCTTGAAAACC AA GGTTTTTGATAA
hixR TTTTCCTTTTGG AA GGTTTTTGATAA
gixL TTCCTGTAAACC GA GGTTTTGGATAA
gixR TTCCTGTAAACC GA GGTTTTGGATAA
cixL TTCTCTTAAACC AA GGTTTAGGATTG
cixR TTCTCTTAAACC AA GGTATTGGATAA
pixL TTCTCCCAAACC AA GGTTTTCGAGAG
pixR TTCTCCCAAACC AA CGTTTATGAAAA
mixMI0 0L0 TTCCCCCAAACC AA CGTTTTAGTCTT
mixMr0 0N0 TTCCCCTAAACC AA CGTTTTTATGCC
mixN0 0O0 TTCCCCCAAACC AA CGTTTTTATGTG
mixO0 0P0 TTCCCCTAAACC AA CGTTTTTATGCC
mixP0 0Q0 TTCCCCTAAACC AA CGTTTTTATGCC
mixQ0 0R0 TTCCCCCAAACC AA GGTAATCAAGAA
nix1 TTTCCCAGAAGC AA CCTTAAGTAAAA
nix2 TTTCGCAGAAGC AA CCTTACGTCAAA
nix3 AGACGAAGAAGC AA CCTTAAGTCAAA
nix4 TTTCCCAGAAGC AA CCTTAAGTCAAA
bixL TTCCTGTAAACC GA GGTATTCGATAA
bixR TTCCTGTAAACC GA GGTTTTAGATAA

Recombination sites for Din subfamily members: Hin (hixL and hixR),
Gin (gixL and gixR), Cin (cixL and cixR), Pin (pixL and pixR), Min
[mixMI0 0L0, mixMr0 0N0, mixN0 0O0, mixO0 0P0, mixP0 0Q0 and mixQ0 0R0—
labeled according to the convention used in (32)], D. nodosus [nix1,
nix2, nix3 and nix4—with sequences taken from the updated
GenBank record rather than as specified in Moses et al. (31)], and
PinB (bixL and bixR) (29,31–34). Din palindromic consensus binding
site (dix) is as discussed in (35). The two core residues at the centers of
the sites where strand breakage and exchange occur are highlighted in
bold.

Table 4. Database of recombination sites

GenBank accession
number

Start
sequence

End
sequence

Recombination
sites

FN424405 2907699 2908805 hixL, hixR
AF083977 31913 35084 gixL, gixR
NC_005856 32206 36541 cixL, cixR
X01805 21 1929 pixL, pixR
X62121 2743 4447 mixR0M10 0, mixMr0 0N0

X62121 4848 5465 mixN0 0O0, mixO0 0P0

X62121 5868 6414 mixP0 0Q0, mixQ0 0L0

U02462 182 4049 nix1, nix2
U02462 4489 8411 nix3, nix4
D00660 600 3788 bixL, bixR

Sequence start and end labels are given by the nucleotide number in the
corresponding GenBank record.
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found via both MEME and BioOptimizer is a definitive
AC (logo positions 13 and 14). However, the absence of
complementary cores in the database as well as the
presence of a ‘C’ (instead of the strongly conserved ‘A’,
see Table 3) in the second position render such binding
sites largely unable to support wild-type Din

recombination, i.e. they are essentially non-functional
(29). These problems are notably not present in the
BAMBI’s motif prediction, which is spatially aligned
with the dix sequence and assigns the most weight to
either AA or GA core pairs that are biochemically
permissible.

DISCUSSION

In this article, we have proposed a BAMBI algorithm for
the discovery of motifs, which solves the motif discovery
problem where the location of motif instances in a
sequence, their number, and length are unknown. The
solution is based on representing the problem as a HMM
with the sequential Monte Carlo method being used to

Figure 4. Logos of the Din recombinase binding site motif. Empirical (‘True’) versus those inferred by the different algorithms. (A) True motif logo,
(B) BAMBI’s motif logo, (C) MEME’s motif logo, (D) BioProspector’s motif logo, (E) SeSiMCMC’s motif logo and (F) Motif Sampler’s motif logo.

Table 5. Performance comparison using the recombinase database

BAMBI MEME BioProspector SeSiMCMC Motif Sampler

nCC 0.7711 0.7618 0.7618 �0.0153 �0.0182

MEME, BioProspector, SeSiMCMC and Motif Sampler did not
produce a functionally correct site.
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estimate the unknown characteristics of the motif and the
locations of its instances. Such a solution resides within the
Bayesian framework that also allows the algorithm to use
experimental or other motif discovery algorithm results as
prior information and to refine their estimations.
The algorithm was tested in applications using

both synthetic data as well as two empirical DNA
sequence databases: one containing cAMP-CRP tran-
scription factor and the other—Din recombinases
binding sites. In all examples BAMBI has been shown to
perform better than MEME, BioProspector with
BioOptimizer, SeSiMCMC and Motif Sampler by the stat-
istical measure of the nucleotide-level correlation coeffi-
cient. Furthermore, BAMBI was the only algorithm to
provide a biochemically meaningful result for the Din re-
combinase binding motif.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

FUNDING

U.S. National Science Foundation (NSF) (under grant
DBI-0850030, in part); U.S. National Science
Foundation (NSF) (under grant CMMI-1028112 to
X.W.); and ENIGMA-Ecosystems and Networks
Integrated with Genes and Molecular Assemblies
supported by the U. S. Department of Energy, Office of
Science, Office of Biological and Environmental Research
through contract No. DE-AC02-05CH11231. Funding for
open access charge: The Columbia Open-Access
Publication (COAP) Fund.

Conflict of interest statement. None declared.

REFERENCES

1. Lehninger,A.L., Nelson,D.L. and Cox,M.M. (2008) Principles of
Biochemistry.. Worth Publishers, New York, NY.

2. Tompa,M., Li,N., Bailey,T.L., Church,G.M., De Moor,B.,
Eskin,E., Favorov,A.V., Frith,M.C., Fu,Y., Kent,W.J. et al.
(2005) Assessing computational tools for the discovery of
transcription factor binding sites. Nat. Biotech., 23, 137–147.

3. Bailey,T., Williams,N., Misleh,C. and Li,W. (2006) MEME:
discovering and analyzing DNA and protein sequence motifs.
Nucleic Acids Res., 34, W369–W373.

4. Reiss,D., Baliga,N. and Bonneau,R. (2006) Integrated biclustering
of heterogeneous genome-wide datasets for the inference of global
regulatory networks. BMC Bioinformatics, 7, 280–301.

5. Pevzner,P. and Sze,S. (2000) Combinatorial approaches to finding
subtle signals in DNA sequences. Proc. Int. Conf. Intell. Syst.
Mol. Biol., 8, 269–278.

6. Hertz,G. and Stormo,G. (1999) Identifying DNA and protein
patterns with statistically significant alignments of multiple
sequences. Bioinformatics, 15, 563–577.

7. Sinha,S. and Tompa,M. (2003) YMF: a program for discovery
of novel transcription factor binding sites by statistical
overrepresentation. Nucleic Acids Res., 31, 3586–3588.

8. Pavesi,G., Mauri,G. and Pesole,G. (2001) An algorithm for
finding signals of unknown length in DNA sequences.
Bioinformatics, 17, S207–S214.

9. Sze,S.H. and Zhao,X. (2006) Improved pattern-driven algorithms
for motif finding in DNA sequences. In Eskin,E. et al. (eds),

Systems Biology and Regulatory Genomics, LNCS, Vol. 4023.
Springer, pp. 198–211.

10. Bailey,T. and Elkan,C. (1994) Fitting a mixture model by
expectation maximization to discover motifs in biopolymers.
Proc. Int. Conf. Intell. Syst. Mol. Biol., 2, 28–36.

11. Bailey,T., Boden,M., Buske,F., Frith,M., Grant,C., Clementi,L.,
Ren,J., Li,W. and Noble,W. (2009) MEME SUITE: tools for
motif discovery and searching. Nucleic Acids Res., 37,
W202–W208.

12. Liu,X., Brutlag,D. and Liu,J. (2001) Bioprospector:
discover conserved DNA motifs in upstream regulatory
regions of co-expressed genes. Proc. Pac. Symp. Biocomp., 6,
127–138.

13. Hughes,J.D., Estep,P.W., Tavazoie,S. and Church,G.M. (2000)
Computational identification of Cis-regulatory elements associated
with groups of functionally related genes in Saccharomyces
cerevisiae. J. Mol. Biol., 296, 1205–1214.

14. Liu,J.S., Neuwald,A.F. and Lawrence,C.E. (1995) Bayesian
models for multiple local sequence alignment and Gibbs
sampling strategies. J. Am. Stat. Assoc., 90, 1156–1170.

15. Thijs,G., Lescot,M., Marchal,K., Rombauts,S., De Moor,B.,
Rouze,P. and Moreau,Y. (2001) A higher-order background
model improves the detection of promoter regulatory elements
by Gibbs sampling. Bioinformatics, 17, 1113–1122.

16. Favorov,A.V., Gelfand,M.S., Gerasimova,A.V., Ravcheev,D.A.,
Mironov,A.A. and Makeev,V.J. (2005) A Gibbs sampler for
identification of symmetrically structured, spaced DNA motifs
with improved estimation of the signal length. Bioinformatics, 21,
2240–2245.

17. Liang,K., Wang,X. and Anastassiou,D. (2008) A profile-based
deterministic sequential Monte Carlo algorithm for motif
discovery. Bioinformatics, 24, 46–55.

18. Jensen,S. and Liu,J. (2004) BioOptimizer: a Bayesian scoring
function approach to motif discovery. Bioinformatics, 20,
1557–1564.

19. Evans,M., Hastings,N. and Peacock,B. (2000) Statistical
distributions. Wiley-Interscience, New York.

20. Vercauteren,T., Guo,D. and Wang,X. (2005) Joint multiple
target tracking and classification in collaborative sensor networks.
IEEE J. Sel. Areas Commun., 23, 714–723.

21. Poor,H.V. (1994) An Introduction to Signal Detection and
Estimation. Springer, New York.

22. Burset,M. and Guigo,R. (1996) Evaluation of gene structure
prediction programs. Genomics, 34, 353–367.

23. Kolb,A., Busby,S., Buc,H., Garges,S. and Adhya,S. (1993)
Transcriptional regulation by cAMP and its receptor protein.
Annu. Rev. Biochem., 62, 749–795.

24. Cases,I. and de Lorenzo,V. (1998) Expression systems and
physiological control of promoter activity in bacteria.
Curr. Opin. Microbiol., 1, 303–310.

25. Desai,T.A., Rodionov,D.A., Gelfand,M.S., Alm,E.J. and
Rao,C.V. (2009) Engineering transcription factors with novel
DNA-binding specificity using comparative genomics.
Nucleic Acids Res., 37, 2493–2503.

26. Stormo,G. and Hartzell,G. (1989) Identifying protein-binding sites
from unaligned DNA fragments. Proc. Natl Acad. Sci. USA, 86,
1183–1187.

27. Grindley,N., Whiteson,K. and Rice,P. (2006) Mechanisms
of Site-Specific Recombination. Annu. Rev. Biochem., 75,
567–605.

28. Kuwahara,H., Myers,C.J. and Samoilov,M.S. (2010) Temperature
control of fimbriation circuit switch in uropathogenic Escherichia
coli: quantitative analysis via automated model abstraction.
PLoS Comput. Biol., 6, e1000723.

29. Johnson,R. (2002) Bacterial site-specific DNA inversion systems.
Mobile DNA II. American Society for Microbiology Press,
Washington, D.C., pp. 230–271, chapter 13.

30. Smith,M.C.M. and Thorpe,H.M. (2002) Diversity in the serine
recombinases. Mol. Microbiol., 44, 299–307.

31. Moses,E.K., Good,R.T., Sinistaj,M., Billington,S.J.,
Langford,C.J. and Rood,J.I. (1995) A multiple site-specific
DNA-inversion model for the control of omp1 phase and
antigenic variation in Dichelobacter nodosus. Mol. Microbiol., 17,
183–196.

e146 Nucleic Acids Research, 2011, Vol. 39, No. 21 PAGE 10 OF 11

http://nar.oxfordjournals.org/cgi/content/full/gkr745/DC1


32. Sandmeier,H., Iida,S., Meyer,J., Hiestandnauer,R. and Arber,W.
(1990) Site-specific DNA recombination system Min of plasmid
p15b: a cluster of overlapping invertible DNA segments.
Proc. Natl Acad. Sci. USA, 87, 1109–1113.

33. Crellin,P.K. and Rood,J.I. (1997) The resolvase/invertase domain
of the site-specific recombinase tnpx is functional and recognizes
a target sequence that resembles the junction of the circular form
of the Clostridium perfringens transposon tn4451. J. Bacteriol.,
179, 5148–5156.

34. Tominaga,A., Ikemizu,S. and Enomoto,M. (1991) Site-specific
recombinase genes in three Shigella subgroups and nucleotide
sequences of a pinB gene and an invertible B segment from
Shigella boydii. J. Bacteriol., 173, 4079–4087.

35. Sandmeier,H. (1994) Acquisition and rearrangement of
sequence motifs in the evolution of bacteriophage tail fibers.
Mol. Microbiol., 12, 343–350.

PAGE 11 OF 11 Nucleic Acids Research, 2011, Vol. 39, No. 21 e146


