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Abstract

Objective: To evaluate minority variant drug resistance mutations detected by the oligonucleotide ligation assay (OLA) but
not consensus sequencing among subjects with primary HIV-1 infection.

Design/Methods: Observational, longitudinal cohort study. Consensus sequencing and OLA were performed on the first
available specimens from 99 subjects enrolled after 1996. Survival analyses, adjusted for HIV-1 RNA levels at the start of
antiretroviral (ARV) therapy, evaluated the time to virologic suppression (HIV-1 RNA,50 copies/mL) among subjects with
minority variants conferring intermediate or high-level resistance.

Results: Consensus sequencing and OLA detected resistance mutations in 5% and 27% of subjects, respectively, in
specimens obtained a median of 30 days after infection. Median time to virologic suppression was 110 (IQR 62–147) days for
63 treated subjects without detectable mutations, 84 (IQR 56–109) days for ten subjects with minority variant mutations
treated with $3 active ARVs, and 104 (IQR 60–162) days for nine subjects with minority variant mutations treated with ,3
active ARVs (p = .9). Compared to subjects without mutations, time to virologic suppression was similar for subjects with
minority variant mutations treated with $3 active ARVs (aHR 1.2, 95% CI 0.6–2.4, p = .6) and subjects with minority variant
mutations treated with ,3 active ARVs (aHR 1.0, 95% CI 0.4–2.4, p = .9). Two subjects with drug resistance and two subjects
without detectable resistance experienced virologic failure.

Conclusions: Consensus sequencing significantly underestimated the prevalence of drug resistance mutations in ARV-naı̈ve
subjects with primary HIV-1 infection. Minority variants were not associated with impaired ARV response, possibly due to
the small sample size. It is also possible that, with highly-potent ARVs, minority variant mutations may be relevant only at
certain critical codons.
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Introduction

Transmission of drug resistant HIV-1 has been well-document-

ed following the widespread availability of antiretroviral (ARV)

therapy [1–11]. In the United States, cross-sectional surveys using

consensus sequencing estimate that 11–24% of persons acquire

drug resistant HIV-1 [8,9,12,13]. National guidelines therefore

recommend genotypic resistance testing for ARV-naı̈ve persons at

entry into care [14].

Consensus sequencing cannot consistently detect viral variants

unless they comprise greater than 10–50% of the population [15–

20], and studies using more-sensitive assays have detected

mutations at lower concentrations (i.e. ‘‘minority variant’’

mutations) in up to half of ARV-naı̈ve subjects [21–24]. However,

the impact of minority variants on HIV-1 disease progression and

response to ARVs remains unclear. Some studies have found

associations between minority variant mutations and poor clinical

outcomes [23–30] or that outcomes were dependent on the

specific mutant codon and ARV therapy used [23,30,31], but

others have found no association between minority variants and

treatment responses [32–34].

The oligonucleotide ligation assay (OLA) is an HIV-1 drug

resistance assay that is more sensitive than consensus sequencing

and can detect mutations at select codons when they occur in as

few as 2–5% of the viral quasi-species [35–38]. This study

evaluated the prevalence of mutations detected by OLA and the

impact of minority variants on responses to ARV therapy in a

cohort of subjects with primary HIV-1 infection.

Materials and Methods

Patient population
Characteristics of the University of Washington Primary

Infection Clinic (PIC) cohort have previously been described
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[39–41]. For this project, we selected a subgroup from among

201 subjects in the cohort who acquired HIV-1 after highly

active ARV therapy became widely available in 1996. We

preferentially selected subjects who 1) had enrolled in the cohort

within one month of their estimated date of HIV-1 infection

(defined as the date of onset of seroconversion symptoms or, for

asymptomatic individuals, the midpoint between dates of the last

negative and first positive HIV-1 tests), 2) had results of a pre-

treatment HIV-1 drug resistance test (consensus sequencing)

already available, and/or 3) initiated ARV therapy within six

months of study enrollment. We performed consensus sequenc-

ing and sensitive drug resistance testing to determine HIV-1

genotype on the first available (i.e. baseline) plasma and

peripheral blood mononuclear cell (PBMC) specimens that had

been collected no more than seven days after the start of ARVs.

Thirty-four subjects had consensus sequencing performed as part

of clinical research evaluations prior to our undertaking this

analysis; results of resistance testing performed specifically for

this study were not used to guide selection of ARV therapy. This

study was approved by the University of Washington Institu-

tional Review Board, and all subjects gave written consent for

participation in the cohort.

HIV-1 RNA quantification in blood plasma
Specimens collected between 1996 and 2002 were initially

tested with branched DNA (bDNA) assays with lower limits of

detection of 50 and 500 copies/mL (Chiron Corporation;

Emeryville, CA). When specimens were available, results censored

at 500 copies/mL were re-tested using an ultra-sensitive reverse

transcription polymerase chain reaction (RT-PCR) assay (Roche;

Branchburg, NJ) or an independently-validated real-time RT-

PCR amplification assay with lower limits of detection equal to 50

copies/mL [42]. Since 2002, all specimens have been evaluated by

an RT-PCR assay.

RT-PCR and PCR for genotyping of HIV-1 pol
RNA was extracted from plasma and reverse transcribed, as

previously described [35]. DNA was extracted from PBMCs using

the Puregene Cell and Tissue kit (Gentra Systems, Inc.;

Minneapolis, MN) according to manufacturers’ instructions.

Nested PCR was performed as previously described [37] with

different primers. Briefly, first-round PCR of cDNA or DNA was

carried out in a 50-ml reaction mixture containing 10-ml of cDNA

or $1 mg DNA, and second-round PCR contained 2-ml of the

first-round product. First round primers were PRA and RTA;

second round primers were PRB and RT3 [43]. If no amplicon

was produced, we used alternate primer sets NE10 and NE11. We

visualized the amplicon, a 1,193-bp DNA fragment extending

from amino acid 1 in protease to amino acid 230 in reverse

transcriptase, in a 1% agarose gel with ethidium bromide staining.

Samples with a visible band of the correct size were used for

sequencing and OLA.

Consensus sequencing
PCR amplicons were purified and sequenced as previously

described [37] using sequencing primers that were identical to

those used for second-round PCR. Sequences were analyzed with

Sequencher, version 4.2 (Gene Codes Corp; Ann Arbor, MI), and

submitted to the Stanford HIV-1 Sequence Analysis Program [44]

to identify mutations. For quality assurance, all genotypes

generated for this study were aligned with ClustalW, v1.81 and

reviewed using a neighbor-joining phylogenetic tree to monitor for

cross-contamination.

Oligonucleotide Ligation Assay (OLA)
Amplicons submitted to consensus sequencing were evaluated

by OLA for mutations in the region encoding reverse transcriptase

(K65R, K70R, L74V, M184V, T215F/Y, K103N, Y181C, and

G190A) and protease (D30N, I50V, V82S/A/T, I84V, N88D,

and L90M). Results for M41L are not included, as oligonucleotide

probes for this codon were not optimized when the laboratory

work for this project was completed. OLA was performed as

previously described [35–37]. All subjects’ samples and controls

were analyzed in duplicate. We classified samples as mutant if the

mean optical density (OD) of duplicates at 490 nm was greater

than the OD of the 5% mutant control or 2.5 times the OD of the

wild-type control. If the specimen was not classified as mutant and

the mean wild-type OD was under 50% of the wild-type control

OD, we classified the specimen as ‘‘indeterminate.’’

Statistical analysis
We used McNemar’s exact tests to compare the number of

subjects with transmitted drug resistance mutations detected by

OLA and consensus sequencing of plasma, by OLA and consensus

sequencing of PBMCs, and by OLA of plasma to OLA of PBMCs.

Multivariable regression models explored factors potentially

associated with risk of transmitted drug resistance and included

year of HIV-1 acquisition (divided into quartiles) to evaluate for

evidence of a secular trend.

We used 2-sample t-tests, non-parametric tests, and regression

analyses where appropriate to compare mean baseline (i.e. first

visit) CD4+ T-cell count, baseline HIV-1 RNA level, and median

viral ‘‘set point’’ among subjects with minority variant mutations

and subjects without detectable transmitted drug resistance. We

estimated set point using the HIV-1 RNA level obtained closest to

150 days (between 120 and 730 days) following HIV-1 infection

from subjects who had not yet received ARV therapy [45].

We conducted time-to-event analyses using Cox proportional

hazard regression models with maximum likelihood estimation to

compare time to virologic suppression (defined as the first HIV-1

RNA below 50 copies/mL) among subjects receiving highly active

antiretroviral therapy. These analyses were adjusted for pre-

treatment HIV-1 RNA level closest to and within 30 days before

the start of ARVs. We excluded subjects from the time-to-event

analyses if they received only single or dual nucleoside reverse

transcriptase inhibitor (NRTI) therapy or if they had any

mutations detected by consensus sequencing because pre-treat-

ment resistance testing could have guided selection of ARVs. The

Stanford University HIV Drug Resistance Database (http://

hivdb.stanford.edu; accessed December 29, 2009) was used to

predict the number of active agents in regimens; an ARV agent

was considered inactive if subjects had a mutation associated with

intermediate or high-level HIV-1 drug resistance to that ARV.

Subjects were divided into three groups: 1) subjects without any

HIV-1 drug resistance mutations detected by consensus sequenc-

ing or OLA, 2) subjects with minority variant mutations treated

with ARV regimens with three or more active ARV agents, and 3)

subjects with minority variant mutations treated with ARV

regimens with fewer than three active agents. Virologic failure

was defined as: 1) failure to suppress HIV-1 RNA levels to below

50 copies/mL within 240 days after initiation of ARVs, 2) switch

of ARV agents due to a perceived inadequate response to therapy,

or 3) viral rebound to greater than 500 copies/mL on two

consecutive measurements following successful suppression of

HIV-1 RNA levels to below 50 copies/mL. All statistical analyses

were performed using Stata9 software (StataCorp LP, College

Station, TX).

Minority Variant Drug Resistance in Primary HIV
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Results

Demographics and other baseline characteristics of the 99

subjects are shown in Table 1. All subjects were men, and 98% of

subjects reported sex with men as their risk for HIV-1 acquisition.

Subjects who experienced symptoms consistent with the acute

retroviral syndrome (92%) were over-represented in this analysis

compared to the entire PIC cohort (84%). All subjects acquired

HIV-1 subtype B infection.

We performed HIV-1 drug resistance testing on plasma and

PBMC specimens that had been obtained a median of 29 (IQR

19–66) and 31 (IQR 19–66) days after HIV-1 infection; all

specimens were collected within six months of infection.

Consensus sequencing and OLA detected HIV-1 drug resistance

mutations (in either plasma or PBMCs) in 5% and 27% of 99

subjects, respectively. There was no evidence of a trend in

incidence of transmitted drug resistance over time, although

resistance was more common among subjects infected after May

2000 (31%) compared to those infected prior to this date (16%),

and we did not detect non-nucleoside reverse transcriptase

inhibitor (NNRTI) resistance among subjects infected prior to

this date.

Compared to consensus sequencing, OLA detected significantly

greater number of subjects with resistance mutations in both

plasma (p = .0005) and PBMCs (p = .002) (Table 2). OLA

performed on plasma and PBMCs detected similar numbers of

subjects with drug resistance mutations, but concordance of results

was low.

Consensus sequencing detected one subject with M184V in

PBMCs only, one subject with M41L and T215D, one subject

with T215D and L90M, and two subjects with G190A. The

mutations most commonly identified by OLA in reverse

transcriptase were M184V (n = 9) and T215Y (n = 5) and in

protease were I84V (n = 5) and N88D (n = 5). K103N was

identified in only one subject and by OLA only. With use of

OLA, detection of NRTI resistance mutations increased from 3%

to 13% of subjects, detection of NNRTI resistance mutations

increased from 2% to 8% of subjects, detection of protease

inhibitor (PI) resistance mutations increased from 1% to 13% of

subjects, and detection of multi-drug resistant HIV-1 increased

from 1% to 6% of subjects.

Compared to subjects without detectable mutations, there were

no differences in the CD4+ T-cell counts or HIV-1 RNA levels at

presentation among subjects having at least one mutation detected

by OLA or subjects with mutations conferring resistance to

NRTIs, NNRTIs, or PIs. Among 24 subjects in this study who

remained untreated at a median of 146 days following HIV-1

infection, the median viral ‘‘set point’’ was 4.5 (IQR 3.7–4.8) log10

copies/mL among five subjects with minority variant mutations

and 4.5 (IQR 4.1–5.3) log10 copies/mL among 19 subjects with no

detectable drug resistance mutations (p = .6).

Eighty-nine (90%) of the 99 subjects initiated ARV therapy a

median of 48 (IQR 24–107, range 5–1092) days after HIV-1

infection (Table 3). Mean CD4+ T-cell counts (498 versus 486

cells/mm3, p = .8) and HIV-1 RNA levels (5.1 versus 4.9 log10

copies/mL, p = .5) at the start of ARV therapy did not differ

between subjects without detectable mutations and those with

minority variant mutations. Similarly, we found no association

between any class of drug resistance mutation and CD4 count or

HIV-1 RNA level at the start of ARV therapy.

The five subjects with mutations detected by consensus

sequencing and two other treated subjects without follow-up were

excluded from survival analyses. Median time to HIV-1 RNA less

than 50 copies/mL was 110 (IQR 62–147) days for 63 treated

subjects without detectable mutations, 84 (IQR 56–109) days for

ten subjects with minority variant mutations treated with three or

more active ARVs, and 104 (IQR 60–162) days for nine subjects

with minority variant mutations treated with fewer than three

active ARVs (p = .9) (Figure 1). After adjustment for HIV-1 RNA

levels at the start of ARV therapy, time to virologic suppression

was similar (aHR 1.2, 95% CI 0.6–2.4, p = .6) for subjects with

minority variant mutations treated with at least three active agents

and for subjects with minority variant drug resistance mutations

who received fewer than three active ARV agents (aHR 1.0, 95%

CI 0.4–2.4, p = .9) compared to subjects without drug resistance

mutations.

Table 1. Characteristics of study subjects with primary HIV-1 infection evaluated for drug resistance mutations.

No mutations Mutations by OLA only Mutations by CS All Subjects

n = 72 n = 22 n = 5 n = 99

Age (median, IQR) 34 (30–38) 37 (30–43) 33 (33–41) 34 (30–40) NS

Caucasian, non-Hispanic 92% 95% 100% 93% NS

Days from infection to
screening (median, IQR)

22 (13–52) 32 (24–63) 54 (34–80) 27 (15–63) p = .05

CD4+ T-cell count at first
visit (median cells/mm3, IQR)

494 (386–678) 551 (394–700) 421 (396–550) 496 (392–694) NS*

HIV RNA level at first visit
(median log10 copies/mL, IQR)

5.4 (4.5–6.2) 5.1 (4.6–5.5) 5.2 (5.0–6.0) 5.2 (4.5–6.0) NS*

Median date of HIV infection (IQR) 8/01 (1/00-1/04) 4/02 (4/01-1/04) 1/02 (8/00-4/04) 11/01 (4/00-2/04) NS

Received ARV treatment 64 (89%) 20 (91%) 5 (100%) 89 (90%) NS

PI/NRTI 26 (41%) 7 (35%) 2 (40%) 35 (39%) NS

Initial NNRTI /NRTI 24 (38%) 9 (45%) 2 (40%) 35 (39%)

ARV PI/NNRTI/NRTI 13 (20%) 3 (15%) 1 (20%) 17 (19%)

regimen NRTI only 1 (2%) 1 (5%) 0 2 (2%)

OLA: oligonucleotide ligation assay; CS: consensus sequencing; IQR: interquartile range; NS: not significant at p = .05; ARV: antiretroviral; PI: protease inhibitor; NRTI:
nucleoside reverse transcriptase inhibitor; NNRTI: non-nucleoside reverse transcriptase inhibitor therapy.
*differences between groups were not significant in analyses that were both unadjusted and adjusted for time from infection to the date of sampling.
doi:10.1371/journal.pone.0028952.t001
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The eighty-seven treated subjects, including the five subjects

with mutations identified by consensus sequencing, were followed

for a median of 4.4 (IQR 2.6–7.7) person-years following the start

of ARV therapy. Only four (5%) subjects experienced virologic

failure. One subject (Table 3 ID #95816) did not have resistance

testing performed prior to starting ARV therapy. After virologic

failure, G190A was identified in his baseline specimen by both

consensus sequencing and OLA. The second subject with virologic

failure (ID #26973) had no major mutations identified by

consensus sequencing. His HIV-1 RNA level decreased to 2.0

log10 copies/mL before it quickly rebounded; T215Y was detected

by only OLA in his PBMCs from baseline. Drug resistance

mutations were not identified at baseline in two other subjects who

experienced virologic failure after receiving ARV therapy for five

months and five years;

Discussion

The results described here represent one of the most

comprehensive surveys of minority variant drug resistance in

primary HIV-1 infection in terms of the number of mutations

studied. We detected drug resistance mutations in 27% of a male

cohort who acquired HIV-1 infection after 1996. Despite a high

prevalence of minority variant drug resistance mutations, this was

not associated with a difference in viral set point or in the virologic

response to ARV therapy among treated subjects.

The finding that a sensitive assay detected HIV-1 drug

resistance mutations in a greater number of subjects compared

to consensus sequencing is consistent with other studies of ARV-

naı̈ve subjects with primary [21,32] and established HIV-1

infection [24,46]. Although the high prevalence of minority

variants in our subjects is somewhat incongruous with the

previously-held belief that sexual transmission of HIV infection

is predominantly monophyletic, more recent data have suggested

that men who have sex with men frequently acquire multiple

variants [47]. It is also possible that OLA detected variants that

had been spontaneously generated by random misincorporation of

base pairs during reverse transcription of HIV RNA. However,

although possible, it is unlikely that, without ARV selection

pressure, mutations could be generated with sufficient frequency to

reach a level detectable by OLA in nearly one quarter of our

subjects [48]. It is also conceivable that false positive results

contributed to the estimated prevalence of drug resistance in our

subjects. Although ligase binding is highly specific [49], false

positive results could have occurred due to high background in the

EIA portion of the assay for isolated specimens.

In contrast to our previous study of ARV-experienced persons

with chronic HIV-1 infection [37], OLA of PBMC DNA did not

detect a greater number of persons with mutations compared to

OLA of plasma RNA. All minority variant drug resistance

mutations detected in this study were identified in only one

component of blood (i.e. either plasma or PBMCs but not both).

These specimens had concentrations of mutant virus that were

close to the limit of detection of the assay, and thus detection in

plasma or PBMCs was likely stochastic. We suspect that the reason

the numbers of persons who had mutations detected in one

component or the other were similar was due to collection of

specimens during primary infection with insufficient time lapse for

wild-type viruses to have overgrown less fit mutants in plasma,

where virus turnover occurs more rapidly. One of the strengths of

this work is that we studied subjects close to the time of HIV

acquisition, as outgrowth of some wild-type viruses can occur very

quickly [50,51]. We also cannot exclude the possibility that

minority variants were spontaneously generated, as mentioned

above.

Similar to other studies [32–34], we found that low-level

mutations did not appear to affect the time to virologic suppression

following initiation of ARV therapy in treated subjects. In

contrast, studies of persons with established HIV-1 infection have

shown an increased risk of virologic failure associated with

minority variant drug resistance mutations [23,24,26,27,29,30],

particularly with NNRTI mutations [28–31]. The high rate of

treatment success among our subjects was similar to another

observational study of subjects with primary HIV-1 infection [52],

but as a result only 4% of subjects were observed to have virologic

failure and our study was underpowered to detect differences in

clinical outcomes. Although the median follow-up time in our

study was longer than other studies that observed higher rates of

virologic failure, it is possible we would have seen differences in

rates of virologic failure if subjects had remained on treatment and

in follow-up or if we had studied more subjects.

Another likely explanation for our failure to identify negative

consequences from minority variant mutations was the lack of

uniformity of the impact of HIV-1 drug resistance mutations

across regimens and the use of ARV therapy with a high genetic

barrier to resistance to the mutations we observed. Much prior

research on this topic has focused on NNRTI mutations, which

have a lower genetic barrier to resistance. Of the two subjects in

our cohort with NNRTI mutations who were treated with

NNRTI-based regimens, the one who had high concentrations

of mutant experienced virologic failure (ID#95816). The second

subject (ID#44378) had the Y181C mutation detected only by

Table 2. HIV-1 drug resistance in ARV-naı̈ve subjects with primary HIV-1 infection.

2a: OLA versus consensus
sequencing of plasma

2b: OLA versus consensus
sequencing of PBMC

2c: Consensus sequencing
of plasma versus PBMC

2d: OLA of plasma
versus PBMC

p = .0005 OLA p = .002 OLA p = 1.0 PBMCs p = 1.0 PBMCs

2 + 2 + 2 + 2 +

sequencing 2 83 12 sequencing 2 81 13 plasma 2 94 1 plasma 2 72 11

+ 0 4 + 1 4 + 0 4 + 10 6

ARV: antiretroviral; OLA: oligonucleotide ligation assay; PBMC: peripheral blood mononuclear cells.
+ = subjects with $1 mutation or mixture.
2 = subjects without mutations or with indeterminate results.
Numbers represent subjects in whom HIV-1 drug resistance was/was not detected in plasma and PBMC specimens that had been obtained a median of 29 (IQR 19–66)
and 31 (IQR 19–66) days after HIV-1 infection, respectively; all specimens were collected within six months of infection. McNemar’s exact tests compare only subjects
with discordant results (indicated in bold).
doi:10.1371/journal.pone.0028952.t002

Minority Variant Drug Resistance in Primary HIV

PLoS ONE | www.plosone.org 4 December 2011 | Volume 6 | Issue 12 | e28952



OLA; he was treated with nevirapine and had an initial .3 log10

copies/mL decrease in his HIV-1 RNA level, but he discontinued

medications after forty-four days due to rash.

It is possible that the clinical impact of minority variant drug

resistance mutations may be modified by the relative concentra-

tion of the mutant virus at specific codons [23,30,53]. In one

recent study, subjects who had NNRTI resistance mutations

detected in 1–20% of the viral population had a lower risk of

virologic failure following initiation of ARV therapy compared to

subjects who had NNRTI resistance mutations detected in greater

than 20% of the population, but both groups had a greater risk of

virologic failure compared to subjects who did not have NNRTI

resistance mutations [23]. These authors did not observe a similar

relationship between risk of virologic failure and variation in

concentrations of NRTI or PI mutations. Another recent study

suggested that the K103N mutation was associated with an

increased risk of virologic failure when these viruses were present

in amounts greater than 2000 copies/mL [54]. However, like

many previously published studies, we did not quantify the

amount of virus used for drug resistance assays and therefore

cannot report the precise concentrations of minority variants that

were detected.

Table 3. HIV-1 drug resistance detected by consensus sequencing and OLA in ARV-naı̈ve subjects and virologic response to ARV
therapy.

Group ID
Infection
Year CS (plasma) CS (PBMC)

OLA
(plasma)

OLA
(PBMC)

VL at
ARV
start1 Initial ARVs

#Active
ARVs

Time to
VL,50
(days) VF

95816 2000 G190A G190A G190A G190A 4.9 ABC, 3TC, EFV,
RTV-APVRABC,
3TC, NVP

4R22 57 yes

69234 2004 G190A G190A G190A M184V,
T215Y,
G190A

5.6 AZT, 3TC, r-LPV 1 873

I 43909 2002 M184V M184V 4 ABC, 3TC, EFV 2 27

56710 1999 M41L, T215D M41L, T215D T215Y4 4,5 4.9 3TC, d4T, IDV, HU 2 176

35188 2004 T215D, L90M T215D, L90M L90M4 L90M4 5.4 TDF, FTC, EFV 3 216

34993 2000 V82A 4.1 ABC, 3TC, IDV, EFV 3 15

41319 2002 I84V, N88D 4.2 ABC, 3TC, EFV 3 55

19198 2003 Y181C, I84V 5.4 AZT, 3TC, r-LPV 3 56

83622 2000 M184V 5.3 ABC, 3TC, IDV, EFV 3 60

II 35057 2004 I84V 5 ABC, 3TC, EFV 3 84

18309 2003 N88D D30N 5.4 ABC, 3TC, EFV 3 85

44375 2003 N88D 4.5 ABC, 3TC, r-IDV 3 104

66121 2001 150V N88D 4.5 ABC, 3TC, EFV 3 109

28477 2005 K103N 4.3 TDF, FTC, r-LPV 3 181

50047 2004 I84V 4.8 ABC, 3TC, EFV 3 266

78056 2003 I84V 4.1 ABC, 3TC, r-IDV 2 55

97929 2001 M184V 4.5 ABC, 3TC, EFV 2 60

71670 2000 M184V, Y181C 4.5 ABC, 3TC, IDV, EFV 2 84

81563 2001 M184V 4.9 ABC, 3TC, r-IDV 2 104

III 53754 2000 M184V, N88D 4.8 3TC, d4T, NVP 2 162

49635 2001 M184V, Y181C 4.7 ABC, 3TC, r-IDV 2 165

26973 2002 T215Y 5 ABC, AZT, 3TC 2 DNS6 yes

44378 2005 Y181C 5.9 AZT, 3TC, NVP 2 DNS6

78882 2004 K65R, M184V,
T215Y, I50V

5.3 TDF, FTC, r-ATZ 1 DNS6

In this table, the subset of subjects who received antiretroviral (ARV) therapy are grouped based on whether they had drug resistance detected by consensus
sequencing (Group I), drug resistance detected by OLA but who received at least three active ARV agents (Group II), or drug resistance detected by OLA who received
fewer than three active agents (Group III). ARVs are highlighted in grey if subjects had mutations conferring at least intermediate level resistance to that ARV. K70R,
L74V, T215F, and V82S/T were not detected in any treated subjects.
CS: consensus sequencing; OLA: oligonucleotide ligation assay; VL: viral load (HIV-1 RNA level); ARV: antiretroviral; VF: virologic failure; IDV: indinavir, HU: hydroxyurea,
ABC: abacavir, EFV: efavirenz, NVP: nevirapine, r-: ritonavir-boosted, LPV: lopinavir, ATZ: atazanavir; DNS: did not suppress.
1Log10 copies/mL.
2Antiretroviral medications were switched on day 5 due to side effects.
3Subject #69234 subsequently discontinued medications two months later due to adherence difficulties.
4OLA probes did not test for M41L and T215D.
5OLA on PBMC for subject 56710 yielded indeterminate results for T215Y.
6DNS: did not suppress prior to discontinuing ARVs or study censorship. Subjects #26973, 44378, and 78882 were followed for 104, 44, and 63 days, respectively, while
receiving ARVs.

doi:10.1371/journal.pone.0028952.t003
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It is also possible that the clinical impact of minority variant

transmitted drug resistance mutations may be further modified by

the persistence or decay in concentration of the mutant virus. In

several studies, receipt of single dose nevirapine (SD-NVP) has

been associated with poor subsequent response to NVP-based

ARV therapy when treatment was initiated within six months of

the SD-NVP [55,56]. It is plausible that the interaction between

delayed initiation of ARV therapy following SD-NVP and reduced

risk of virologic failure is mediated by decay in the concentration

of HIV-1 drug resistant variants over time. In the study by

Jourdain et al. [56], risk for virologic failure was associated with

detection of mutations by OLA at the time of initiation of ARVs

but not with detection of mutations by consensus sequencing ten

days post-partum. How the specific mutations, threshold levels,

dynamics of decay, and timing and type of ARV therapy all

interact to modify the effect of transmitted drug resistance remains

to be determined. A longitudinal study is ongoing that will

quantify minority variants over time in a greater number of

subjects with primary HIV-1 infection.

Although OLA is more sensitive than consensus sequencing,

more sensitive assays such as allele-specific PCR [57,58] and

parallel allele-specific sequencing (PASS) [59] can detect HIV-1

drug resistance mutations in as little as 0.01–1% of the viral

population if sufficient numbers of viruses are studied. Had we

used one of these assays, it is possible that we would have

estimated that the prevalence of HIV-1 drug resistance was even

greater, and we might have found a relationship between drug

resistance and virologic response to therapy. However, in our

hands, OLA and pyrosequencing produce similar results when

mutant viruses are at concentrations greater than 2% of the viral

population [60], and the clinical relevance of minority variants at

even lower concentrations is even less clear. At the highest

sensitivity, it is possible to detect and misclassify random

mutations, as some mutations were detected among HIV-infected

persons even prior to the availability of ARVs [48,61]. Advantages

of OLA include the greater specificity compared to PCR-based

methods [62], reagents anneal at relatively low temperature (37uC)

and therefore tolerate polymorphisms in the region of the probe,

OLA uses relatively less costly equipment than allele-specific PCR

and pyrosequencing, and oligonucleotides have been adapted to

non-B subtypes [63].

In conclusion, results from this study reinforce findings of others

that consensus sequencing significantly underestimates the point

prevalence and possibly the ‘‘persistence’’ of transmitted HIV-1

drug resistance mutations. However, additional data are still

needed to precisely determine the clinical impact of different drug

resistance mutations at different concentrations. If minority

variants are clinically important, use of more-sensitive assays

might aid in the selection of potent ARV regimens with greatest

chance of success. On the other hand, if minority variant drug

resistance mutations have minimal clinical impact in ARV-naı̈ve

individuals, the detection of minority variants might lead care

providers to prescribe complex first-line ARV regimens with a

high pill burden and frequent dosing. Higher complexity of ARV

regimens could reduce patient adherence and lead to a

paradoxical increase in the prevalence of drug resistance. Given

the uncertainty regarding the clinical impact of minority variant

mutations and the fact that many people with these mutations still

have excellent responses to therapy, prospective randomized trials

that include cost-effectiveness analyses should be completed prior

to the adoption of more-sensitive assays for clinical care.
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