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Abstract
Unlocking the dynamic inner workings of the brain continues to remain a grand challenge of the
21st century. To this end, functional neuroimaging modalities represent an outstanding approach to
better understand the mechanisms of both normal and abnormal brain function. The ability to
image brain function with ever increasing spatial and temporal resolution utilizing minimal or
non-invasive procedures has made a significant leap over the past several decades. Further
delineation of functional networks could lead to improved understanding of brain function in both
normal as well as diseased states. This article reviews recent advancements and current challenges
in dynamic functional neuroimaging techniques, including electrophysiological source imaging,
multimodal neuroimaging integrating fMRI with EEG/MEG, and functional connectivity imaging.
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I. Introduction
Functional neuroimaging has shown tremendous promise in better understanding the brain
functions and dysfunctions [1]. It has established itself as a major tool for neuroscience
research and clinical applications. Of importance is to map the spatially distributed and
temporally dynamic neural activity with high resolution in space and time domains. The
spatiotemporal mapping of brain activity and, more recently, connectivity is now an
essential tool for the investigation of the brain, in terms of functional segregation and
coordination. Noninvasive high resolution imaging of spatio-temporal patterns of neural
information processing would greatly benefit the investigation of how the “Mind” is
implemented in the brain, better understanding the mechanisms of perception, attention,
learning, etc. Furthermore, such high resolution spatio-temporal neuroimaging would reveal
the mechanisms of origination and propagation of dynamic epileptic activities, aiding
various management options for intractable epilepsy which affects millions of population
worldwide. Our knowledge thus far has been determined by the capability of the imaging
technology. An ideal technology would be able to directly record neuronal activities, i.e.
electrophysiological signals, in high spatial and temporal resolution, high specificity and
coverage, and particularly, non-invasively for studying human brains. Among the neural
recording technologies listed in Fig. 1, the intracranial recordings (SUA, MUA, LFP and
ECoG) have higher spatial/temporal resolution, specificity but limited coverage, and
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unfortunately, are invasive techniques that can be only applied to animal models or limited
patient populations (e.g. epilepsy patients with implanted electrodes). Alternatively, the
other imaging modalities based on hemodynamic measurements, such as the functional
magnetic resonance imaging (fMRI), provide high spatial resolution in imaging brain
activity but are limited in their low temporal resolution and interpretation in terms of the
underlying neuronal activities. The other electrophysiological modalities,
electroencephalography (EEG) and magnetoencephalography (MEG), which are non-
invasive and share the superior temporal resolution of the invasive recordings, have been
attractive for studying cognitive functions and assessing brain states in humans since Berger
[2] first reported topographic features of alpha rhythm. However, EEG and MEG are
compromised with limited spatial resolution/specificity, due to the volume conduction effect
[3]. It has therefore been a major challenge to enhance the spatial precision of EEG/MEG to
achieve high spatiotemporal mapping of the electromagnetic brain signals and to image the
coordinated brain networks noninvasively.

In this context, electrophysiological source imaging (ESI) has been pursued in a hope to
image underlying brain activity with a significantly enhanced spatial precision as compared
with EEG and MEG measurements. Various attempts including the advancement of
recording techniques (e.g. high-resolution EEG or dense array EEG) and the development of
imaging methodologies (e.g. dipole localization and distributed source imaging) have led to
great strides in improving the EEG/MEG spatial resolution to a centimeter scale or even
smaller. Recently, integration of EEG/MEG and fMRI has shown great promise to further
improve the spatial resolution of EEG/MEG. The advancement of the non-invasive
functional imaging techniques has significantly broadened our capability to study “where”,
“when” and “how” our brain functions. Such imaging ability is vital for a variety of
neuroscience research and clinical applications. One example is to image the “imagined”
brain activity, which are widely used in motor-imagery based brain computer interfaces.
Another example is to localize and track the dynamic epileptogenic sources from EEG/MEG
to guide surgical planning. A number of studies, including methodological developments
and clinical investigations have suggested critical information provided by EEG/MEG
imaging (with or without the integration of fMRI) for aiding pre-surgical planning in
patients with intractable epilepsy. However, invasive intracranial recordings are still often
used in order to precisely define and determine the epileptic brain. A further enhancement in
spatial resolution of ESI would play a significant role in enhancing management of epilepsy
and greatly promote the cognitive neuroscience studies including perception, attention and
learning.

As opposed to source imaging that aims for the identification of functional segregation,
connectivity analysis provides an important tool for understanding brain networks through
which our brain functions under a highly interconnected organization. Studies have
suggested the definition of connectivity through anatomical connections that are based on
brain structures, and functional and effective connectivity that is instead based upon the
functional properties of the various cortical regions. Functional connectivity patterns have
been estimated from fMRI using the correlation mapping, revealing coherence and
correlations among various brain regions. Intracranial EEG (iEEG), EEG/MEG, and the
source signals reconstructed by EEG/MEG source imaging techniques have been proven
efficient for measuring brain functional connectivity between various regions. Functional
connectivity measures, such as coherence or causal directions, have been used to study brain
networks associated with cognitive functions, spontaneous activities and neurological
disorders. However, currently such noninvasive functional connectivity mapping is only
available at the scale of intra-lobe. Significantly enhanced resolution in mapping functional
and effective connectivity of dynamic brain networks would allow us to better understand
the brain network characteristics at a sub-lobe scale.
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In this perspective paper, we will critically review the most recent advancements and
address the challenges in electrophysiological source imaging, multimodal neuroimaging
integrating fMRI and EEG/MEG, and electrophysiological functional connectivity imaging.
The merits, limitations, and needs for future development will be discussed.

II. Electrophysiological Imaging of Brain Activity
A. EEG/MEG Source Imaging

Fundamental principles—It has been widely accepted that EEG/MEG signals are
mainly generated from synchronized activation of cortical pyramidal neurons. Neurons of
this type have their cell bodies located within the cortical gray matter and their apical
dendrites projected parallel to surrounding neurons [4, 5] (Fig. 2A). When pyramidal
neurons are excited, the synaptic currents flowing across the cell membranes induce local
excitatory postsynaptic potentials as well as magnetic fluxes, which collectively form the
sources for EEG and MEG, respectively. When cortical neurons in columnar vicinity are in
synchronized activation, the synaptic current flow, at a macroscopic level, approximates a
current dipole located on cortical surface and oriented perpendicular to the local cortical
surface (Fig. 2B). The configuration (e.g. location, magnitude, and orientation) of such
current dipole can be related with EEG or MEG signals through the modeling of head
volume conduction (Fig. 2C).

Direct electric measurements of neural activation within the brain offer high resolution,
signal-to-noise ratio (SNR) and specificity, as achieved in iEEG for human subjects.
However, the invasiveness of the intracranial technique limits the recording to a certain
patient population (e.g., epilepsy patients) and restricted brain areas (e.g., epileptogenic
regions). In this context, EEG/MEG source imaging techniques have been developed in an
attempt to quantitatively localize and image brain activity from noninvasively recorded EEG
or MEG. Such noninvasive approach is appealing due to its wide applicability to a larger
population of healthy or diseased human subjects. Electrophysiological source imaging
(ESI) is a model-based approach for imaging electrical sources associated with brain
activation from noninvasive EEG or MEG measurements. ESI entails 1) forward modeling
of brain sources and head volume conduction to establish a linear source-to-measurement
relationship, and 2) inverse imaging of brain electrical sources from measured EEG/MEG,
via various strategies, most commonly dipole localization and distributed source imaging.

Solving the forward problem - modeling of head volume conductor—The
electromagnetic signals generated by the activations of cortical pyramidal neurons propagate
through the head volume conductor to the EEG/MEG sensors sitting on or out of the scalp.
Thus, an accurate modeling of the head volume conductor model, i.e. how the geometries
and electrical properties of the head tissues can be computationally represented, is important
for accurate imaging of brain sources. Historically, the simplest model uses a single or
multiple spherical shells to represent different head compartments. Such a spherical model
fits the shape of the frontal and parietal lobes well, but inadequately represents the
complexity of the infero-occipital, temporal and orbitofrontal surfaces [6], which are
important for cognitive functions and are also common locations for epileptogenic activities.
More realistic head models were later developed, including the boundary element model
(BEM) [7, 8] and the finite element model (FEM) [9–11]. The BEM uses realistically
shaped layers constructed from structural MRI (e.g. the skin, skull and brain) to constitute
the head volume and assumes piece-wise homogeneous conductivity in each layer. The
BEM modeling has been shown to be computationally efficient and provides reasonably
accurate solutions for many applications of ESI. The FEM, which is so far the best
approximation to the real head volume conductor, divides the head into small elements of
which the geometry and conductivity can be defined individually. The FEM modeling
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allows handling of conductivity inhomogeneity and also tissue anisotropy, however,
restricted by complexity of model construction and computation.

Regardless of head models adopted, the relationship between EEG/MEG signals Y and
cortical current source dipoles X can be represented by a linear system Y = LX, where L is a
transfer matrix which describes how a unit dipole of a certain location and orientation is
related to the EEG/MEG measurements. The head geometry and tissue conductivity are
embedded in the transfer matrix L. The complexity and computational efficiency of
constructing L are the topics of many researches in order to optimize the system for accurate
and rapid imaging of brain sources from EEG/MEG measurements.

Solving the inverse problem – dipole source localization—Dipole source
localization, which aims at quantitatively estimating one or more source dipoles that can be
located anywhere within the brain from externally recorded EEG or MEG, has received
considerable attention in the past decades. A dipole fitting problem [7, 12] assumes a pre-
determined number of dipoles (equivalent current dipole model, ECD) as equivalent
generators of scalp signals and estimates the locations and moments of the dipoles through
non-linear optimization or subspace scanning methods [13–16]. Since only synchronized
neuronal excitation will contribute, collectively, to EEG/MEG recordings, equivalent current
dipoles represent reasonable models of neural activation in a sense that un-synchronized
neuronal activities will be cancelled each other. Thus the estimated ECDs would represent
locations of focal brain sources or centers of activities in the brain. Dipole source
localization has been found useful in delineating neural origins of evoked potentials/fields,
or event related EEG/MEG, and localizing focal epileptiform activity, mostly associated
with interictal spikes. Studies conducted in epilepsy centers world-wide have yielded
reasonably good source detection rates of the epileptic foci, and have converged to the
conclusion that EEG/MEG dipole localization would provide critical additional information
for the presurgical planning in epilepsy patients [6, 17–19]. Dipole localization techniques
have also been used to obtain information with regard to distributed source activities, such
as the sensorimotor rhythms in the alpha (8–13 Hz) band [20], occipital alpha activities [21]
and sleep spindles [22]. An ECD model with a single or few discrete dipoles might be
oversimplified for the representation of activity expanding over a large area of the cortex.
The center of mass of the cortical activity might be localized, whereas the distribution and
extension of the activity remain to be determined. This feature of dipole source localization
represents the major limitation of the equivalent dipole model that, meaningful physiological
correlates can only be established if the source is focal in nature.

Solving the inverse problem – imaging of distributed sources—Distributed
source imaging has shown great promises to address the above problems of equivalent
dipole modeling by assuming a source model consisting of a large number of unit dipoles
evenly positioned in the brain volume [23, 24] or over the cortical sheet of gray matter (e.g.
cortical current density model, CCD) [25]. Such a distributed source model approximates
the biophysical organization and distribution of pyramidal neurons as discussed above (Fig.
2 A–B). The distributed source imaging has the merits of solving a linear inverse problem
since the locations of dipoles are fixed. Various imaging strategies have been developed to
obtain an “optimal” source estimation by adding biophysical and/or physiological
constraints to the distributed source imaging inverse problem. The minimum norm estimate
(MNE), which identifies an optimal solution by L-2 norm optimization in the sense of most
energy efficiency, was first introduced to handle such “constraint” imaging [23]. Variants of
MNE includes weighted-MNE (WMN) that compensates for the disfavored deep sources
[26], low-resolution brain electromagnetic tomography (LORETA) that further considers
spatial smoothness of the neural activity [24], and their statistical analysis [27]. However,
the L-2 norm based techniques produce blurred images spreading over multiple cortical sulci
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and gyri, which lack spatial resolution to separate spatially focal sources. Non-linear
techniques based on L-p norm (p<2) have then been developed in an attempt to make
distributed source imaging applicable to image distributed yet focal source activities, such as
the FOcal Underdetermined System Solver (FOCUSS) [28] and sparse source imaging based
on L-1 norm [29–31].

Source imaging techniques of this type are generally applicable to image distributed brain
sources underlying event-related potentials or continuous oscillatory activities, emerging
from extended cortical areas or large-scale functional networks [32–34]. In the clinical
realm, imaging distributed current or potential sources has been used to localize and image
the epileptogenic zone [35–37]. It assists the determination of the location, and more
importantly, provides information about the extension and boundary of the problematic
regions, which cannot be easily achieved through dipole localization. In addition, temporal
information reconstructed from source imaging has also been shown to further characterize
the brain function, such as the connectivity, which will be discussed in details in a following
section.

Remaining challenges in EEG/MEG source imaging—As reviewed above, the
choice of source models and inverse methods can be different depends on the nature of brain
activations in various conditions. Dipole fitting methods may accurately localize focal
activation, but, as restricted by the model assumptions, cannot reconstruct an extended
source distribution and cannot localize multiple sources without enough a priori knowledge.
Distributed source imaging methods, on the other hand, can achieve good estimation of both
source location and extension. L-2 norm based methods are suited to image extended
sources whereas L-1 norm based methods are suited to image sparse and focal sources. In
this situation, it is hard to find a universal inverse method to accurately image all kinds of
brain activations under various experimental settings. The choice of inverse methods and the
understanding of the nature of brain activations in different applications become important
for the interpretation of EEG or MEG data [38]. A recent study [39] tested multiple
distributed source imaging methods in well-controlled simulations. In a large range of
spatial extents (10 mm2 ~ 40 cm2), the study showed good performance of LORETA-based
and MEM (maximum entropy on the mean)-based methods, but also suggested that the
combination of different inverse methods may provide additional information for the
accurate source localization. For focal sources, a study [40] compared source imaging
results of somatosensory evoked potentials with intracranial EEG and found that L1-norm
based methods provide better specificity than L2-norm based methods. Although the relative
merits and limitations of different inverse methods have been widely discussed, systematic
studies testing their performance in different source configurations (e.g., anatomical
locations, spatial extents) and in different tasks (e.g., focal source induced by somatosensory
stimulation vs. distributed source in cognitive tasks or spontaneous states) would be
important for the wide application of ESI in various research fields or clinical applications.

EEG and MEG have been widely used to study evoked potentials or evoked rhythmic
activities. However, recent findings of the resting state brain networks through the use of
fMRI and PET have suggested that the human brain is fluctuating spontaneously even
without any external input [41]. Studies using iEEG [42] and integrated EEG-fMRI [43]
provide supporting evidence that the electrophysiological signals of the brain might also
fluctuate spontaneously during rest. Pathological conditions also induce spontaneous
activities that may last through a period of time. For example, epileptic seizures are
characterized by rhythmic discharges in the brain that may evolve through time, space and
frequency [44]. In these situations, continuous imaging of brain activity is desired in a
search for the electrophysiological correlates of such normal or pathological spontaneous
fluctuations.
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Continuous imaging from EEG or MEG has been attempted through the spatiotemporal
dipole fitting. A recent study, for example, reconstructed short period of ictal activity
through sub-space scanning technique [16], the spatial precision and temporal resolution of
which allows for the identification of causal relationship between epileptic sources.
Although dipole fitting techniques have been successful in many situations, fMRI and EEG-
fMRI studies suggested that spontaneous fluctuations are usually organized as diffused
networks [41, 43]. One or a few discrete dipoles might not be adequate to represent such
large-scale activity. Alternatively, EEG/MEG distributed source imaging serves well for this
purpose. A straightforward strategy is to estimate the source distribution instant-by-instant
to image brain activity spanning a continuous time period. Such a strategy has been applied
to identify large-scale resting state rhythms [34], but it is challenged by the low SNR of
continuous EEG/MEG signals and is computationally demanding.

Compared to a number of studies on dipole localization and distributed source imaging at
selected time instants, only a few spatiotemporal imaging algorithms have been
demonstrated to efficiently reconstruct the continuous distributed activity. In contrast to the
instant-by-instant source imaging strategies, a rhythmic imaging technique [45, 46] has been
proposed to target the sources in the frequency domain by transforming the windowed time
course into Fourier space, showing the time-varying or condition-dependent modulation of
distributed rhythmic sources. Also, recent findings suggested that continuous resting state
EEG can be classified into a limited number of micro states with each spanning for a time
window of about 100 ms [47]. These techniques image continuous rhythmic activities at the
cost of temporal resolution. Beamforming techniques, which were originally designed for
radar and sonar detection, have also been used for the reconstruction of fine temporal
dynamics from regions of interest (ROIs). A beamformer [48, 49] uses spatial filtering to
selectively pass brain activity from a certain region while attenuates the interference
originated from other locations. The reconstruction of ROI waveforms, however, is
dependent on the extent of the activated brain areas and the mutual correlation between
spatially distinct sources [50].

In this context, although a few techniques have been developed for continuous source
imaging, challenges remain to develop source imaging techniques, which can image large-
scale evoked or spontaneous activity in healthy and diseased human brains. A major
challenge of continuous source imaging is the low SNR of EEG or MEG signals.
Conventional EEG/MEG analysis commonly uses a strategy of averaging to cancel out noise
across hundreds of repeated trials. In the case of continuous imaging, the noise can
significantly affect the accuracy of source imaging, especially during the periods with lower
amplitudes of brain oscillations. Such a SNR-sensitive characteristic of source imaging
significantly restricts further interpretations of estimated source waveforms. For example,
while computing the connectivity between different source voxels, it is hard to eliminate the
possibility that the connectivity can be induced by a global noise or artifact. While using
source waveforms to build fMRI regressors, it is also difficult to remove the noise
component.

Another challenge of electrophysiological source imaging lies in the limited sensitivity to
deep brain structures, e.g. the thalamus, which are suggested to be involved in the resting-
state networks from fMRI studies [43, 51]. The activities from deep brain activations are
poorly represented in EEG/MEG signals, and their electromagnetic fields drop rapidly with
distance. As such, it remains to be developed for a source imaging technique, which can
efficiently provide whole brain coverage imaging brain activities. Integration with fMRI has
been attempted in order to image deep brain activity, which will be discussed below.
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B. Integration of EEG/MEG with fMRI
As a way of noninvasively measuring the electrophysiological signals accompanying brain
activation, the EEG or MEG captures the electric potentials or magnetic fluxes
(respectively) induced by synaptic activity virtually instantaneously, with a high temporal
resolution on the order of milliseconds. Meanwhile, the spatial resolution of such
electromagnetic recordings is subdued by the fact that a single electrode records a weighted
average of brain activity from a large number of neurons and thus it is difficult to directly
relate the measurements to a defined anatomical brain substrate. In contrast, another set of
neuroimaging modalities, e.g. fMRI which measures the hemodynamic signals, are
complementary to the strengths and limitations of EEG/MEG. FMRI based on the blood-
oxygen-level-dependent (BOLD) contrast [52–55] measures the three-dimensional signal
from the brain on a voxel-by-voxel basis, with a high spatial resolution up to the order of
millimeters for a clinically available MRI scanner. However, the BOLD fMRI does not
directly measure the neural signal, instead is a cascading response of associated cerebral
blood flow and metabolism, which also limits the effective temporal resolution of the BOLD
response to the order of seconds. In combination, these two complementary noninvasive
methods would lead to an integrated neuroimaging technology with high resolution in both
space and time domains that cannot be achieved by any modality alone. Such superior joint
spatial and temporal resolution would be highly desirable to delineate complex neural
networks related to cognitive function, such as error processing [56], learning [57] and
decision making [58], allowing answering the question of “where” as well as the question of
“when”. It can also permit delineation about the hypotheses of top-down versus bottom-up
processing with the temporal resolution provided by electrophysiology [59]. The rich
spatiotemporal information will ultimately be critical for inferences about the systematic
organization of functional connectivity, for both the resting state and the task condition.

Multimodal integration approaches—As illustrated in Fig. 3, integration of fMRI with
EEG/MEG has been pursued in two directions, which either relies on (1) the spatial
correspondence or (2) the temporal coupling of fMRI and EEG/MEG signals. The first
approach of spatial integration typically utilizes the fMRI maps as a priori information to
inform the locations of the electromagnetic sources, including methods known as the fMRI-
constrained dipole fitting [60, 61] and the fMRI-constrained/weighted source imaging [62–
64]. In these methods, fMRI analysis yields statistical parametric maps with several fMRI
hotspots, which each constrains the location of an equivalent current dipole or collectively
produces weighting factors to evenly distributed current sources. With the spatial constrains,
the ill-posedness of the original inverse problem is moderated and continuous time course of
electromagnetic waveforms can be resolved from the fMRI hotspots, thus allowing
inferences about the underlying neural processes [64].

A major limitation of the spatial integration approach is due to the fact that fMRI yields
relatively static maps compared to dynamic evolution of electromagnetic signals, owing to
the highly different temporal scales in which data of these two modalities are generated and
collected. Also, the spatial difference between the vascular and electrophysiological
responses may lead to fMRI displacement. Thus the mismatch between a single static fMRI
map and consecutive snapshots of EEG/MEG during the same period can lead to biased
estimates as the fMRI extra sources (seen in fMRI but not EEG/MEG), the fMRI invisible
sources (seen in EEG/MEG but not in fMRI), and the displacement sources (detailed
discussion in [5]). New methods have been proposed towards overcoming this limitation, by
means of a time-variant spatial constraint estimated from a combination of quantified fMRI
and EEG responses [65] or estimating regionally fMRI-informed models by allowing model
parameters jointly computed from electrophysiological source estimates and fMRI data
rather than exclusively dependent on fMRI [66]. Examples of applying EEG/MEG-fMRI
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integration in the investigation of visual processing function have demonstrated how the
subtle spatiotemporal dynamics revealed from electrophysiological imaging were able to
delineate the hypotheses in regard to the underlying neural processes [59, 65, 67].

On the other hand, the second approach of temporal integration utilizes the EEG/MEG
dynamic signatures in the time or frequency domain to inform the statistical mapping of
fMRI. The structures derived from the electromagnetic signals include the single-trial task-
induced modulations [57], responses at a specific timing [58], and spontaneous modulation
in a specific frequency band [51, 68]. These quantities obtained from electromagnetic
recordings are typically convolved with a canonical hemodynamic response function and
then correlated to BOLD signals on a voxel-by-voxel basis to identify the statistical fMRI
maps corresponding to the electromagnetic temporal signatures of interests. In this way, the
integration method can recover the neural substrates by answering the question of “where”
in joint with the question of “when”. An intriguing example is the study of nonrepeatable
effects in epileptic patients, i.e. the inter-ictal activities. Correlates of the dynamics of inter-
ictal discharges with the BOLD have led to insights into the problem of localizing the
epileptic foci from fMRI [69].

Despite its attractive advantage of pinpointing the spatiotemporal signatures, the temporal
integration approach so far has been exclusively focused on the temporal aspect of the
electromagnetic signal. As discussed above the different temporal scales of the two
modalities may lead to mismatches in the integration. Likewise, the difference in spatial
scales can potentially bias the estimation as well. Previous studies employing the BOLD
correlates of the EEG/MEG signals have mainly derived the temporal information at a mass
level – either from one electrode [70], sum of a few channels [43, 51], or the sum of all
channels [71]. In most of the cases reported, the electromagnetic signal under investigation
appeared to be dominated by a single source and thus was well captured by one or a few
electrodes. However, due to the effect of volume conduction, a single electrode records a
weighted average of brain activity, which may contain distributed and diverse neuronal
processes and therefore complicates the one-on-one relationship with BOLD signals from a
much finer defined structure. A possible solution to such challenge can be achieved by
restricting the dynamics of the EEG source signal from localized cortical regions before
deriving the temporally integrated maps of fMRI and EEG.

What we can do and cannot do with multimodal imaging—With the promise of
unprecedented spatiotemporal information, multimodal imaging has become increasingly
attractive and been aggressively pursued since the invention of fMRI. A number of studies
have continued to examine the basic hypothesis about whether or how these two modalities
are related to each other. Those studies were driven by the search for a neurophysiological
interpretation of the BOLD signal [72] and inevitably have taken the approach of
multimodal imaging to compare one modality against another independent one, or to
integrate data obtained from multiple imaging modalities.

The relationship between the hemodynamic and electrophysiological signals, termed as the
neurovascular coupling, has been investigated by a number of investigators. Basically,
literature from animal and human studies has increasingly converged to the understanding
that the elevation of BOLD signals in response to tasks is tightly coupled to local changes in
the concurrent neuronal activities [72]. Particularly, the relationship appears to be stronger
for the synchronized synaptic activities, which are commonly reflected in the local field
potentials and scalp-recorded EEG/MEG signals. This coupling relationship forms the basic
principle for the integration of the fMRI with EEG/MEG.
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Another important aspect of the neurovascular relationship is the linearity (or nonlinearity)
of both BOLD and neural responses. In order to infer neural activities from fMRI, the
relationship between hemodynamic and neural signals is most frequently modeled as a linear
convolution system. A prediction of BOLD signals therefore results from local neural
activations convoluted with a time-invariant hemodynamic response function (HRF). Such a
linear HRF serves as an approximation for the cascading interplay between neuronal cellular
activities and a complex of the metabolic demand, blood flow, and oxygen [73, 74], with
influences from the astrocytes [75]. It is worthy to note that in the chain of responses, the
linearity or nonlinearity can be present at the nodes between (1) tasks and BOLD, (2) tasks
and neural activity, or (3) neural activity and BOLD. To address each aspect a number of
studies have compared the responses of one or both modality signals against a linear
function of varying task conditions, and the nonlinearity to a certain extent is acknowledged
in the relationships, particularly between task and BOLD/neural activity. However, a critical
concern lies in the variety of methods for quantifying the multimodal signals, which might
have led to some of the nonlinearity. Additionally challenges may be further appreciated by
considering the highly different temporal/spatial scales of the hemodynamic and
electrophysiological responses. Nevertheless, two recent studies have led insights into this
issue by co-registering the two modality signals [76, 77]. While the parametric variation of
stimuli showed nonlinear effect on the responses of EEG or BOLD signal individually, the
relationship between EEG and BOLD was found to be strongly linear across the variations
to a large extent, especially when the EEG responses was quantified from the source domain
that was co-localized with the regions of BOLD responses. Such experimental observations
on the co-registered cross-modal relationship between fMRI and EEG thus provide a
theoretical basis for the integration of these two modalities.

Resting-state and task-related rhythmic activity—One area of rapid development
using multimodal imaging is using the endogenous BOLD and/or electrophysiological
signals to study the resting-state network. This fluctuation of BOLD signals at resting state
was first discovered when images were collected from subjects performing no task in the
scanner [78]. The recorded spontaneous BOLD signals were not some randomly distributed
noise but instead have been demonstrated to be organized covariantly within large-scale
functional brain networks associated with visual, auditory, sensorimotor and attention
functions as well as the default networks [41]. However, the neurophysiological mechanism
of the resting-state signal or their physiological meaning are still under investigation, while
an increasing number of studies have explored the application of resting-state network
towards neuroscience questions and clinical conditions. Multimodal approach will be an
important strategy to address such question by searching for the correlates of the
electromagnetic signatures in the resting-state BOLD signals. In the meanwhile the high
resolution spatio-temporal information obtained from multimodal imaging can permit
inferences about resting-state networks under normal or pathological conditions. However,
most of the existing multimodal imaging methods are developed in the task-related context,
and thus there is a need to evaluate those methods, or to develop new multimodal techniques
for imaging large-scale spontaneous brain activity. In a recent study by de Pasquale et al.
[34], they recorded the MEG signals from subjects under resting state and reconstructed the
continuous and endogenous source signals of the magnetic fluxes that were distributed
across the entire cortical surface. Then the resting state network was imaged from the
magnetic source signals alone using the seed-based correlation mapping, in a similar way
with the BOLD signals. Comparison between the maps independently derived from MEG or
BOLD signals revealed similarity between these two sets of images, while also showing the
spectral and temporal dynamics of the MEG-derived networks. In another effort to estimate
the distributed and spontaneous electromagnetic signals, Yang et al. have developed a new
method by means of reciprocal integration of the EEG-fMRI temporal and spatial
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information [79], as illustrated in Fig. 4. The technique decomposes the spatiotemporal EEG
signal into multiple components and integrates the EEG components and fMRI in the time
domain and spatial domain subsequently. The components when recombined in the source
space forms a spatiotemporal imaging of continuous brain activities (Fig. 4A). This study
imaged long-term modulation of large-scale alpha rhythms and reconstructed the alpha-band
synchronization and de-synchronization in the occipital and parietal regions in eyes-open
versus eyes-closed conditions (Fig. 4B) [79].

While the task-free paradigm opened a new horizon to study the resting state brain,
investigations continue to search for better ways to image the task-related activities,
particularly by combining the BOLD with the rhythmic activities. The task-related rhythms
have been shown to be functionally relevant [80] and studies so far suggest their tight
coupling with the BOLD responses [46, 81]. Furthermore, some recent studies have
indicated new signatures of the task-related rhythms that may be functionally coupled.
Another study by Busch et al. investigated the influence of oscillatory phase on visual
perception. EEG signals were recorded when brief flashes of light at the individual
luminance threshold were presented to subjects [82]. Examination on the phases shortly
before stimulus onset revealed segregated distribution of phases for the trials of hits and
misses, particularly in the theta and alpha frequency band. Interestingly, in another study on
the somatosensory perception using fMRI, the BOLD signal immediately preceding the
delivery of stimuli was found to be correlated with behavior performance of the conscious
perception at a distributed network [83]. These evidences project new insights into the
coupling between BOLD and neurophysiological signals and have implications on the
interaction between the baseline activities (the preceding resting state) with the task-related
responses.

C. Mapping Functional Brain Connectivity
Cortical connectivity and anatomy—Over the past several decades, our collective
understanding of the activity within the brain has evolved from the identification of discrete
loci of brain activity to the identification and characterization of the disparate brain networks
involved in information processing and task performance. In particular, it is known through
anatomic and experimental studies that there are a plethora of highly interconnected cortical
networks, which allow for the rapid communication between spatially distinct brain regions
[84]. Analyses of these networks have furthermore revealed disruptions of their normative
function in a variety of disease states.

In the current description of cortical interactions, there are presently three definitions for
connectivity: anatomic, functional and effective connectivity. Anatomic connectivity, as
indicated by its name, refers to the physical neural connections between various regions of
interest (ROIs). These connections can either be on the micro- or macroscopic level. On the
microscopic level, anatomic connectivity can include dendritic sprouting and the forming of
new synaptic connections [85] while, on a larger scale, anatomic connectivity encompasses
the large white matter fiber tracts, which connect spatially disparate brain regions.

There are a variety of methods used to assess the anatomic connectivity using both in vitro
and in vivo methodology. Diffusion tensor imaging (DTI) is one such non-invasive
technique that has been developed in order to image white matter tracts in the brain [86].
DTI identifies these fiber tracts using a type of magnetic resonance imaging, which
measures the diffusion of water particles. These fiber tracts correspond to myelinated axonal
projections and maps of the anatomic cortical connectivity can be obtained in this matter
[87]. Similar maps can be obtained by in vitro experiments such as the use of molecular
probes [88] or through post-mortem studies.
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DTI has recently emerged as a promising technique in the presurgical treatment planning of
neurosurgical patients. These techniques are useful in their ability to identify functionally
important white matter tracts and their relationship to intracranial pathology. The
neurosurgeon can utilize this information in planning the surgical approach and, in the
future, such techniques may aid in the identification of surgical versus nonsurgical patients.
While DTI has been utilized in some limited clinical settings, further exploration applying
this anatomic imaging technique to the clinical realm is needed [89].

As DTI utilizes the anisotropic properties of fiber tracts in the creation of the imaging
results, anatomic variations or abnormalities such as locations of fiber tract crossings or
areas of inflammation and edema may serve to reduce the quality of the DTI results. In the
setting of patients undergoing resection of tumor or intracranial mass lesions, the intracranial
pathology may serve to reduce or eliminate the utility of the DTI results in these situations.
Several techniques have been developed in order to address these challenges [90, 91]. While
these studies exploring the anatomic connectivity are useful from the standpoint that they
identify interconnected cortical regions, they do not, however, provide information
concerning the function of the regions and the relationship of such between them.

Functional and effective connectivity—As opposed to anatomic connectivity, the
other two definitions of connectivity, functional and effective connectivity, are instead based
upon the functional properties of the various cortical regions rather than the analysis of
specific physical connections between them. Functional connectivity is defined as the
temporal correlations between spatially remote neurophysiological events [92, 93] whereas
effective connectivity is defined as the influence that one neural system exerts over another
either directly or indirectly [93, 94]. In general, functional connectivity is a statistical
property, which measures the amount of correlation in the activity of distinct cortical
regions.

Functional connectivity measurements often take the form of covariance or coherence
measures. The spectrum coherence for a pair of signals is given as:

where Sxy (f) is the cross-spectral density between x and y and Sxx (f) and Syy (f) are the
autospectral density of x and y respectively. As can be seen from the above equation, there
is no directionality affiliated with the spectral coherence measure. That is, for a given
frequency, the interaction from x to y is equal to that of y to x, in other words Cxy (f) = Cyx
(f). Functional connectivity measures, in general, identify regions, which are functionally
linked by finding those which have greater statistical coupling than a normative distribution
of coupling indices. Functional connectivity methods, however, do not indicate the
directionality of these couplings.

Effective connectivity, on the other hand, describes the direction of the functional
interactions between brain regions. These directional interactions can be either pre-defined
as used in structural equation modeling (SEM) or derived from the data (“model free”) as
with Granger causality measures. The difference between functional and effective
connectivity measures is shown graphically in Fig. 5.

Granger causality—In the late 1960’s, Granger described a method to evaluate the causal
influences within bivariate systems [95]. This method identifies the causal influence
between pairs of ROIs based upon the historic values, which compose each time series.
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Using this method, a time series is modeled as a linear combination of the previous values of
the time series in an autoregressive model. One time series is said to Granger-cause a second
time series if inclusion of the historic values of the first into the modeling of the second
significantly reduces the variance of the modeling error.

Given this definition, it can be observed that if one time series has a causal influence on a
second, it does not necessarily hold that the second similarly holds a causal influence on the
first. In this sense, this method provides a measure of the directed interaction between two
time series while this information cannot be obtained through more traditional bivariate
measures, such as the coherence between a pair of time series. Since this definition of
causality provides a picture of the interactions between a time series pair based upon their
functional properties rather than a known physical linkage between them, it became known
as Granger causality to avoid confusion with traditional direct cause-effect relationships.
Granger causality was initially broadly applied to the field of econometrics in the study of
relationships between economic indices [96] although it has become widely utilized in the
neuroscience community to study the cortical interactions during both diseased and
normative states.

Analysis of directed cortical interactions—There are a variety of connectivity
estimators based upon the principle of Granger causality. A shortcoming of bivariate
causality, however, is that the estimation of the connectivity is limited to pairwise systems
and may incorrectly estimate the causal interactions in a multivariate setting [97]. Several
techniques have been developed to provide estimates of connectivity in multivariate
systems. Many of these techniques, such as the directed transfer function (DTF) and partial
directed coherence (PDC), are based upon the spectral characteristics of the physiologic
signals and are able to differentiate causal interactions within specific frequency bands of
interest [98, 99]. These methods have been successfully applied to data obtained from a
variety of sources including both invasive (ECoG) and noninvasive (fMRI, EEG, MEG)
modalities.

fMRI-based connectivity estimation—fMRI measures the cerebral hemodynamic
changes which arise from the neuronal activity. The major advantages of this method are the
non-invasive basis of the imaging modality as well as the ability to image the entire cerebral
volume including deep sources of activity. As opposed to connectivity estimation based
upon electrophysiological data, which arises from direct neural activity, connectivity
techniques utilizing hemodynamic changes are calculated using an indirect measure of the
neuronal activity. The limiting factor regarding the application of connectivity techniques to
fMRI data lies in the inherent poor temporal resolution of the modality. This prevents
exploration of the cortical connectivity from fMRI results on a temporal resolution
comparable with EEG/MEG studies. Despite these differences, many studies have shown a
tight correlation between the hemodynamic responses and electrophysiological results [100].

One of the most commonly utilized connectivity tools in fMRI data, SEM, has been widely
used by the fMRI community in order to identify the directional interactions between ROIs
identified from the fMRI paradigms [101–103]. In SEM, the connections between the nodes
are predicted in such a way that the functional data is used to determine if each selected
connection constitutes a statistically significant causal link. As such, a priori information or
calculated assumptions regarding the network structure must be made prior to these
calculations. In fMRI datasets, such analyses are manageable due to the typically limited
amount of analyzed ROIs. Alternatively, other model-free estimators of effective
connectivity such as Granger causality do not require statistical testing of a predefined
model. Using these techniques, the causal network connections are derived from the data
itself. However, a cautionary note for the fMRI-based connectivity using the Granger
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causality is that the interaction it reflects are calculated from the signal across multiple time
points and hemodynamic delays may override the actual causal relationship between them, if
there is any [104].

Electrophysiological connectivity estimates—The fMRI-based connectivity
analyses utilize the hemodynamic properties to determine causal interactions between
selected ROIs. While the hemodynamic changes act as surrogates of the cortical activity,
causal interactions can also be obtained from direct neuronal activity through the use of
electromagnetic measurements such as EEG/MEG. The major benefit which EEG/MEG
holds over fMRI is the significantly higher temporal resolution of the modalities. As these
modalities measure the electrodynamics, as opposed to the slower transient hemodynamic
response, they are able to capture the rapid changes in neuronal states. The drawback,
however, is that they often lack the spatial resolution of fMRI measurements with the quality
of EEG/MEG data, in particular, suffering in the cases of deep sources. Improving imaging
techniques to reconstruct the neuronal activity with both high temporal and spatial resolution
remains an important challenge. The connectivity imaging will benefit from advancements
in the resolution and precision of imaging techniques.

Through the utilization of EEG/MEG-based high resolution non-invasive source imaging
techniques, it is possible to reconstruct the cortical neural activity with a high degree of
fidelity. The network connectivity can then be directly estimated from cortical ROIs [64,
105]. These types of connectivity estimation approximate the macroscopic causal
interactions between functionally distinct brain regions. Still other recently developed
techniques, such as dynamic causal modeling [106], aim to explain the local network
dynamics at the neural level.

Clinical applications of electrophysiological connectivity—Aside from mapping
cortical networks during normal physiologic activities, cortical connectivity tools have been
utilized in the study of a variety of diseased states. Functional connectivity measures were
successfully used to localize epileptogenic zones in patients suffering from intractable
epilepsy [107, 108] using DTF, adaptive DTF and graph theory. Several methods have also
been developed and applied to the analysis of functional brain networks in order to
differentiate physiologic and pathologic conditions. Disruptions of these functional networks
have been observed in a host of neurologic diseases including Parkinson’s [109],
Huntington’s [110], autism [111], and other psychiatric disorders. In the near future, these
methods could potentially lead to improved diagnosis of neurocognitive disorders even
before their clinical manifestations become apparent. Such improved diagnostic techniques
could allow for earlier treatment and enhanced measurement of treatment efficacy.

In addition to congenital or acquired neurocognitive disorders, cortical functional
connectivity networks have been shown to be disrupted by focal brain lesions. In a study by
Guggisberg et al [112], the resting state connectivity was shown to be decreased in patients
with cortical lesions versus healthy controls. As this measure provides an estimate of
cortical communication, regions with decreased resting state connectivity were observed to
be correlated with dysfunctional cortical locations. Such connectivity-derived methods could
therefore be utilized to better guide neurosurgical interventions and predict post-operative
outcome and neurologic function through careful pre-operative evaluation of these cortical
networks. These studies have demonstrated tremendous potential for connectivity-derived
methods in the diagnosis and treatment of neurological disorders, however, continued
evaluation is necessary before these methods become adapted to routine clinical care.

Challenges in mapping human brain connectivity—The interpretation of cortical
network activity obtained from functional and effective connectivity estimates may not be
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entirely straightforward. While the relationship between anatomic connectivity
measurements, such as DTI, and the physiologic cortical networks is easily discernable, the
precise anatomic relationship between functionally coupled disparate brain regions is less
obvious. Granger causality and other similar connectivity-based techniques do not provide
information regarding the underlying physical connections between functionally coupled
ROIs. Currently, as a result of this disconnect between structure and function measures, the
identification of the precise neural networks which denote how functionally coupled brain
regions interact is not trivial. Imaging modalities and connectivity techniques which are able
to incorporate the structural neural network information into the causal interactions are
needed to improve the accuracy and precision of the calculated cortical network activity. An
effort has been made to first estimate brain sources using anatomically realistic head models
and then functional connectivity among selected ROIs are assessed (Fig. 5C) [16, 64]. Such
approach represents an initial albeit important direction to integrate anatomic and functional
information to estimate the causal interactions within the brain networks.

The combination of high resolution anatomic and functionally-coupled measures would
have a significant impact in the clinical setting. In the surgical treatment of epilepsy, the
seizure onset zone (SOZ) is defined as the extent of cortical area whose removal is required
for seizure cessation. Unfortunately, if during the presurgical evaluation, the SOZ is
determined to be too large or overlap with eloquent cortex, the patient is deemed to not be a
candidate for definitive surgical therapy. Combined high resolution anatomic and functional
measures could theoretically benefit this group of patients by identifying the sites of
activation and the neural pathways by which the seizure propagates. Potentially these
pathways could serve as targets for therapeutic intervention and disruption, rather than
complete surgical excision, of the fiber tracts conducting the seizure activity could be
utilized. This could result in more targeted surgical techniques and better prediction of post-
surgical outcome. Recent efforts to apply the Granger causality estimates to ECoG data
revealed the potential for accurate localization of SOZ in epilepsy patients [107, 108].
Statistical approaches are needed to quantitatively assess the functional connectivity patterns
of spontaneous brain networks. Recently Graph theory has been demonstrated to provide
excellent performance in characterizing and identifying SOZ from ECoG data in a cohort of
epilepsy patients [108].

In addition to the linkage of anatomic and functional measures, another area for substantial
innovation lies in improved temporal resolution of Granger-type connectivity measures. The
majority of Granger-causality techniques are based upon the framework of the
autoregressive model. There are several limitations with the use of linear autoregressive
models, namely the requirement that the selected data segment be quasi-stationary in nature.
In practice, this is accomplished by careful selection of the appropriate data segment from
the electrophysiologic recording. The connectivity pattern among the ROIs is then
calculated over the duration of this selected interval. While some forms of cortical activity,
such as the initiation and propagation of highly regular seizure waveforms, may satisfy this
quasi-stationary assumption, others, such as short bursts of epileptiform activity or event
related potentials with short latencies, may not. Given this limitation placed upon the
analysis of cortical connectivity due to the modeling constraints, further development and
refinement of connectivity algorithms during non-stationary data segments is warranted.

In addition to the requirements of quasi-stationarity previously mentioned, an inherent
assumption in the calculation of connectivity using autoregressive-based methods such as
the DTF or PDC is that the connectivity pattern among the ROIs is static during the
analyzed epoch. A number of Granger causality measures calculate the connectivity over a
time window typically several seconds in length. The implicit assumption in this calculation
is that the connectivity pattern among the ROIs does not significantly change during the
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selected time window. In highly dynamic systems, such as the human cerebral cortex, this
assumption may not necessary uniformly hold true. As a result, transient neural activity may
be missed through the application of traditional connectivity metrics. Previous studies have
shown that temporally short changes in the connectivity pattern of simulated systems may
produce an erroneous picture of the network connectivity when traditional time-invariant
connectivity methods are utilized [113]. Due to the dynamic properties of cortical-based
neural networks, time-invariant connectivity methods such as the DTF and PDC may not
sufficiently represent the full spectrum of causal activity in these networks.

The ability to capture these brief changes in network architecture remains an important
challenge and requires advancement in not only improved neuroimaging modalities, but
advances in the modeling of such data. To solve this problem, several techniques have been
developed to provide time-variant connectivity estimation [113–115]. These techniques
utilize time-variant Granger causality to provide estimates of changes in connectivity
patterns over temporally short windows. The application of these and related methods to
cortical recordings may help to provide a more thorough understanding of the underlying
network dynamics. The utility of these methods has been shown to produce more accurate
representations of the network architecture in both physiologic and pathologic states [107,
113, 115]. While a significant amount of research has been conducted on cortical networks
in a variety of conditions, relatively less is known regarding the transient network
characteristics and their function in both normative function and their role in disease.
Further advancements and investigation into these changes in temporally short network
dynamics is warranted.

III. Concluding Remarks
Numerous efforts have been made in an attempt to noninvasively image brain activity and
connectivity with high spatial and time resolution. A high resolution spatio-temporal
functional brain imaging methodology will not only provide an extremely useful tool for
neuroscience research, but also directly benefit a number of patients suffering from various
neurological disorders such as epilepsy. EEG and MEG are currently the only noninvasive
modalities, which can provide high temporal resolution information assessing dynamic brain
activity. Thanks to the collective efforts to significantly enhance the spatial resolution of
these techniques, electrophysiological neuroimaging methods are increasingly being used in
neuroscience research and rapidly entering into the clinical arena. Integration of EEG/MEG
with fMRI represents an important advancement in seeking of new imaging modalities,
which promises to provide complementary benefits of both electromagnetic and
hemodynamic measurements. These advancements in electrophysiological source imaging
and multimodal neuroimaging have great promise for the characterization and imaging of
brain functional networks at increasingly fine spatial and temporal scales.

These improvements in spatial and temporal precision of neuroimaging modalities over the
past two decades have led to the ability to analyze cortical networks over a variety of normal
activities and pathologic states. While cortical activity has historically been viewed as a
series of spatially discrete processes, exploration into the role of functional brain networks
has witnessed an explosion within the past decade. In addition to providing further insight
into the function of physiologic brain activity, disruptions in the cortical-based networks
have been observed in a wide variety of neurological disorders. In the future, these network
disruptions could be used to diagnose a spectrum of neurodegenerative and neurocognitive
disorders possibly even prior to outward disease manifestation. As brain imaging and
connectivity mapping techniques are further developed and refined, analysis of cortical
networks could lead to not only improved diagnostic tools, but earlier and more focused
interventions as well.
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Looking to the future, a diverse development of new approaches as well as associated
experimental studies are needed to fully address the challenges encountered in brain activity
and connectivity imaging. Fundamental studies investigating the neural substrates of
different imaging modalities, developing novel imaging techniques of better spatial or
temporal resolution, and improved mathematical modeling which approximate realistic
neuron-to-measurement relationships would further advance our capability to image the
underlying neural activity on very fine time and spatial scales. Significant work remains to
be done to correlate neural network activity discerned utilizing these methods with in vivo
neurophysiologic findings. Through utilizing the electrophysiological and hemodynamic
modalities, further needed are the development of analysis tools for investigating the brain
connectivity networks of resting state and other task conditions. Such a development of
noninvasive high-resolution spatio-temporal neuroimaging techniques would have
significant impact over basic neuroscience and cognitive science, to better understand the
mechanisms of perception, attention, learning, etc., and to improve substantially our
understanding on how the “Mind” is implemented in the brain. These functional
neuroimaging techniques would also significantly impact the diagnosis and treatment of
neurodegenerative diseases and psychiatric disorders. The emergence of improved
electromagnetic imaging techniques (e.g. EEG and MEG) as well as functional MRI
techniques has contributed to thousands of research articles each year. More importantly, the
development of functional neuroimaging techniques and connectivity analysis tools that are
adapted to the clinical realm has provided additional information regarding the cortical
mechanisms of brain disorders and in the near future may also serve to guide therapeutic
interventions. Functional brain imaging of brain activity and connectivity promises to
tremendously advance our understanding of the human brain and promises to offer
innovations in the management of various neurological and psychiatric disorders.
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Fig. 1.
Schematic illustration of the ranges of spatial and temporal resolution of various
noninvasive (in blue) imaging techniques and invasive (in red) experimental techniques
(adapted from [5], with permission).
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Fig 2.
When cortical pyramidal neurons (A) are excited, the synaptic currents flowing across the
cell membranes induces local excitatory postsynaptic potentials as well as magnetic fluxes.
The synchronized activity of cortical neurons in a columnar vicinity can be approximated by
a current dipole located on cortical surface and oriented perpendicular to the local cortical
surface (B). Through the forward modeling of brain source and head volume conductor (C,
e.g. Finite element model and Boundary element model), the relationship between the EEG/
MEG (D) measurements and underlying dipolar sources can be approximated through a
linear system.
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Fig. 3.
Illustration of multimodal imaging approaches based on the spatial and temporal
integrations. Waveforms of a typical EEG event-related potential and a block-designed
BOLD change are shown. Notice the disparate temporal scales of the responses in the EEG
and BOLD signals. Also, responses of both modalities are widely distrusted in the brain.
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Fig. 4.
In an effort to image continuous rhythmic activity, a recent study developed an EEG-fMRI
integrated imaging methodologies (A). The technique was used to reconstruct spatial
distribution and temporal modulation of alpha-band oscillation in an eyes-open-eyes-closed
task. (From [79] with permission)
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Fig. 5.
Model depicting functional (A) and effective (B) connectivity metrics. As can be observed
from the figure, functional connectivity denotes regions which are linked, but does not
specify the direction of this coupling, a property which is provided by effective connectivity
methods. A type of effective connectivity measure, the DTF, is shown in (C) during a motor
task. From the directionality information provided by the DTF, the degree to which each
cortical region acts as either a source or sink of cortical activity during the task can be
calculated
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