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Wehave discovered that the enzymephospholipaseD2 (PLD2) binds
directly to the small GTPase Rac2, resulting in PLD2 functioning as a
guanine nucleotide exchange factor (GEF), because it switches Rac2
from the GDP-bound to the GTP-bound states. This effect is large
enough to be meaningful (∼72% decrease for GDP dissociation and
300% increase for GTP association, both with PLD2), it has a half-
time of ∼7 min, is enhanced with increasing PLD2 concentrations,
and compares favorably with other known GEFs, such as Vav-1. The
PLD2-Rac2 protein–protein interaction is sufficient for the GEF func-
tion, because it can be demonstrated in vitro with just recombinant
proteins without lipid substrates, and a catalytically inactive lipase
(PLD2-K758R) has GEF activity. Apart from this function, exogenous
phosphatidic acid by itself (300 pM) increases GTP binding and
enhances PLD2-K758R–mediated GTP binding (by ∼34%) but not
GDP dissociation. Regarding the PLD2-Rac2 protein–protein associa-
tion, it involves, for PLD2, residues 263–266 within a Cdc42/Rac in-
teractive binding region in the PH domain, aswell as the PX domain,
and it involves, for Rac2, residue N17 within its Switch-1 region.
PLD2’s GEF function is demonstrated in living cells, because silencing
PLD2 results in reduced Rac2 activity, whereas PLD2-initiated Rac2
activation enhances cell adhesion, chemotaxis, and phagocytosis.
There are several known GEFs, but we report that this GEF is har-
bored in a phospholipase. The benefit to the cell is that PLD2 brings
spatially separatedmolecules together in amembrane environment,
ready for fast intracellular signaling and cell function.

The small GTPase Rac is a crucial regulator of actin cytoskeletal
rearrangement and plays an important role in cell spreading,

migration, mitogenesis, phagocytosis, superoxide generation, and
axonal growth (1). Activation of Rac occurs because of GTP ex-
change factors [guanine nucleotide exchange factors (GEFs)], and
inactivation is mediated by the intrinsic GTPase enzymatic activity
of Rac, greatly aided by GTPase activating proteins (GAPs).
Further regulation of the cycle is mediated by guanosine nucleo-
tide dissociation inhibitors (GDIs) that antagonize both GEFs and
GAPs. There are three families of GEFs for monomeric GTPases
that include Cdc25, Dbl homology (DH), and Sec7 domains (2–4).
Clear advances have been made in the molecular mechanisms

that control the targeting of GEFs to their effectors, such as Rac,
to the plasma membrane, but only a handful of cases remain
clearly mapped out. For Sos, the recruitment of phosphatidyli-
nositol 3,4,5 phosphate (PIP3) concurs to unmask its Rac-GEF
activity in vitro (5). Actin-binding ezrin promotes recruitment of
GEF-Dbl to the plasma membrane and to lipid raft microdomains
where it can act upon Cdc42 and the downstream effector PAK-1
(6). Also, activation of ARFs catalyzed by the characteristic Sec7
domain of ARF-GEFs occurs before recruitment of their effec-
tors and membrane trafficking and vesicle formation (7).
Several studies have implicated phospholipase D (PLD) in cell

signaling, as it relates to Rac. The C-terminal polybasic motif of
Rac1 interacts with phosphatidic acid (PA), and PLD serves to
recruit Rac to the cell membrane (7), but how this affects the
GEFs for Rac is not known. However, PLD-derived PA acts upon
GEFs. PA activates the unconventional DOCK2-GEF, which
then targets GTPase(s) (8). Our laboratory demonstrated that
PLD binds to Grb2, which recruits the GEF Sos (8), and it is also

known that PA binds directly to Sos (9). All of the mechanisms
that imply translocation to the membrane or membrane traf-
ficking that place GEF close to its effectors are complex and rely
on the formation of multimeric signaling proteins.
We show here that PLD2 functions as a GEF, because it

switches Rac2 from the GDP-bound to the GTP-bound state.
There are a number of knownGEFs, but none of the three families
of GEFs for monomeric GTPases is a phospholipase, making this
study unique. A further biological significance is that signals from
the cell receptor are routed to Rac with an economy of molecular
machinery without any intermediary factor(s). Last, our results are
demonstrated first in vitro and then extended to the physiology of
leukocytes, implicating PLD2 as a GEF for Rac in key cellular
functions: cell adhesion, chemotaxis, and phagocytosis.

Results
Rac2 and PLD2 Interact in Vivo and in Vitro. Initially, we hypothe-
sized that both PLD2 and Rac2 could form an interaction within
the cell and must, therefore, be in close spatial proximity. Fig. 1A
demonstrates that Rac2 and PLD2 are associated in the cell by
immunofluorescence microscopy. FITC-labeled Rac2 and tetra-
methyl rhodamine isothiocyanate (TRITC)-labeled PLD2 coloc-
alize to the perinuclear region in the cell, though some Rac2 also
has a punctate nature localized to endosomes. To further study
the association of Rac2 and PLD2, and to ascertain the stoichi-
ometry of the binding, we used recombinant proteins from
a baculovirus/insect cell expression system, as our laboratory re-
cently documented (10). This process involved expression and
purification of C-terminal 6xHN-tagged proteins by a TALON
cobalt metal affinity resin. PLD2 was >87% pure (Fig. 1B),
whereas Rac2 was >95% pure (Fig. 1C). To ascertain the stoi-
chiometry of PLD2 and Rac2 binding, we used these recombinant
proteins in an ELISA binding assay. We added increasing con-
centrations of PLD2 to the plate and determined the bound
fraction. Then, we added a constant and excess amount of Rac2
and measured the molar concentration of Rac2 bound to the
PLD2 by direct UV absorbance (Fig. 1D). With this technique, we
calculated that PLD2 binds to Rac2 at a molar ratio of PLD2:
Rac2 between 1:1.3 and 1:1.7. Results in Fig. 1 thus indicate that
Rac2 and PLD2 form a heterodimer.

PLD2 Is a Bona Fide GEF for Rac2. To investigate the possible
functional consequences of a Rac2-PLD2 interaction on Rac2
functionality, we designed a loss-of-function cell model in Rac2
GTPase activity. For this, we used RNA gene expression silencing
and analyzed Rac2 activation [protein binding domain (PBD)
pull-down]. As shown in the Western blots depicted in Fig. 2A,
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PLD2 was effectively and significantly silenced (>80%) using
increasing concentrations of siRNA. Fig. 2C shows that PLD2

had a positive effect on Rac2 activation, because its lack of ex-
pression led to a diminished Rac2 activation. Conversely, si-
lencing with siPLD1 RNA (Fig. 2B for immunoblot controls) or
siScrambled RNA had no effect on Rac2 activity (Fig. 2C). This
in vivo study suggests a PLD2-led GEF effect on Rac2 (but not
a PLD1-led effect) with functional consequences. Thus, we con-
centrated on the PLD2 isoform for all subsequent experiments.
The first evidence that PLD2 acted as a GEF for Rac2 is

shown in Fig. 2 D–G and represents a series of GTP loading
experiments in the presence of increasing PLD2 concentrations.
In an in vivo approach shown in Fig. 2D, Sf21 cells were coin-
fected with fixed amounts of baculoviral Rac2 and varying
amounts of baculoviral PLD2. Increasing expression of PLD2 led
to an increase in GTP/GDP exchange loading activity of Rac2.
PLD2 had an overall positive effect on Rac2 activity at a multi-
plicity of infection (MOI) ≥ 10:1. This effect was also observed in
COS-7 cells transfected with PLD2 and/or Rac2 (Fig. 2E).
The use of recombinant, purified proteins (Rac2 and PLD2)

indicated that GTPγS alone had a weak effect on GTP loading of
Rac2 at low nanomolar concentrations (Fig. 2F), which increased
concomitantly with increasing concentrations of recombinant
PLD2 (Fig. 2G). It is noteworthy that the results had no exog-
enous lipids (neither phosphatidylcholine, the substrate of PLD2
action, nor the product, PA), indicating that the effect of PLD2
on Rac2 can occur even in the absence of the lipase enzymatic
activity. In conclusion, Fig. 2 indicates that PLD2 directly affects
an increase in vivo and in vitro of GTP loading of Rac2.

Purified, Recombinant PLD2 Leads to a GDP/GTP Exchange in Rac2.
Fig. 3 is a series of GTP/GDP exchange experiments, the hall-
mark of GEF function (11–15). Fig. 3A indicates that PLD2
elicited dissociation of the relative amount of bound [3H]GDP
from Rac2 with a half-time of 7 min and a total decrease on GDP
dissociation of ∼72%. This in vitro assay with recombinant
proteins had no exogenous lipids, indicating that the effect of
PLD2 on Rac2 can be accomplished without intervening enzy-
matic (lipase) activity. We nevertheless asked whether the
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siRNA specific for exon 15 on PLD2 (A) or exon 10 on
PLD1 (B). (C) COS-7 or phagocytes were mock
transfected or transfected with siPLD2, siPLD1, or
siScrambled at a final concentration of 300 nM
siRNA for 3.5 d. After silencing, cells were stimu-
lated with 3 nM EGF, 3 nM M-CSF, or 10 nM IL-8,
respectively, harvested, and then lysates prepared
and used for Rac2 PBD pull-down assays. Triplicate
results are mean ± SEM and are expressed in terms
of Rac2 activation (PBD pull-down). (D–G) PLD2
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addition of lipids (particularly phosphatidic acid, PA, the prod-
uct of PLD reaction) would have an additional role in GDP

dissociation. PA alone has a small (∼13%) effect on GDP dis-
sociation (Fig. 3A) over the already robust decline caused by
PLD2 alone.
To further prove the GEF effect, Fig. 3B shows an increasing

GDP dissociation with concomitant increases in PLD2 concen-
tration. Additionally, PLD2 measures up well with a positive
control, Vav-1, which is a well known and previously character-
ized Rho-GEF (16).
We next concentrated on the second part of a GEF reaction

(binding of GTP). As shown in Fig. 3C, there was a large increase
(∼300%) in the binding of [35S]GTPγS to Rac2 in the presence
of PLD2. This effect was observed in recombinant proteins in the
absence of lipids, meaning that a protein–protein interaction
between PLD2 and Rac2 is enough for this activity. Neverthe-
less, another set of experiments was conducted with PA. PA
alone (no PLD2 present) did cause a significant increase (60%)
in GTP binding (Fig. 3C, open triangles), whereas PA and PLD2
show an initial fast GTP binding of Rac2 followed by a di-
minished binding (dashed lines). The reason for this complex,
biphasic effect, is not understood at present. Apart from this, and
as observed earlier for GDP dissociation (Fig. 3B), the PLD2
effect for GTP binding increased as PLD2 concentrations in-
creased (Fig. 3D), and also compares well with the positive
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control of the known GEF, Vav-1, further proving the GEF
function of PLD2.
In conclusion, PLD2 drives the dissociation of GDP and

augments Rac2 GTP binding, both hallmarks of GEF activity.
Both effects (particularly the first one) can be largely accom-
plished without PA. The GEF effect is large enough to be
meaningful (∼72% decrease for GDP dissociation and 300%
increase for GTP association, in the presence of PLD2), has
a reasonable kinetic behavior with a half-time of 7 min, which
reached saturation at 15–30 min and was enhanced concomi-
tantly with increasing PLD2 concentrations.

Lipase-Inactive Mutant of PLD2 Is also a GEF for Rac2. To further
explore the effect of PA on the GEF function of PLD2, we used
a lipase-inactive PLD2 mutant (PLD2-K758R) with a key sub-
stitution in the HKD-2 domain that renders it incapable of
producing PA (Fig. 4A). As a necessary control, we verified that
purified, recombinant PLD2-K758R has no lipase activity com-
pared with wild type (Fig. 4B). Fig. 4 C and D confirms that
a protein–protein interaction between PLD2 and Rac2 is suffi-
cient to initiate the GTP/GDP exchange and can be accom-
plished with either a fully active or a lipase-inactive enzyme,
albeit with a slightly lower capacity in the latter. The GEF effect
of PLD2 on K758R was aided by PA, as shown in Fig. 4 C and D
with increasing concentrations of PA at different extents, with an
estimated 34% improvement for GTP binding (second GEF
reaction step) but with no significant effect for GDP dissociation
(first GEF reaction step). Therefore, the product of lipase ac-
tivity of PLD2, PA, is mostly involved (as a “booster”) in the
second step of the GEF reaction.

Physiological Implications of PLD2 as a Rac2 GEF: Cell Polarization,
Chemotaxis, and Phagocytosis. Because Rac2 has been extensively
implicated in cell migration (17–19) and phagocytosis (20, 21) in
leukocytes, we chose to study these functionalities using several
approaches after demonstrating that PLD2 acts as a GEF for
Rac2 in vitro. During macrophage chemotaxis, polarization of the
cell occurred in response to a chemoattractant and resulted in
colocalization of the Rac2 and PLD2 proteins as evidenced by
immunofluorescence microscopy (Fig. 5A). In macrophage col-
ony-stimulating factor (M-CSF)-stimulated cells, ∼15–20% of
either protein signal migrated to the plasma membrane (white
triangles). Thus, subcellular localization of PLD2 and Rac2 is
dependent on the presence of a chemoattractant and is directly
related to its concentration. The effect of silencing either Rac2 or
PLD2 was documented during chemotaxis of RAW 264.7 mouse
macrophages (Fig. 5B). When Rac2 was silenced, chemotaxis
decreased by ∼50% compared with the negative mock control.
Last, in Fig. 5C, another physiological function of macrophages,

phagocytosis, is shown. The percent of phagocytic cells increased
proportionally with increasing concentrations of PLD2 (Fig. 5C,
Inset). This data demonstrates that PLD2 and Rac2 colocalize in
the cell and lead to augmentation of normal physiological func-
tions of the cells: adhesion, chemotaxis, and phagocytosis.

Site of Binding of PLD2 to Rac2. A final question we asked in this
study was regarding the site of binding of PLD2 to Rac2, par-
ticularly because we have demonstrated the preeminence of
a protein–protein interaction. As shown in Fig. 6A, a Rac2 mu-
tant was used that was modified in the Switch-1 domain near the
N terminus (preventing binding to GTP), whereas a PLD2
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Fig. 6. PLD2 PH domain mediates
GEF effect of Rac2 and is de-
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PLD2Δ263–266 deletion mutant
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PH domain. (B) PLD2Δ263–266
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mutant was generated in the PH domain [within a Cdc42- and
Rac-interactive binding (CRIB) region] (10). As shown in Fig.
6B, the PLD2Δ263–266 deletion mutant had a conserved and
intact lipase activity compared with wild type. When the
PLD2Δ263–266 deletion mutant was used in the Rac2 activation
assay via PBD pull-down, the PLD2 GEF activity of Rac2 was
lost (Fig. 6C).
Overexpression of Rac2-WT, PLD2-WT, or both proteins si-

multaneously resulted in significantly increased chemotaxis (Fig.
6D). When PLD2Δ263–266 and Rac2-WT were simultaneously
overexpressed, chemotaxis did not additionally increase as the
PLD2-WT and Rac2-WT combination did. The PLD2Δ263–266
deletion mutant cannot interact with Rac2, which highlights the
crucial importance of the PH domain in the GEF function of
PLD2. Using GST-PX, we have indicated earlier that Rac2 also
binds to PLD2 at the PX site (22) and, as such, both the PH and
the PX domains are implicated in the Rac2-PLD2 protein–
protein interaction.
Because it can be argued that the PH domain is simply nec-

essary to bring PLD2 to the membranes that contain Rac2, we
conducted additional experiments to further demonstrate the
Rac2-PLD2 interaction first with coimmunoprecipitation and
then in vitro with recombinant proteins. As shown in Fig. 6E,
PLD2-Rac2 binding is at the level of the PH domain in PLD2,
because association occurred in intact proteins but not in the
CRIB deletion mutant. Purified deletion proteins (such as pre-
sented in Fig. 6F) were used for the Rac2 activation assay; the
results of Fig. 6G indicate that they failed to fully activate Rac2
compared with the PLD2-WT protein control. In summary, we
provide functional evidence of the sites of interaction between
PLD2 and Rac2, which occurs via the PH domain of PLD2
(complementing the participation of the PX domain) and via the
N-terminal region of Rac2 in the Switch-1 domain.

Discussion
We report here a unique function of a phospholipase: that of it
being a GEF. Based on in vitro and in vivo experiments, PLD2
acts as a bona fide GEF for Rac2 by increasing GTP loading and
decreasing GDP dissociation. This report of a phospholipase
acting as a GEF opens unexpected consequences in cell regula-
tion, some of which are studied here (cell polarization, chemo-
taxis and phagocytosis). Further, it has been observed that
leukocytes from RacGEF KO mice show persistent Rac2 activity,
implicating that an unknown GEF is still present. We posit that
this GEF is PLD2.
The data presented here indicates that PLD2 effectively

affects the two steps of a GEF reaction: GDP dissociation and
GTP binding. The GEF role is largely accomplished by PLD2-
Rac2 protein–protein interactions, partially aided by the enzy-
matic reaction of PLD2 (PA production). We propose the model
as shown in Fig. 7A in which PLD2 executes the two GEF se-
quential steps and the aiding effect of PA, which bears its effects
in the second reaction step of GEF, that of GTP binding.
We are also reporting the site of binding between the two

proteins. In the case of PLD2, the amino acids 263–266 are
within a CRIB region of the PH domain (Fig. 7B), which is in
addition to the PX domain, as indicated earlier in our laboratory,
because both GST-PH and GST-PX bind to Rac2 (22). The
existence of a PH domain is shared by all known GEFs, and Fig.
7B presents the PH structure of Vav-1, the GEF used as positive
control in this study, and a predicted model of PLD2’s PH do-
main. The similarities between the α-helix and the β-sheet are
obvious. However, Rho-GEFs have a DH domain upstream of
the PH domain. In the case of PLD2, there is no DH domain.
Nevertheless, atypical GEFs, such as DOCK, have been discov-
ered in the recent past (23), suggesting that Rho-GEFs can be of
various types based on their structure and specificity toward their
GTPases. In some cases, the PH domain, apart from its estab-
lished docking protein-lipid domain, can be at the center of the
catalytic activity of GEFs. In the case of Dbs (24), the PH

domain also interacts with the substrate GTPase Cdc42 along
with its DH domain, and is also responsible for catalytic activity.
We propose that PLD2 acts as a GEF toward Rac2 with the help
of the PH domain and the PX domain (a role for both domains is
depicted as dotted lines in Fig. 7B) and perhaps the participation
of PA (gray spheres in Fig. 7B), particularly for GTP binding to
Rac2. The exact binding of these three components to the Rac2
molecule remains to be elucidated.
We can speculate a molecular mechanism for the effect of PA

on GTP binding: it can facilitate docking via binding of positively
charged domains of target proteins to the inner leaflet of the cell
membrane and directs the membrane localization of various
GEFs (25). Our data are in agreement with a positive role of PA,
because it can increase the GTP loading of Rac2. The impor-
tance of Rac2-PLD2 in a cell membrane environment is under-
scored by the fact that in stimulated cells PIP3 can bind to PLD2
(26). The small GTPase Cdc42 can act as a competitive inhibitor
of Rac1 and Rac2 binding and subsequent activation (27). Sim-
ilar to what is seen in PLD activity, GTP-bound Rac is necessary
for sustained Nox enzyme activity (28). Phosphorylation allows
the protein to bind and activate its target (29).
The DOCK family is a part of the Rho-GEF family. Following

PIP3 phospholipid formation, DOCK2 (as a GEF) is recruited to
the plasmamembrane. Subsequently, PLD is activated, which then
mediates the hydrolysis of PC to form PA. This phospholipid is
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thought to bridge DOCK2 toward activation of Rac to stimulate
leading-edge actin polymerization to drive neutrophil chemotaxis
(30). One can attempt to explain that the results presented herein
are due to PA affecting Rac2 through DOCK2, which is needed as
an intermediary signaling link. The use of recombinant purified
proteins in the present study rule out this possibility, arguing in
favor of a direct effect of PLD2 on Rac2 as a bona fide GEF. In
summary, PLD acts as a GEF for small GTPases, such as Rac2,
both in vitro and in vivo in leukocytes. The functional con-
sequences of a GEF-PLD–mediated activation of Rac2 are an
increased adhesion, phagocytosis, and chemotaxis of leukocytes
that are at the center of the innate immune system’s functions.
The GEF function of PLD2 could also be implicated in cancer

metastasis. Cells from colorectal or breast cancer exhibit high
PLD2 levels (31). PLD2 in these cells could serve to constitu-
tively activate Rac2, a GTPase known to have a role in cell
movement and cancer metastasis. Hence, characterizing the
GEF activity of PLD2 further aids in understanding and unrav-
eling the still-unknown mechanisms of both leukocyte migration
and cancer metastasis to devise novel therapeutic approaches.

Methods
A full description of methods is provided in SI Methods.

Murine BM cells were harvested from mice, and neutrophils were dif-
ferentiated in vitro with IL-3 and granulocyte CSF. Cells were nucleofected
with siRNA for the last 3 d of differentiation to allow silencing of PLD2. For
cell migration assays, RAW264.7 macrophage cells were placed in 8-mm pore,
polycarbonate membrane Transwell inserts and migrated against M-CSF into
the lower wells of 24-well plates for 1 h. For adhesion experiments, cells were
plated onto collagen-coated coverslips at a concentration of 5 × 104 cells/mL
and incubated at 37 °C for specific times. Adherent cells were fixed, hema-
toxylin stained, and counted. For phagocytosis, zymosan A (Saccharomyces
cerevisiae) fluorescein conjugates were opsonized by incubating with zy-
mosan A bio particles/opsonizing agent and mixed with cells.

Purified, recombinant PLD2 and Rac2 proteins were prepared from
a baculovirus/insect cell expression system: pBac-C1-HA-Rac2 and pBac-C1-
myc-PLD2-WT recombinant viruses to infect Sf21 cells. 6xHN-tagged proteins
in the lysates were bound by TALON resin and purified. Binding/stoichiometry
was performed in an ELISA plate setting. Increasing concentrations of
baculoviral, purified PLD2 were incubated with PVC-grade, 96-well plates.
Unbound PLD2 was determined by measuring absorbance at OD280. For Rac2
PBD pull-down assays, 2 × 106 Sf21 insect cells were infected with Rac2
baculovirus at a MOI of 0.5:1. Proteins were mixed with PAK-1 PBD agarose.
Samples were loaded onto gels, transferred to blotting membranes, and
probed with either α-HA antibodies to detect GTP-bound Rac2 or α-myc
antibodies to detect PLD2 that interacted with Rac2 in the pull-down assay.

GTP/GDP exchange was measured with purified, recombinant proteins
(PLD2 and Rac2) used in an in vitro assay that had no phosphatydilcholine, the
substrate of PLD2 action, so that no enzymatic production of PA was possible.
These reactions contained no PA, unless expressly added exogenously and, as
such, indicated in Results and figure legends. For GDP dissociation, 0.5 μg of
Rac2 was preloaded with 2 μM [3H]GDP and then incubated with 2 μg PLD2.
Aliquots were taken at different times to measure the amount of radio-
labeled [3H]GDP bound to Rac2. To examine if PLD2 could exchange GDP, 0.5
μg of Rac2 was incubated with 8 μM GDP and [35S]GTPγS ± 2 μg PLD2. In
either case, the amount of GTP- or GDP-bound Rac2 was measured by
scintillation spectrometry.

ForPLD lipaseactivityassay,purifiedbaculoviralPLD2 (-WT, -Δ263–266,or -KR)
was processed in PC8 liposomes and [3H]l-butanol (8). Reactions were stopped
and lipids were then isolated and resolved by TLC. The amount of [3H]PBut that
comigrated with PBut standards was measured by scintillation spectrometry.

Statistical analysis data are presented as mean ± SEM. The difference
between means was assessed by single-factor ANOVA. Probability of P < 0.05
indicated a significant difference.
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