
A phenotype of early infancy predicts reactivity of the amygdala 
in male adults

CE Schwartz1,2,3, PS Kunwar1,2, DN Greve2,3,4, J Kagan5, NC Snidman6, and RB Bloch1

1Developmental Neuroimaging & Psychopathology Laboratory, Department of Psychiatry, 
Massachusetts General Hospital, Boston, MA

2Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 
Charlestown, MA

3Harvard Medical School, Boston, MA

4Department of Radiology, Massachusetts General Hospital, Boston, MA

5Department of Psychology, Harvard University, Cambridge, MA

6Children's Hospital, Boston, MA

Abstract

One of the central questions that has occupied those disciplines concerned with human 

development is the nature of continuities and discontinuities from birth to maturity. The amygdala 

plays a central role in the processing of novelty and emotion in the brain. While there is 

considerable variability among individuals in the reactivity of the amygdala to novel and 

emotional stimuli, the origin of these individual differences is not well understood. Four month 

old infants called high reactive (HR) demonstrate a distinctive pattern of vigorous motor activity 

and crying to specific unfamiliar visual, auditory, and olfactory stimuli in the laboratory. Low-

reactive infants show the complementary pattern. Here we demonstrate that the HR infant 

phenotype predicts greater amygdalar reactivity to novel faces almost two decades later in adults. 

A prediction of individual differences in brain function at maturity can be made on the basis of a 

single behavioural assessment made in the laboratory at four months of age. This is the earliest 

known human behavioural phenotype that predicts individual differences in patterns of neural 

activity at maturity. These temperamental differences rooted in infancy may be relevant to 

understanding individual differences in vulnerability and resilience to clinical psychiatric disorder. 

Males who were HR infants showed particularly high-levels of reactivity to novel faces in the 

amygdala that distinguished them as adults from all other sex/temperament subgroups, suggesting 
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that their amygdala is particularly prone to engagement by unfamiliar faces. These findings 

underline the importance of taking gender into account when studying the developmental 

neurobiology of human temperament and anxiety disorders. The genetic study of behavioral and 

biologic intermediate phenotypes (or “endophenotypes”) indexing anxiety-proneness offers an 

important alternative to examining phenotypes based on clinically-defined disorder. Because the 

HR phenotype is characterized by specific patterns of reactivity to elemental visual, olfactory, and 

auditory stimuli, well before complex social behaviors such as shyness or fearful interaction with 

strangers can be observed, it may be closer to underlying neurobiological mechanisms than 

behavioral profiles observed later in life. This possibility, together with the fact that environmental 

factors have less time to impact the four-month phenotype, suggests that this temperamental 

profile may be a fruitful target for high-risk genetic studies.
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Introduction

One of the central questions in developmental psychology over the past 50 years has been 

the nature of continuities and discontinuities in development from birth to maturity. Over 

what period of time can continuities of development be detected? The term temperament 

refers to a biologically based predilection for a distinctive pattern of behaviours, emotions 

and cognitions first observed in infancy or early childhood. Previous studies have identified 

two temperamental categories in 2 year olds called behaviourally inhibited and uninhibited, 

based on direct observation of behaviour in the laboratory.

Inhibited children are timid with unfamiliar people, objects and situations whereas 

uninhibited children spontaneously approach these same stimuli. We have previously 

demonstrated that adults who had been categorized in the second year of life as inhibited, 

compared with those who had been categorized as uninhibited, showed greater amygdalar 

activation to unfamiliar neutral faces1, suggesting some continuity in neurobiological 

function. A recent study of 22 year olds using a retrospective self-report questionnaire to 

measure behavioural inhibition supported this finding2. A longitudinal study that combined 

laboratory based measures of behavioural inhibition obtained from 2 to 7 years of age found 

that behaviourally inhibited adolescents showed an abnormally high amygdalar response to a 

task condition marked by novelty and uncertainty3.

These discoveries in two year olds motivated an effort to detect even earlier evidence of 

these temperamental imprints in nature. Four month old infants classified as HR display a 

temperamental profile in the laboratory characterized by vigorous motor activity and crying 

in response to specific unfamiliar visual, auditory, and olfactory stimuli, whereas low 

reactive (LR) infants show both low motor activity and low vocal distress to the same 

experimental stimuli4-6. High-reactive infants are biased to become behaviourally inhibited 

in the second year of life, whereas low-reactive infants are biased to develop into 

uninhibited children4-7. Furthermore, an inhibited temperament is a risk factor for the later 
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development of social anxiety disorder8-11 (also known as social phobia), which is also a 

predictor of subsequent depressive disorder in young adults12, 13.

Because the amygdala plays a central role in the processing of novelty and emotion in the 

brain, we hypothesized that there might be differences in the reactivity of the amygdala in 

adults previously classified as HR or LR infants. Using fMRI, we measured amydgala 

reactivity to faces with neutral expressions in 135 subjects who were enrolled in an 18-year 

longitudinal study and had been characterized6, 14, 15 as high or low-reactive infants at four 

months of age (see Table 1). Adults who had been high-reactive and low-reactive infants are 

also referred to as “high-reactive” and “low-reactive” respectively.

Materials and methods

Infant Assessment and Categorization

The details of the standard 45 minute battery used to assess the infants are described 

elsewhere6, 16. Initially, the mother looked down at her infant smiling, but not talking, for 

one minute. The parent then went to a chair behind the infant to be outside the child's field 

of vision. The examiner then placed a speaker baffle to the right of the infant and turned on a 

tape recording that played 8 short sentences read by female voices. The speaker baffle was 

removed and the examiner, standing in back of the infant, presented a set of mobiles 

composed of one, three or seven colorful toys that moved back and forth in front of the 

infant's face for 9 twenty-second trials. The examiner then dipped a cotton swab into very 

dilute butyl alcohol and presented it close to the infant's nostrils for 8 trials (the first and last 

trials were water rather than alcohol). The speaker baffle was replaced and the infant heard a 

female voice speaking three nonsense syllables (ma, pa, ga) at three different loudness 

levels. The examiner then popped a balloon in back of the infant; most were unperturbed by 

this event. Finally, the mother returned to gaze at her infant for the final minute. 

Quantitative indices of limb movement and arching of the back, and of crying and fretting to 

these experimental stimuli were computed from videotapes. About 20% of the infants, called 

high-reactive, showed a distinctive combination of frequent vigorous motor activity and 

distress indicated by crying or fretting. These infants repetitively flexed and extended their 

arms and legs, occassionally assuming a spastic posture for brief periods of time. On some 

trials high-reactive infants demonstrated a distinctive vigorous arching of their backs away 

from their padded seat. When motor activity was intense, crying followed the increased 

movement. In contrast, forty percent of the infants, called low-reactive, showed both low 

motor activity and low vocal distress to the same experimental stimuli. They occassionally 

moved an arm or leg but but showed minimal arching behavior and spasticity, and rarely 

cried or fretted. The decision to define discrete groups based on the combination of motor 

activity and crying, rather than a continuum of reactivity was supported by a taxonomic 

analysis of the four month data that implied that the combination of the two variables fit a 

categorical model better than a continuous one14, 17.

Procedure

The experimental paradigm (see Figure 1a) consisted of two parts: a familiarization phase 

and a phase that consisting of alternating blocks of novel and familiar faces. During the 96-
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sec familiarization phase, six different identities were presented 16 times. During the second 

phase, alternating blocks of Novel and Familiar faces were presented. Each Novel block 

consisted of 24 identities unique to that block and never repeated; each familiar block 

consisted of repeated presentation of the six identities previously presented during the 

familiarization phase. Faces were drawn from the stimulus set of Gur and colleagues, which 

was created with careful attention to emotional neutrality18, 19 and were projected onto a 

screen while subjects lay on the scanner bed. Each face was presented for 500ms with a 

500ms interstimulus interval.

Functional Magnetic Resonance Imaging

Data acquisition—Each subject underwent two 3D MPRAGE structural scans on a 3T 

Siemens TrioTim scanner (128 sagital slices; 1.3×1.3×1 mm; anterior to posterior phase 

encoding; repetition time= 2530 ms; echo time = 3.39 ms; flip angle 7°, bandwidth 190 Hz/

Px). A gradient echo T2*-weighted sequence was used to acquire functional images (blood 

oxygenation level dependent or BOLD20 with a 12-channel gradient head coil (45 coronal 

slices oriented perpendicular to the anterior commissure –posterior commissure line; 

3.1x3.1x4.0 mm; interleaved excitation order, and foot-to-head phase encoding; repetition 

time = 3000ms; echo time = 40 ms; flip angle 90°).

Imaging Data analysis—Functional and structural MRI data were analyzed using 

Freesurfer and FS-fast (available at http://surfer.nmr.mgh.harvard.edu), utilizing previously 

described techniques1, 21. The two 3D MPRAGE structural scans from each subject were 

averaged, after motion correction, to create a single high signal-to-noise average volume. 

Functional data were motion corrected using AFNI (http://afni.nimh.nih.gov/afni/

index.shtml)22, 23 and spatially smoothed (fwhm=5mm) using a 3D Gaussian filter 

(www.fmrib.ox.ac.uk/fsl). The spatially smoothed, normalized, motion-corrected functional 

images were aligned to a 3D structural image created by motion correcting and averaging 

the high-resolution 3D sagittal images. As part of the alignment procedure, the raw 

functional data from each subject were visualized over the high-resolution 3D anatomical 

from that individual to ensure that the BOLD signal in the amygdala was not obscured by 

susceptibility artifact. Individual subject functional data were spatially normalized using an 

optimal linear transformation method24 that maximizes the likelihood that anatomic 

structures of individual subjects will overlap with each other across subjects. It is based on a 

previously described group atlas that retains the most common anatomic features in the 

majority of subjects25-28. Talairach transformation using the Montreal Neurological Institute 

automated registration algorithm was also performed for comparison (available at ftp://

ftp.bic.mni.mcgill.ca/pub/mni_autoreg)29, but a better registration between anatomical 

structures and the coordinates in the Talairach atlas30 was obtained with the optimal linear 

transformation method24. To facilitate comparisons across studies, we report Talairach 

coordinates based on registration of the images from the optimal linear transformation with 

the Talairach atlas30. After spatial normalization, functional data were averaged for each 

subject and then across subjects. Paradigm files were constructed to allow the separate 

averaging of the images acquired during fixation blocks, the novel face presentations, and 

the familiar faces. A group statistical map was computed using a random-effects model for 

the contrast novel and familiar faces (i.e. collapsed across condition) vs. the fixation cross 
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(software available at http://surfer.nmr.mgh.harvard.edu/docs/index.html). For this group 

average we examined the responses to faces collapsed across all subjects. This analytic 

strategy assesses the role of temperament in a manner that was unbiased with respect to 

between group differences, and avoids circularity in the data analysis1, 21. A functionally 

constrained ROI was used because different regions within the amygdala, possibly 

representing subnuclei respond differently to facial stimuli31-34. For example, Leonard33 

found no responses to faces in the lateral nucleus of the amygdala in primates. Therefore, a 

ROI based on anatomical constraints alone might include portions of the amygdala that do 

not respond similarly to faces. A 43 voxel ROI were identified in the right amygdala, our a 

priori region of interest, with a statistical threshold of 10-10. Sixty-one of the 135 subjects 

had no voxels in the left amygdala exceeding this high threshold. However, at a reduced 

threshold of 10-6, a 41 voxel region was identified in left amygdala. Labels derived from the 

coordinates of these ROI's were used to extract percent BOLD signal change from baseline 

(the fixation cross) during Novel or Familiar face presentations in the functional data of each 

subject (“ROI analysis”) (software at http://surfer.nmr.mgh.harvard.edu/docs/index.html). A 

repeated-measures general linear model (PROC GLM with LSMEANS/tdiff) (SAS v9.2), 

with infant phenotype (high-reactive, low-reactive) and gender (female, male) as the 

between-group factors and time block (familiarization 1,2,3,4) as within-group factors, was 

performed on functional data from the familiarization phase of the protocol (Figure 1). A 

second repeated-measures GLM with infant phenotype (high-reactive, low-reactive) and 

gender (female, male) as the between-group factors and face type (novel, familiar), and time 

block (1,2,3,4) as within- group factors, was performed on functional data from the second 

phase of the protocol in which alternating Novel (Blocks N1-N4) and Familiar (Blocks F1-

F4) faces were presented. Covariance matrices for the time blocks in each GLM were tested 

for type-H structure35 with a sphericity test36; if the assumption of H-type covariance was 

not met, the more conservative p value based on the Greenhouse-Geisser Epsilon adjustment 

was reported37. All t-tests were two-tailed. A repeated-measures ANOVA with left and right 

hemisphere as an additional between-group factor was used to test for laterality effects.

Results

A 43-voxel region of interest (ROI) in the right amygdala was identified with a statistical 

threshold of 10-10. The peak voxel was located at 20, -11, -13 (p < 10-22), with the centroid 

located at 23, -8, -18 (p < 10-12). Amygdala reactivity to the faces during the familiarization 

phase of the protocol (Figure 1b) was significantly greater in adult subjects with the high-

reactive infant (HR) phenotype (.35 ± .06, mean ± s.e.m) than the low-reactive (LR) 

phenotype (.13 ± .05) [F(1, 125) = 7.68, p=.006]). There was also a significant interaction 

between infant phenotype and time [F(1,125) = 2.70, p = .05]; adults who had been HR 

infants did not show a decrease in activation over the familiarization phase, unlike the LR 

group (Figure 1b).

During the familiarization phase, amygdalar reactivity was also greater in males (.35 ± .05) 

than females (.14 ± .06) [F(1,125) = 6.62, p = .01]. Furthermore, there was a significant 

interaction between infant phenotype and gender [F(1,125) = 4.65, p = .03] in activity 

recorded from the right amygdala. Adult males who had been HR infants showed a high 

amygdalar response to faces that does not habituate during the familiarization period (Figure 
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1c). The mean bold signal was greater in HR males (.55 ± 0.08), compared both with LR 

males (.15 ± 0.07) [t(125 ) = 3.63, p=.0004] and with females of either infant phenotype [HR 

males (.55 ± 0.08) vs. HR females (.16 ± .09) [t(125) = 3.09, p = .003]; HR males (.55 ± 

0.08) vs. LR females (.11 ± .08) [t(125) = 3.76, p = .0003]. In contrast, adult females showed 

no difference in amygdala activation related to their infant phenotype (HR females (.16 ± .

09) vs. LR females (.11 ± .08) [t(125) = 0.42, p = 0.68). Furthermore, LR females (.11 ± .08) 

did not differ from the LR males (.15 ± 0.07) [t(125) = -0.32 , p = 0.75].

During the second phase of the paradigm that presented alternating blocks of Novel and 

Familiar faces (Figure 1d), right amygdala reactivity to faces was significantly greater in the 

subjects with the HR infant phenotype (.22 ± .03), than the LR phenotype (.12 ± .03) 

[F(1,125) = 7.71, p=.006]), and greater to novel faces (.21 ± .01 than to familiar ones (.13 ± .

01) [F(1,125) = 22.34, p < .0001. Turning to the role of gender (Figure 1e), amygdalar 

reactivity was greater in males (.22 ± .03) than females (.12 ± .03) [F(1,125) = 7.22, p = .008 ] 

as was observed during the familiarization part of the experiment. Furthermore, there was a 

significant 3-way interaction in amygdala reactivity between infant phenotype, gender and 

time (Figure 1e) [F(3, 375) = 3.06, p = .03].

The pattern of amygdalar responses to novel faces in the subgroups defined by infant 

phenotype and gender was similar to that observed during the familiarization part of the 

protocol (see Figure 2). Mean reactivity to novel faces was greater in HR males compared 

both with LR males, and with females of either infant phenotype. Once again, adult females 

showed no difference in amygdala activation to novel faces related to their behavioural 

phenotype in infancy, nor did LR females differ from LR males. Reactivity to familiar faces 

did not distinguish HR from LR subjects within either gender, although there was a trend for 

HR males to show greater reactivity to familiar faces compared with the LR males (0.22±.04 

vs. 0.12±.03; [t(125)= 1.90, p=.06].

In the left amygdala, 61 of the 135 subjects had no voxels at the p< 10-10 threshold used to 

define the right amygdala ROI. At a less stringent threshold of 10-6, however, a 41-voxel 

ROI could be identified in left amygdala. The peak voxel was located at -20, -10, -15 (p < 

10-13), with the centroid located at –22, -9, -20 (p < 10-11). In general, the pattern of results 

with respect to temperament in both phases of the paradigm was similar to those observed 

on the right, although less robust (see Supplementary Information for details). Amydgalar 

activation to novelty was greatest in the high reactive males compared both with LR males, 

and with HR or LR females. In the left as on the right, adult females did not differ in 

activation to novelty based on whether they were HR or LR infants, and LR females did not 

differ from LR males. In the left amygdala, as on the right, neither gender showed 

significant differential reactivity to familiar faces related to temperament in infancy.

Discussion

Adults who had been high-reactive (HR) infants showed greater amygdalar reactivity and 

delayed habituation to neutral faces when compared to adults who had been low-reactive 

infants. These results demonstrate that individual differences in reactivity of the amygdala to 

faces at maturity can be predicted solely on the basis of an infant behavioural phenotype 
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identified at 4 months of age. These data imply that continuities exist at the level of 

neurobiology over 18 years of development between early infancy and adulthood. This is the 

earliest known human behavioural phenotype that predicts individual differences in patterns 

of neural activity at maturity.

The amygdala plays a central role during the assessment of novelty21, 38, ambiguity39, and 

threat40, and in forming associations about biologically relevant phenomena, including 

potentially danger-related stimuli40, 41 -- functions that are all salient to the clinical 

manifestations of anxiety disorders. Genes confer susceptibility to anxiety proneness that 

cuts across clinical diagnostic labels and categories42-49. High reactivity, observable early in 

infancy before the accumulated influence of environmental factors complicates the detection 

of genetic influences on anxiety disorders, is a promising intermediate phenotype in the 

effort to unravel the phenotypic and genetic complexity of anxiety disorders.

We previously demonstrated that adults who had been categorized in the second year of life 

as inhibited, compared with those were uninhibited, showed greater amygdalar activation to 

unfamiliar neutral faces1. That classification at two years was based on behaviors such as 

clinging to, or remaining proximal to, the mother and the reluctance to approach or actual 

retreat from unfamiliar events or people, for instance a woman in an unusual costume or an 

unfamiliar child of the same sex and age in the same playroom with both mothers present. In 

contrast, the assessment of high-reactivity and low-reactivity, the temperaments that are the 

focus of the present report, is made before complex social behaviors such as shyness or 

avoidance of interaction with strangers is observable. The classification at four months of 

age is based on elemental behavioural responses of infancy, namely crying, arching of the 

back, and thrashing of the arms and limbs to relatively simple sensory probes in multiple 

modalities (see Methods). These more elemental, but still complex behaviours may be more 

conducive to analysis at the level of neural circuitry and genetics. These phenotypes of early 

infancy have had less time to be influenced by parental and other environmental factors than 

phenotypes based on behaviour observed later in development and hence may be closer to 

underlying biological mechanisms under genetic control. The genetic and neurobiological 

dissection of behavioral and biologic intermediate phenotypes (or “endophenotypes”) 

indexing anxiety-proneness is an important alternative strategy to examining the discrete, 

clinically-defined anxiety disorders enumerated in the DSM. Temperament, once principally 

a construct of developmental psychology, now has a second act, with a role as an 

intermediate phenotype. Such an approach is in accord with the perspective of the NIMH 

Research Domain Criteria project50, 51.

What details of amygdala circuitry and connectivity could explain the fMRI findings in this 

report and the associated behavioural and physiological profile of these temperaments? 

Animal studies of the amygdala have revealed an intricate internal architecture of discrete 

nuclei, with complex patterns of intranuclear and internuclear connectivity, in addition to 

widespread extrinsic connections41, 52. Although a gap exists between the level of detail 

revealed by animal studies and the ability to observe this architecture in humans with the 

tools currently available for functional neuroimaging, findings from animal studies are 

heuristic for hypothesis generation. The basolateral complex of the amydgala (BLA), 

especially the lateral nucleus (LA) is the major gateway for both somatosensory and 
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gustatory/visceral input to the amydgala. Somatosensory inputs to the amygdala arise 

primarily from association areas of the cortex and multisensory components from the 

posterior thalamic complex. The assessment of high-reactivity and low-reactivity at 4 

months of age is based on the infants behavioural response to probes in multiple sensory 

modalities. This sensory information travels medially within BLA from the LA to the basal 

nuclei. Projections from the BLA to the ventral striatum (accumbens) and medial caudate 

are thought to mediate voluntary instrumental behavior related to emotional events. The 

basal nuclei of the amygdala have major extrinsic connections with the medial prefrontal, 

orbitofrontal, and rostral anterior cingulate cortex, and with the medial temporal lobe 

memory system that allow the basal nuclei to integrate contextual and motivational factors 

with the sensory information from LA. Temperamental based differences in the excitability 

of the basal nuclei and its cortical afferents and efferents might mediate the 

overgeneralization from dangerous to safe contexts, maintenance of avoidant behaviors, and 

the behavioral as well as cognitive perseveration seen when high reactive infants grow into 

inhibited children.

The basal nuclei project to the central nucleus of the amygdala (CEA), which is the main 

output structure for projections to the hypothalamus, periaquductal grey (PAG), pons and 

medulla. These targets of the CEA mediate many of the characteristic physiological and 

behavioural responses of high reactive infants and inhibited children: vigorous distress 

vocalizations and defensive arching of the back (PAG), elevated plasma cortisol (via the 

paraventricular nucleus of the hypothalamus that controls ACTH release), dilation of the 

pupils, increased heart rate, decreased heart rate variability, and increased blood pressure (by 

activation of the medulla and sympathetic chain via both direct projections to the medulla, as 

well as indirectly through projections to the lateral hypothalamus). Increased excitability of 

the CEA, whether intrinsic to the CEA or extrinsic in origin, could therefore explain the 

behavioural and physiological profile of the high reactive/inhibited phenotype. The 

amygdala has an elegant mechanism for regulating the level of output from the CEA. The 

intercalated cells (ITC) are clusters of inhibitory GABAergic cells that lie in the narrow 

margins between the between the nuclei of the BLA, and between BLA and the CEA. These 

cells can gate (or fail to gate) the neuronal traffic arising from sensory inputs to the BLA and 

thereby modulate CEA output53. In addition to the direct excitatory projections from the 

BLA to CEA discussed above, some of these excitatory projections from the BLA that carry 

traffic towards the CEA terminate on the ITC, which in turn can inhibit outflow from the 

CEA. A deficiency of GABAergic activity within the ITC or a decrease in the number of 

functioning clusters of ITC, with resultant failure of feed-forward inhibition of the CEA, 

could generate the cascade of physiological events observed in high reactive/inhibited 

temperament. There is also “top-down”cortical control of the ITC via an especially dense 

unidirectional excitatory projection from posterior orbitofrontal cortex, allowing indirect 

modulation of CEA output54-56. Therefore, functional or anatomically based variations in 

this circuit could also contribute to the temperamental profile observed. Although current 

imaging tools do not allow resolution at the level of distinct nuclei and the ITC, the 

amygdala activations in this report map to central and medial portions of the ventral 

amygdala with some extension more laterally, potentially implicating regions containing the 

basal and accessory basal nuclei and their associated ITC cluster. Such a preliminary 
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conclusion must be further qualified in light of the limited temporal resolution of fMRI. The 

effect of infant temperament on adult amygdala reactivity was observed bilaterally. This is 

consistent with the fact that HR infants are biased to become behaviourally inhibited in the 

second year of life, and that neuroimaging studies of inhibited temperament have not 

generally found significant lateralization of effects in the amygdala1-3 related to 

temperament.

Pavlovian fear conditioning is an influential animal model that has been extended to the 

investigation of the neurobiology of human anxiety disorder57, 58. Differences in fear 

acquisition, fear extinction, and extinction retention have been described both between 

anxiety disordered patients59-67 especially PTSD and normal controls, as well as between 

individuals in normal populations58, 68-70. Studies have identified some correlates of these 

differences including cortical thickness71, 72, amygdala volume72, and trait anxiety73-75. 

Future neuroimaging studies should directly examine the relationship between infant 

temperament and individual differences in the functioning adult circuitry sub-serving fear 

acquisition, extinction and extinction-retention. Differences between the sexes have been 

described in both classical conditioning, including fear conditioning, and operant 

conditioning76. In the present study, gender appears to play an important role in predicting 

the impact of infant temperament on amygdalar reactivity at adulthood. Male adults who 

were high-reactive infants showed particularly high-levels of reactivity to novel faces in the 

amygdala that distinguished them from all other sex/temperament subgroups, suggesting that 

their amygdala is particularly prone to engagement by unfamiliar faces.

The sex differences reported here could involve the interplay of genes, hormones (both in 

utero during early brain development, infancy, childhood, puberty, and adulthood), 

environmental and social factors, brain structure and function, and epigenetic interactions 

that modulate gene function and expression.76-81. The high levels of amydalar activation in 

the high-reactive males might be related to the fact that males generally show greater 

conditioned responses in fear conditioning paradigms than females, a finding that has been 

attributed to the effect of estrogen76, 82-84. Animal studies have demonstrated that these 

differences in conditioning can be manipulated by both ovariectomy and the subsequent 

replacement of estrogen85. In human females changes in reactivity of the amygdala across 

phases of the menstrual cycle86, 87 have been detected with fMRI. Our data did not show 

any evidence of a subgroup of females defined by menstrual phase in which temperament 

showed the effect on amygdala reactivity observed in males. Animal models do not suggest 

a role for testosterone levels in the higher levels of fear conditioning seen in adults88. 

However, the profound effects of testosterone on brain development in utero could play a 

role in the present findings.

Further studies will be required to elucidate the origin and meaning of the sex differences we 

observed. Nonetheless, these findings underline the importance of taking gender into 

account when studying the developmental neurobiology of human temperament and anxiety 

disorders. These data cannot resolve the question of whether these differences exist in 

infancy or whether they represent different trajectories and outcomes at adulthood; a 

definitive answer to this question will require technological advances to enable the 

functional neuroimaging of the amygdala in awake and active human infants.
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Figure 1. 
a. Experimental paradigm consisted of two phases During the initial 96-sec 

familiarization phase, 6 different identities were presented 16 times in pseudorandom order. 

During the second phase, alternating 24-sec blocks of Novel (Blocks N1-N4) and Familiar 

(Blocks F1-F4) faces were presented. Each Novel block consisted of 24 different identities 

completely unique to that block and never repeated; each familiar block consisted of 

repeated presentation of the same six identities that had been previously presented during the 

familiarization phase.

b. Amygdala response in HR vs LR (familiarization) Activation in the right amygdala 

(mean ± s.e.m) during the familiarization phase was greater in high-reactive (HR) compared 

to low-reactive (LR) subjects. HR subjects did not show a decrease in activation over the 

familiarization phase, unlike the LR reactive subjects who habituate.

c. Amygdala Response in HR vs LR by Sex (familiarization) HR males showed high right 

amygdala activation to faces that did not decrease during the familiarization phase. In 

contrast, females showed no difference in amygdala activation related to their infant 

phenotype. Amygdala activation was greater in HR males when compared with both LR 

males, and with females of either infant phenotype.

d. Amygdala Response in HR vs LR (Novel and familiar blocks) with Sexes Combined 
Right amygdala activation during the alternating novel & familiar blocks phase was 

significantly greater in HR subjects compared to LR subjects, and greater to the novel faces 

than to the familiar ones.

e. Amygdala Response in HR vs LR by Sex (Novel and familiar blocks) High-reactive 

males initially showed higher activation than the other three infant phenotype/gender 

subgroups but this difference decreases over time (at N1 HR males vs. LR males [t(125)= 

3.82, p=.0002], HR males vs. HR females [t(125)= = 2.94, p = .004], HR males vs. LR 

females [t(125)= = 3.22, p = .002]; whereas by N4 there are no differences between HR males 
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and the other infant phenotype/gender subgroups (infant phenotype × gender × time [F(3, 

375) = 3.06, p = .03]).
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Figure 2. 
Amygdala response in infant phenotype/sex subgroups to novel and familiar faces (mean ± 

s.e.m, * indicates significant pair-wise contrast p<.05) The mean reactivity to novel faces 

was greater than to the familiar faces for all sex/temperament subgroups. Activation to novel 

faces was greater in HR males (.36 ± .05), compared with both LR males (.19 ± .04) [t(125 ) 

= 2.77, p=.006], and with females of either infant phenotype [HR males (.36 ± .05) vs. HR 

females (.18 ± .05) [ t(125) = 2.58, p = .01]; HR males (.36 ± .05) vs. LR females (.11 ± .04) 

[t(125) = 3.78, p = .0002]. HR (.18 ± .05) and LR (.11 ± .04) females did not differ in 

activation to novel faces.
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Table 1

Demographics of the study population

High- Reactive Low Reactive Total

N 55 80 135

Gender

Male 30 42 72

Female 25 38 63

Age, y, mean (stderr) 18.19 ± 0.1 18.21 ± 0.08 18.20 ± 0.07

Handedness, mean (stderr) 62.4 ± 6.8 66.5 ± 5.4 64.9 ± 4.2
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