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Abstract The prediction of blood–brain barrier perme-

ation is vitally important for the optimization of drugs tar-

geting the central nervous system as well as for avoiding side

effects of peripheral drugs. Following a previously proposed

model on blood–brain barrier penetration, we calculated the

cross-sectional area perpendicular to the amphiphilic axis.

We obtained a high correlation between calculated and

experimental cross-sectional area (r = 0.898, n = 32).

Based on these results, we examined a correlation of the

calculated cross-sectional area with blood–brain barrier

penetration given by logBB values. We combined various

literature data sets to form a large-scale logBB dataset with

362 experimental logBB values. Quantitative models were

calculated using bootstrap validated multiple linear regres-

sion. Qualitative models were built by a bootstrapped ran-

dom forest algorithm. Both methods found similar

descriptors such as polar surface area, pKa, logP, charges

and number of positive ionisable groups to be predictive for

logBB. In contrast to our initial assumption, we were not

able to obtain models with the cross-sectional area chosen as

relevant parameter for both approaches. Comparing those

two different techniques, qualitative random forest models

are better suited for blood-brain barrier permeability

prediction, especially when reducing the number of

descriptors and using a large dataset. A random forest pre-

diction system (ntrees = 5) based on only four descriptors

yields a validated accuracy of 88%.
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Abbreviations

BBB Blood-brain barrier

CNS Central nervous system

CSA Cross-sectional area

LogBB Logarithmic ratio between concentration of a

compound in brain and blood

P-Gp P-glycoprotein transporter

TPSA Topological polar surface area

Introduction

The blood–brain barrier (BBB) is a complex system, tightly

regulating the transport from and to the central nervous

system (CNS) [1]. It separates the systemic bloodstream

from the CNS and is therefore important for drug diffusion

and transport between them [2]. Drugs targeting the CNS

need to be able to pass the BBB to reach their target [3]. In

contrast, low BBB permeability reduces the chance of

undesirable CNS-related side effects [4, 5]. Therefore an

early estimation of BBB permeability would be highly

valuable for drug design [6, 7]. The relevance of BBB

permeability of therapeutic drugs has been reported in the

context of numerous clinical dysfunctions, like dementia

[8] and other clinical disorders [9–11].

The most common numeric value describing perme-

ability across BBB is the logBB [12]. It is defined as
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ogarithmic ratio between the concentration of a compound

in brain and blood (Eq. 1).

log BB ¼ log
cBrain

cBlood

� �
ð1Þ

Unfortunately, experiments to measure logBB are time-

consuming, laborious and expensive in vitro [13–16] and

even more in vivo [17, 18]. So it is not surprising that the

number of published experimental values is limited.

Experimental methods to assess BBB permeability range

from artificial membranes and complex cell culture systems

to in vivo methods. The PAMPA assay uses artificial

membranes to observe passive (effective) membrane

permeability, quantified by Peff [19, 20]. Obviously, those

experiments are only able to observe permeability,

neglecting the special characteristics of the BBB.

Nevertheless, results from these studies support the

validity of lipid bilayer systems as strongly simplified

representations of the BBB. The main drawback of cell-free

methods is that they neglect active transporters acting at the

BBB and therefore incorrectly predict substrates to

transport systems [21]. Numerous active transport systems

and efflux transport systems play an important role at the

BBB [22, 23]. One of the most commonly reported transport

systems acting at the BBB is P-Glycoprotein (P-Gp) [24–

26]. In contrast, in vivo methods, like in situ brain perfusion

[17], are able to capture real BBB permeability as given by

PS (permeability surface product) or logPS values [27].

Due to these experimental difficulties, it is not surpris-

ing, that BBB is frequently addressed via computational

approaches. Computer-aided methods applied to this field

of interest include multiple linear regression [28–32],

bagged regression [33], partial least square analysis [34–

37], support vector machines [38–40] and artificial neural

networks [39, 41]. These methods are frequently combined

with descriptor selection algorithms based on genetic

algorithms to name only one [42, 43]. A comprehensive

overview of previous models for BBB prediction has been

published by Vastag and Keseru [44].

Depending on the size of the dataset, the number of

descriptors, and the mathematical approach for prediction

range from rough guidelines to quantitative predictions.

Complex methods like partial least square analysis and arti-

ficial neural networks suffer from the drawback of being hard

to interpret, whereas simple methods like multiple linear

regression often yield less accurate results or even only rough

guidelines [45]. Although different mathematical techniques

make it hard to compare the results directly, the performance

decreases strongly with larger datasets. High squared corre-

lation coefficients above 0.85 are reported frequently for

focused data sets with a size of approximately 50–90 com-

pounds [31]. Predictions based on larger compound collec-

tions with a size of over 200 compounds resulted mainly in

‘‘rules of thumb’’ for good BBB permeability [45]. Alto-

gether, these findings clearly show that there is still need for

further research on BBB permeability [46].

Summarizing recent work, there is broad agreement on

the importance of some molecular properties and descrip-

tors which have been found in numerous publications to

influence BBB permeability [45]:

• The descriptor most frequently reported with BBB

permeability is the polar surface area. The majority of

publications report correlation of logBB with the polar

surface [30, 47] or a property closely related to it [35].

The sum of oxygen and nitrogen atoms for example is

extremely cheap in computation-time, but has still

proven to be useful.

• There is consensus that BBB permeability is also highly

influenced by lipophilicity [48, 49]. One way to quantify

lipophilicity is logP, the logarithmic partition coefficient

between 1-octanol and water. However, the ability of

logP to represent lipophilicity come under discussion

recently [50], as octanol is a good hydrogen donor and

therefore probably not a typical apolar solvent, even more

when used as a calculated in silico descriptor [50, 51]. In

addition to that, logP is defined for the neutralized state of

a compound. LogP values for ionized (e.g. protonated)

compounds are basically not defined [52]. Liu et al. [47]

introduced ‘lipoaffinity’ as an easily-accessible descrip-

tor. It is calculated by adding the contributions to the

logP values of all but nitrogen and oxygen atoms.

• Molecular flexibility has also been reported to influence

BBB permeability. This is in agreement with the theory

we used in this study (see below), since rigid molecules

seem to fit less well to the membrane than more flexible

ones (given that both molecules have approximately the

same weight) [53]. A simple descriptor representing

molecular flexibility would be the number of rotatable

bonds, for example [29].

In this study we followed an approach based on physico-

chemical properties to address permeation across the BBB,

proposed by Fischer et al. [53]. According to this hypoth-

esis, the process of integrating a compound into a mem-

brane can be split into essential steps that can be added up

to form the process of membrane permeation:

• In the first step the compound needs to be desolvated from

the aqueous environment. The process of desolvation is

often addressed by molecular dynamics simulations [54].

Simultaneously, a cavity, appropriate for embedding the

compound within the membrane is created. The amount

of energy required to create this cavity is correlated to the

energy needed to insert a molecule into the membrane.

Fischer et al. [53] assume that the size of this cavity is

crucial for membrane permeation.
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• In the second step the compound is inserted into the

cavity. It is stabilized by electrostatic interactions with

the polar headgroup of lipids and hydrophobic interac-

tions with the core region of the lipid bilayer [55].

• Finally, the compound needs to resolvate behind the

lipid bilayer. This process is similar to the reversion of

the solvation process.

Figure 1 schematically illustrates how a molecule is

inserted into a membrane according to this hypothesis.

Based on this theory Gerebtzoff and Seelig [56] introduced

the cross-sectional area (CSA) of a molecule as a novel

descriptor to presumably represent BBB permeability.

Because of its well-founded physico-chemical background

it promised to achieve good predictability and interpret-

ability, although this descriptor neglects all thermodynamic

aspects of desolvation and resolvation. Descriptors based

on valid mechanistic models have proven to contribute to

the design and optimization of drug molecules [57]. Thus

we reproduced this promising molecular descriptor and

critically analysed its ability to predict BBB permeability.

For this purpose, we compiled a large data set with

experimental logBB values from numerous published

datasets, instead of using single focused sets.

Methods

Calculation of the CSA

We calculated the amphiphilic axis and CSA, as described

in detail in Gerebtzoff and Seelig [56]. Modifications were

introduced wherever the description was not clear or the

results did not match our expectations. The following

section describes and explains these modifications.

The amphiphilic axis is defined by the hydrophobic and

hydrophilic center of a molecule. The hydrophilic center

was calculated by averaging oxygen and nitrogen atom

positions weighted by their contribution to the topological

polar surface area (TPSA). Assuming that hydrogen bonds

mainly influence BBB permeability [32], we decided to

consider only nitrogen and oxygen as hydrophilic atoms

and neglect sulphur atoms. The weighting factors were

based on TPSA provided by MOE [58]. To emphasize the

increased polar character of charged atoms compared to

polarized atoms, we assigned a factor of 100 to charged

atoms according to Eq. 2, where wf is the weighting factor,

z is the charge and w0 is the weighting factor according to

the TPSA.

wf ¼ 100 � zþ w0 � 1� zð Þ ð2Þ

Halogen and carbon atoms were taken into account to

place the hydrophobic center. Hydrophobic atom positions

were weighted by their contribution to logP prediction by

MOE (logP(o/w)) [59]. This fragment-based calculated

logP suggests that halogen atoms have a large negative

contribution to logP, which results in a displaced

hydrophobic center for molecules containing halogen

atoms. Thus we removed the logarithm before weighting

to avoid negative contributions. Removal of the logarithm

resulted in a more intuitive placement of the hydrophobic

center (see Fig. 2.)

According to the mechanism outlined by Fischer et al.

[53], a molecule inserts into a membrane along the amphi-

philic axis. The CSA reflects the area occupied by the mol-

ecule when projected to the plane perpendicular to the

amphiphilic axis (see Figs. 1, 3). Projecting a molecule onto

an area reduces computational efforts from 3D into 2D space,

which dramatically increases the calculation speed for larger

molecules in contrast to the published procedure [56].

Calculation of amphiphilic axis and CSA were per-

formed with MOE [60] using its scripting language SVL

(complete script is available as supplementary informa-

tion). Partial charges were calculated using MMFF94x

forcefield. Protonation states were assigned according to

physiological pH of 7.4.

Experimental CSA values

To validate our CSA calculations, we compared our results

with experimental CSA values [56]. We obtained all

structures as SDF files from PubChem [61]. The reported

dataset [56] consists of 32 compounds with experimental

CSA values for pH 7.4 and 8. The experimental CSA at pH

7.4 was used, as it represents physiological pH. Carebastine

Fig. 1 The cross-sectional area (CSA) has been introduced as a

measure for the area occupied by a compound after insertion into a

lipid membrane. Local polarity of the membrane determines the

orientation of the ligand
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was excluded from the set since the two CSA values for pH

8 and 7.4 differed significantly. We also removed beta-

cyclodextrin from the dataset, since it is not a typical drug-

like molecule with a molecular weight over 1,000 Da (see

Lipinski’s rule-of-5 [62]). For each compounds the most

stable conformation according to its conformational energy

calculated by Omega (version 2.0) was used to calculate

the CSA.

Experimental logBB values

In contrast to the small number of experimental CSA values,

various studies containing experimental logBB values have

been published. To investigate the ability of CSA for logBB

prediction we combined all available published datasets and

generated a novel large logBB dataset. Our dataset consisted

of 195 compounds from Vilar et al. [63], 119 compounds

from Platts et al. [64], 38 compounds from Naranayan and

Gunturi [43], 94 compounds from Mente and Lombardo

[33], 147 compounds from Zhang et al. [40], 197 compounds

from Abraham et al. [65], 168 compounds from Garg and

Verma [66], 106 compounds from Guerra et al. [67], 95

compounds from Rose et al. [68], 36 compounds from

Kelder et al. [31], 165 compounds from Konovalov et al.

[69] and 36 compounds from Zerara et al. [70]. Many

compounds were reported multiple times with similar or

identical logBB values, especially drugs with CNS-related

effects such as antidepressants or neuroleptics. The average

of the logBB values was used for identical compounds

reported more than once. After removing duplicate struc-

tures, we ended up with 362 unique compounds with

experimental logBB values ranging from -2.2 to ?1.6. 199

logBB values were positive, 163 were negative or zero.

From this set we also wanted to exclude actively

transported compounds, since their mechanism of passing

the BBB is different to those passively entering CNS.

Therefore we searched for substrates of P-Gp, one of the

Fig. 2 Comparison of two

different strategies to calculate

the hydrophobic center

(red sphere) for compounds

with halogen atoms (like

perphenazine). On the left side,

the hydrophobic center is

calculated weighting atom

positions by their contribution

to logP prediction; on the

right side the calculation

is done with modifications

presented in this study

Fig. 3 Amitriptyline with hydrophilic center (yellow sphere), hydro-

phobic center (red sphere), amphiphilic axis (green line) and CSA

(green dotted area). This BBB-permeable compound illustrates the

role of the amphiphilic axis and the CSA
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major transport systems acting at the BBB, in three pre-

viously published datasets [71–73]. Combining results

from these sources we excluded 18 known substrates of

P-Gp (bunitrolol, cimetidine, digoxin, domperidone, eto-

poside, fexofenadine, flunitrazepam, levodopa, loperamide,

methotrexate, morphine, nevirapine, phenytoin, quinidine,

risperidone, triflupromazine, vincristine, yamatetan). In

addition to these 18 compounds, six compounds (chlor-

promazine, doxorubicin, nelfinavir, saquinavir, verapamil,

vinblastine) are reported ambiguously in the publications,

thus we did not exclude them.

To the best of our knowledge, this is to date the largest

set of quantitative logBB values, compiled from various

resources. This dataset promises to be a very elaborate and

refined selection of compounds. The complete dataset can

be found in the supplementary material.

Descriptor calculation

We calculated all descriptors provided by MOE 2010.10

[59] and all from ACD/Labs (version 10.0) [74], that could

be calculated for all compounds. A complete list of

descriptors used is included the supplementary informa-

tion. In addition, we calculated descriptors reported to be

useful in other publications addressing BBB permeability,

as far as we were able to reproduce them. Table 1 lists all

additional descriptors together with a reference to their

original publication. We also implemented size intensive

descriptors using molecular weight as a normalizing factor

[75]. Finally, our data set comprised over 880 descriptors,

ranging from simple atom counts to computationally

intensive quantum–mechanical properties.

Quantitative models: beam search and multiple linear

regression

A large number of potentially predictive descriptors

prompted us to systematically reduce dimensionality (the

number of descriptors) used to construct and validate the

models. A beam search algorithm (width = number of

descriptors = 79) was applied to preselect potentially

predictive descriptors [78]. For each combination a boot-

strapped multiple linear regression was calculated and the

squared correlation coefficient was returned as fitness cri-

terion. We limited the maximum number of generations

and subsequently the number of descriptors simultaneously

taken into account to 10 and selected the best multiple

linear regression model per generation.

Qualitative models: beam search and random forest

To generate qualitative models our dataset was split into

BBB permeable (logBB C 0.3, n = 126) and non-

permeable (logBB B -0.3, n = 76) compounds. The

compounds between the two limits (n = 142) were exclu-

ded from the process, as they do not show strong charac-

teristics of BBB permeable or non-permeable, respectively.

These limits were adapted from Abraham et al. [65], who

assume an experimental error of about 0.3 log units (logBB

values range from -2.2 to 1.6). We then performed a beam

search from 1 to 5 descriptors (width = number of

descriptors = 72). As qualitative model we constructed a

random forest model for each combination (ntree = 5,

depth = 5), validated by a bootstrapping procedure (sample

ratio = 1.0, number of validations = 100). Accuracy was

used as the main performance criteria. Again, we captured

the best models per generation.

All models were calculated using RapidMiner (version

5.1.1) and the Weka’s implementation of a random forest

algorithm. Correlation coefficients were calculated

according to Pearson.

Results and discussion

We calculated the CSA for 32 compounds and compared it

with experimental values taken from Gerebztoff and Seelig

[56]. Similar to the original work we also achieved a good

correlation (r = 0.898) to experimental CSA values.

Quantitative models to predict logBB

The main intention of the present study was to investigate a

correlation between CSA and BBB permeability, as sug-

gested by Gerebtzoff and Seelig [56]. We therefore con-

structed multiple linear regression models using a beam

search algorithm for feature selection (up to 10 descriptors).

Table 2 shows the squared correlation to increase with

respect to the number of descriptors. Simultaneously, the

validated squared correlation is constant or even decreases

for more than 5 descriptors. Overall, statistical parameters

improve only slightly from 5 to 10 descriptors, although the

number of descriptors used is doubled. Thus influence of

additional descriptors must be questioned. The validated

squared correlation increases constantly up to 5 descriptors.

So we consider 5 as the maximum number of descriptors to

avoid overfitting.

In agreement with previous studies, TPSA is highly

important for BBB permeability. The number of polar

atoms (n_pol) and a descriptor taken from Feher et al. [30]

(I3), followed by the number of positive ionisable groups

(n_PI) and a descriptor developed for this study (PDist)

were also found to influence BBB permeability, as well as

the number of hydrogen bond acceptors (a_acc).

In contrast to our expectations, CSA never appeared in

the most predictive models. This leads to the question why

J Comput Aided Mol Des (2011) 25:1095–1106 1099

123



CSA does not contribute to BBB prediction as much as

TPSA, for example. For BBB-permeable compounds

Gerebtzoff and Seelig [56] suggest that there is an upper

limit for CSA at 80 Å
´ 2. Figure 4a shows a scatterplot of

logBB versus calculated CSA values for our large dataset,

to further analyse this hypothesis. For 11 compounds, both

experimental and calculated values for CSA and logBB

were available. Overall, this plot does not show a clear

correlation between CSA and logBB. As suggested in the

original publication, we also investigated our dataset with

respect to logD (at pH 7.4) and CSA. In contrast to the

original publication Fig. 4b shows no significant separation

by logD and CSA. A limit for BBB permeable compounds

reflected by the CSA could not be determined.

Correlation between CSA and number of atoms

Searching for structural and chemical information covered

by CSA, we tested its correlation with all other descriptors.

Overall, various descriptors correlate remarkably well with

the CSA. Table 3 lists the correlation with prominent other

descriptors, including those from the models listed in

Table 2. The majority of those are based on properties,

easily obtainable from the structure. Remarkably, CSA is

highly correlated to numerous simple descriptors that are

easier to calculate, such as the number of atoms (see

Fig. 5). A good correlation (r = 0.959) between those two

properties suggest that CSA can be seen as derivative of the

number of atoms. A high correlation of approximately 0.9

Table 1 List of molecular

descriptors developed or

reproduced in addition to the

standard descriptors by ACD/

Labs 10.0 and MOE 2010.10

Descriptor Description Reference

AA Length of the amphiphilic axis [56]

CSA Cross-sectional area perpendicular to the amphiphilic axis [56]

LAA Length along the amphiphilic axis

NOOM Number of atoms above the hydrophilic center

VOOM Volume above the hydrophilic center

li Longest distance from an ionized atom to another atom

mpc Longest distance from the atom with the highest partial charge

n_COOH Number of carboxylic acid functions [76]

n_hal Number of halogen atoms

n_ion Number of ionized atoms

QMAXneg Highest negative partial charge [76]

QMAXpos Highest positive partial charge [76]

QSUMH Sum of all partial charges on hydrogen atoms

QSUMO Sum of all partial charges on oxygen atoms [76]

QSUMN Sum of all partial charges on nitrogen atoms

n_OpN Sum of nitrogens and oxygen atoms [35]

N_XpC Sum of halogens and carbon atoms

LA Lipoaffinity [47]

logP-NO logP—number of oxygen and nitrogen atoms [35]

I3 ?1 for amines, -1 for acids, otherwise 0 [30]

n_PI Number of positive ionizable groups

QMAXneg Highest negative partial charge [76]

QMAXpos Highest positive partial charge [76]

QSUMH Sum of all partial charges on hydrogen atoms

QSUMO Sum of all partial charges on oxygen atoms [76]

QMINN Lowest partial charge on nitrogen atoms

QSUMN Sum of all partial charges on nitrogen atoms

QMEANN Average partial charge in nitrogen atoms

Qamines Average partial charge on amines

LA Lipoaffinity [47]

n_pol Number of polar atoms [77]

n_amines Number of amines

n_pN Number of protonated nitrogen atoms at pH 7
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has also been found with the molecular weight. It was

reported previously that molecular weight contributes to

bioavailability in general [77]. Therefore we doubt that

CSA provides more information with respect to BBB

permeability than the number of atoms or molecular

weight.

Number of descriptors, dataset size and accuracy

Whenever we tried to construct multiple linear regression

models for logBB prediction on our large dataset, we failed

to achieve results comparable to those reported by others

using smaller data sets. To benchmark this relationship,

linear regression models were built based on a single

descriptor, but varying the composition of the training set.

As descriptor TPSA was chosen, since its impact on BBB

permeability has not only been demonstrated by the models

presented here but also by other researchers, for example

by Kelder et al. [31]. In their study a set of 45 compounds

was used to construct a regression model. Similarly, we

constructed subsets from our dataset consisting of 50–350

compounds and calculated the squared correlation coeffi-

cient for each model. Each subset size was tested 500 times

using different random seeds to cover different selection of

compounds. Figure 6 illustrates that small sets show a large

variability with respect to the squared correlation.

Although the number of possible subsets is much lower for

the large subsets, those are less likely to suffer from arbi-

trary correlations. This underlines the need for large data-

sets like the one we present here.

Table 2 Squared correlation coefficients (raw and bootstrap validated) of the best models with 1–10 descriptors constructed with beam search

using multiple linear regression and squared correlation as performance criterion

natts Descriptor names r2 rbootstrapping, 100
2

10 si_TotalFormalCharge, prot_n_pol, neutral_n_pol, a_don, PEOE_VSA_POL, PDist, I3, chi1,

logPow-logWeight, n_PI

0.585 0.508

9 si_TotalFormalCharge, prot_n_pol, neutral_n_pol, PEOE_VSA_PNEG, PDist, I3, apol,

logPow-logWeight, n_PI

0.577 0.534

8 si_TotalFormalCharge, prot_n_pol, neutral_n_pol, a_don, PDist, chi1, logPow-logWeight, n_PI 0.568 0.553

7 prot_n_pol, neutral_n_pol, a_don, PDist, chi1, logPow-logWeight, n_PI 0.558 0.537

6 prot_n_pol, neutral_n_pol, a_acc, PDist, prot_logPow-logWeight, neutral_n_PI 0.544 0.520

5 prot_n_pol, neutral_n_pol, a_acc, logPow-logWeight, n_PI 0.533 0.521

4 TPSA, I3, logPow-logWeight, n_PI 0.515 0.499

3 prot_n_pol, neutral_n_pol, logPow-logWeight 0.491 0.449

2 TPSA, logPow-logWeight 0.431 0.459

1 TPSA 0.354 0.221

Fig. 4 a Experimental logBB plotted against 11 experimental and

362 calculated CSA show no correlation. Blue dots represent

experimental CSA values, whereas grey dots are based on calculated

CSA values. b Colour coded scatterplot of CSA versus LogD (at

pH = 7.4), where green dots represent BBB permeable, red dots
represent non-BBB permeable and gray dots represent unclassified

compounds
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Qualitative models

Focusing on a small number of descriptors, we were not

able to obtain simple models with high performance using

quantitative techniques. Thus we also calculated qualitative

models to predict BBB permeability using a random forest.

Again, we could compare our results to various published

studies [28, 38, 56].

For the qualitative models we used the same dataset as

for the quantitative models, but converted logBB values

into three bins. Compounds with a logBB C 0.3 comprise

the set of BBB permeable compounds, whereas compounds

with a logBB B 0.3 are considered as not BBB permeable.

The remaining compounds are excluded from the qualita-

tive modelling. This left us with a set of 202 compounds

for the training set. From the initial set of 886 descriptors,

only 72 descriptors remained after preselection. Similar to

the quantitative approach we aimed to obtain simple and

interpretable models with a maximum of 4 concurrent

descriptors. The beam search returned one model without

misclassification (accuracy = 1.00) using four descriptors.

To evaluate the robustness of this model a bootstrap vali-

dation (n = 100) was applied. The complete results are

shown in Table 4.

The random forest prediction system based on four

descriptors also achieves a high validated accuracy. The

selected descriptors are similar to those obtained by mul-

tiple linear regressions and therefore highlight the impor-

tance of the following basic molecular properties:

• TPSA was selected in all models.

• QSUMN is the sum of charges on nitrogen atoms. This

classifies all compounds by their charge on nitrogen

atoms and subsequently also discriminates compounds

having no nitrogen atom at all.

Table 3 Various commonly-known descriptors correlate well with

the CSA

Descriptor Correlation coefficient

a_count 0.959

b_count 0.957

apol 0.955

a_heavy 0.929

Weight 0.897

WeinerPath 0.877

mpc 0.710

n_pol 0.645

TPSA 0.590

I3 0.317

n_PI 0.264

CSA may therefore be regarded as an expensive replacement for

much simpler descriptors. All descriptors are either standard MOE

descriptors or explained in Table 1

Fig. 5 CSA plotted against the number of atoms (a_count) reveals a

remarkably high correlation (r = 0.959)

Fig. 6 Different training sets with 50–350 examples all selected from

our dataset (n = 362) show that the size of the training set highly

influences the performance given by squared correlation, even when

constructed with exactly the same descriptor (TPSA) and the same

procedure

Table 4 Accuracies (raw and validated) of the best models and

prediction systems with up to 4 descriptors constructed using a beam

feature search in combination with random forest learners

natts Descriptor names Accuracytrees=5 Accuracybs,

n=100

4 TPSA, I3, QSUMN,

QSUMN/Weight

1.000 0.878

3 TPSA, QSUMN, QSUMN/

Weight

0.985 0.868

2 TPSA, QSUMN 0.970 0.864

1 TPSA 0.926 0.834
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• QSUMN/Weight represents a size-intensive descriptor

calculated from QSUMN and the molecular weight. For

large compounds the molecular weight is the dominat-

ing factor for this descriptor.

• I3: Is -1 for acid compounds, ?1 for basic compounds

and 0 for the remaining compounds.

To analyse the dependence of the four descriptors we

also calculated the intercorrelation matrix (Table 5).

Although QSUMN and QSUMN/Weight are highly corre-

lated, both seem be predictive for logBB. Especially

compounds with higher molecular weight differ consider-

ably for the two descriptors.

Table 6 compares the results from our calculations with

results from other publications. The results clearly show

that random forest prediction systems are well-suited to

classify BBB permeability. Altogether, we outperformed

many other models trained on datasets with similar sizes in

terms of validated accuracy, even using fewer molecular

properties.

In contrast to results from quantitative models, qualita-

tive classification models are able to predict BBB perme-

ability with high accuracy, especially when aiming for

simple models based on a small number of descriptors. To

quantify BBB permeability a more sophisticated and

complex model is needed. However, we have shown that

the number of descriptors that can be used is limited when

looking at validated performances. Using a high number of

descriptors for small datasets bears the risk of overfitting

and arbitrary correlations.

In contrast, we focused on a simple prediction system

that links BBB permeability to easily understandable

molecular properties. Focusing on a small number of

descriptors it might be easier to construct a binary classifier

than to quantitatively predict BBB permeability.

Strengths and limitations

In the present study there are several novel findings:

• In addition to well-known descriptors, we added a

significant number of descriptors that have never been

evaluated and validated in the context of BBB predic-

tion, for example size intensive descriptors (explained

in [75]), and other novel descriptors listed in Table 1.

Furthermore, we addressed the CSA which has been

proposed as being predictive for BBB permeability.

The qualitative models as shown in Table 4 include, in

addition to TPSA, two of these novel descriptors.

• All prediction systems are limited by the experimental

error of the data they are based on. Therefore, our set

consists of compounds with experimental logBB values

only, compiled from various publications.

• We developed an unparalleled compact and highly-

predictive qualitative model validated by bootstrapping,

that might act as general guideline for estimating BBB

permeability.

Conclusion

In this work, we applied qualitative and quantitative in

silico techniques to predict BBB permeability. For this

purpose we created a reasonably large dataset (n = 362) of

experimental logBB values. For each compound of the

training set we calculated a broad set of descriptors ranging

from simple atom count descriptors to computational more

expensive descriptors like the CSA perdendicular to the

amphiphilic axis. For this special descriptor were also able

to validate calculated CSA with a set of experimentally

measured values (n = 32).

The best quantitative prediction system based on mul-

tiple linear regression without overfitting yielded a boot-

strapped squared correlation coefficient of 0.521.

Qualitative models based on a random forest performed

remarkably better. The best prediction system based on

only four descriptors achieved a bootstrap validated accu-

racy of 88% (unvalidated 100%). Remarkably, the CSA

was not chosen by the feature selection algorithm used to

select the most predictive descriptors. In contrast, a

Table 5 Intercorrelation matrix for the four descriptors used in the

best random forest prediction model

TPSA I3 QSUMN QSUMN/Weight

TPSA 1.000

I3 0.054 1.000

QSUMN -0.617 -0.492 1.000

QSUMN/Weight -0.374 -0.536 0.790 1.000

Table 6 Results of

classification systems for BBB

permeability taken from the

literature

SVM support vector machine,

DT decision tree, RF random

forest, CV cross-validation, BS
bootstrapping

Method Validation Number of descriptors Dataset size Overall accuracy Reference

SVM 10-fold CV \100 351 83.0 [28]

DT – 2 43 86.0 [56]

SVM 10-fold CV 8 351 80.0 [28]

SVM 5-fold CV 5 415 79.1 [38]

RF 100 BS 4 202 88.2 This work
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combination of simple and well-known descriptors was

found to be most useful to predict logBB.

Finally, we also showed that large and carefully com-

prised datasets, like the one presented here, reduce the risk

of arbitrary correlations and result in more reproducible

and robust models.

Support information

The SVL script to calculate and visualize the CSA per-

pendicular to the amphiphilic axis is provided as well as a

spreadsheet file containing the whole set of compounds

together with their corresponding logBB as well as a

complete list of the descriptors calculated by ACD/Labs

10.0 and MOE 2010.10 for free download.
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