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Abstract
An analytically feasible, deterministic model for the spread of drug resistance among human
malaria parasites, which incorporates all characteristics of the complex malaria-transmission cycle
was introduced by Schneider and Kim (Theor. Popul Biol, 2010). The model accounts for the fact
that only a fraction of infected hosts receive drug treatment and that hosts can be co-infected by
differently many parasites. Furthermore, the model also incorporates host heterogeneity.
Antimalarial-drug resistance is assumed to be caused by a single locus with two alleles—a
sensitive one and a resistance one. The most important result for this model is that an analytical
solution for the frequencies of a linked neutral biallelic locus exists. However, the exact solution
does not admit an explicit form, and cannot straightforwardly be interpreted in terms of the model
parameters. Here, we establish simple approximations for the equilibrium frequency at the neutral
locus. Under the assumption that the resistant allele is initially rare—the biologically most
relevant assumption in this context—and that recombination is weak, the approximations become
similar to the approximations in the standard hitchhiking model. However, there are crucial
differences. In particular, because of the high degree of selfing among malaria parasites in their
sexual phase, a genome-wide reduction of relative heterozygosity occurs if selection is sufficiently
strong. It turns out that the approximations are accurate even if the recombination rates are not
small and the resistant allele is initially not very rare. The main advantage of our approximations
is that they are easy to interpret in terms of model parameters. Moreover, they allow to make
predictions of the size of the valley of reduced heterozygosity around the selected locus for given
model parameters. Reversely, for a given reduction of heterozygosity, it is possible to identify the
corresponding parameters. Moreover, we will show that incorporating host heterogeneity leads to
an increased hitchhiking effect.
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1 Introduction
Human malaria is an infectious disease caused by parasites belonging to the genus
Plasmodium, which is endemic in most tropical and subtropical regions in the world.
Infections with Plasmodium falciparium, the most virulent form of human malaria, result
worldwide in one to 3 million deaths per year (cf. WHO 2000; Korenromp et al. 2005).
Malaria control is highly dependent on drug treatments that kill parasites in infected hosts.
However, attempts to control malaria have been thwarted by rapid evolution of antimalarial-
drug resistance, a fact that has been described to be a public health disaster (cf. Marsh 1998).

The limited repertoire of safe, effective, and affordable antimalarial drugs has made research
on the emergence and dispersion of resistance a global health priority. Mathematical models
that can use input from genetic data to investigate the dynamics of mutations associated with
drug resistance are urgently needed for designing drug-deployment policies that can increase
the lifespan of the available drugs. This requires a detailed understanding of population
genetic processes that lead to the emergence and dispersion of drug resistance.
Unfortunately, the highly complex nature of the malaria-transmission cycle as well as
complex demographic and environmental factors aggravate the efforts to elaborate
theoretical models.

Malaria parasites undergo a complex transmission cycle with sexual phases in the mosquito
vector and asexual phases in the infected host (cf. e.g. Daily 2006; Prugnolle et al. 2009). A
human host is inoculated with sporozoites by the bite of an infected Anopheles mosquito
during its blood meal. In the human host the sporozoites migrate first to the liver where they
differentiate into hepatic merozoites. These are released into the blood stream where some
of the hepatic merozoites form gametocytes. The haploid gametocytes are extracted by a
mosquito during its blood meal and immediately reproduce sexually in the mosquito’s gut.
Consequently, they undergo recombination. Completing the transmission cycle, this step is
followed by the production of haploid sporozoites in the mosquitos’s salivary glands from
which they can be inoculated into a human host.

Another source of complication is that many environmental and clinical factors differ
significantly across the worldwide distribution of this parasite. The transmission rate and
hence the number of secondary infections varies from very low rates in parts of South
America, over intermediate rates in Southeast Asia, to high rates in Africa. On the other
hand the level of host-acquired immunity is much higher (which means a high number of
asymptomatic infections) in most of the affected areas in Africa than in other parts of the
world. Such variation in host-acquired immunity affects drug use.

Among others, two important variables that summarize the demographic and clinical setting
of the particular geographic area are the (average) number of parasites (m) co-infecting a
given host (the average multiplicity of infection), which is determined by transmission
intensity, and the proportion (α) of infected hosts that are drug treated. This parameter
depends mainly on how many hosts acquired immunity.

Several studies built population genetic models that demonstrated profound effects of m and
α on the rate of drug-resistance evolution (Hastings and Mackinnon 1998; Mackinnon and
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Hastings 1998; Hastings 2003,2006). However, it is still unclear which mechanisms are
important to the spread of resistance, i.e., intra-host dynamics, drug half life, multiple drug
treatment, migration, multiple infections, recombination, mutation etc.

Over the last 2 decades substantial advances regarding the genetic basis of antimalarial-drug
resistance have been made. It is known that specific point mutations in the dhfr and dhps
regions underlie resistance to pyrimethamine and sulfadoxine (cf. Cowman et al. 1988;
Triglia and Cowman 1994; Brooks et al. 1994), that point mutations in mitrochandrial DNA
underlie resistance to atovaquone (cf. Schwobel et al. 2003), and that mutations in the pfcrt
gene are causing resistance against Chloroquine (CQ).

The spread of mutations causing drug resistance leads to a valley of reduced genetic
variation at linked neutral regions. This removal of pre-existing variation occurs because
recombination cannot effectively break the initial association with the neutral background in
which the mutant first occurred, a process known as genetic hitchhiking or a selective sweep
(Maynard Smith and Haigh 1974; Stephan et al. 1992; Barton 2000). For instance, Nair et al.
(2003) observed a severe reduction of variation at microsatellite loci spanning over a 100 kb
region surrounding the dhfr gene in a Southeast Asian population of P. falciparum. The
extent of this pattern depends on how fast the favored allele increases to high frequency
while meiotic recombination is constantly eroding the association between the favored allele
and the surrounding chromosome segment (Kim and Stephan 2002). Selective sweeps have
been initially studied for randomly mating populations of constant size, and homogenous
constant selection pressures (e.g., Maynard Smith and Haigh 1974), to which we refer as the
‘standard model’, or standard ‘hitchhiking’.

In malaria biology, detection of selective sweeps mainly contributed to confirming the
location of drug resistant mutations and elucidating their mutational origins (Wootton et al.
2002; Nash et al. 2005; Mita et al. 2007; Nair et al. 2007; McCollum et al. 2008), while
fewer studies attempted to relate the span of selective sweeps with the strength of drug
selection (Nair et al. 2003). Recently, Schneider and Kim (2010) introduced an analytical
feasible model for the spread of antimalarial-drug resistance, which allows to study genetic
hitchhiking. The model covers the important characteristics of the transmission cycle,
incorporates host heterogeneity, i.e., different classes of treated and untreated hosts, and
accounts for the fact that hosts can be infected by differently many parasites. Moreover, the
model allows simple conditions for the spread of resistance and its speed in terms of the
fitness parameters and α. Hence, it is useful to find ‘optimal’ treatment strategies to prevent
or slow down the spread of resistance (for more discussion see Schneider and Kim 2010).

Studies based on known recombination rates and the result of the standard model of
selective sweeps concluded that the observed patterns of selective sweeps are compatible
with the predictions (Nair et al. 2003). However, Schneider and Kim (2010) discuss in detail
why the application of the standard selective-sweep model to a malaria-parasite population
is highly problematic. In particular, the high degree of selfing among malaria parasites will
lead to a genome-wide reduction of heterozygosity if selection is sufficiently strong (cf. also
Hedrick 1980).

In the absence of reliable public-health records, a retrospective analysis of the mechanisms
and parameters underlying the spread of antimalarial drug resistance may be achieved
indirectly through the patterns of selective sweeps. However, the analytical solution for the
valley of reduced heterozygosity in the model of Schneider and Kim (2010) is not explicit,
which limits their applicability. Moreover, it is not at all straightforward to interpret these
results based on the model parameters.
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In this article we derive accurate approximations to the exact, analytical solutions of
Schneider and Kim (2010). The approximations under the assumption that the resistant allele
is initially rare and that recombination is weak are similar to but different from the usual
approximation for standard hitchhiking. Unlike in standard hitchhiking, our approximations
are accurate even if the recombination rates are large and the resistant allele is initially not
very rare. Moreover, using the approximations, we will show that incorporating host
heterogeneity will result in an increased hitchhiking effect compared to our basic model,
with corresponding selection parameters, which accounts just for one class of treated and
one class of untreated hosts. The simple form of the approximations will allow us to easily
interpret the effect of genetic hitchhiking in terms of the model parameters. Such
approximations are extremely useful to achieve applicability of the results of Schneider and
Kim (2010) to real data. Moreover, we show that the approximate solutions can be easily
applied to identify the range of parameters that give rise to given levels of reduced
heterozygosity in a given range of recombination distances. Finally, we discuss the
differences compared with standard hitchhiking and give an outlook how our results can be
applied to real data.

2 The model
We consider two biallelic loci. The first locus is subject to selection with a sensitive allele
AS and a resistant allele AR segregating. The second locus is selectively neutral with the
alleles N1 and N2 segregating. We will use the notation and parametrization summarized in
Table 1.

Let p denote the frequency of the resistant allele AR. We have p = p3 + p4. Furthermore, we
denote the frequency of the neutral allele N1 among the sensitive and resistant haplotypes by

R and Q, respectively. We therefore have  and .

Moreover, we denote the recombination rate between the two loci by r, and the vector of
haplotype frequencies by p = (p1, … , p4). We assume that each host is infected randomly
and independently by exactly m haploids (parasite strains). (We assume m to be a fixed
parameter until Sect. 4.2, where we assume that m follows a fixed frequency-distribution).

Hosts acquire parasite strains according to their frequencies in the mosquito phase. Hence,
the configuration of infections in hosts is multinomially distributed with parameters m and
p1, … , p4. We assume that all haploids in a newly infected host have equal frequencies.
Hence, the relative frequency of a haploid drawn from the parasite population among

mosquitos is . Let us denote a multi-index by m = (m1, … , m4), and the sum over its

components by . The probability that a host is infected by mi copies of
haplotype i (i = 1, … , n, |m| = m) is given by

(1)

where  denotes the respective multinomial coefficient and, as usual,

.
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After a host is infected the parasites reproduce clonally in the host. An infected host either
receives drug treatment or is untreated. We assume that a fixed proportion α of infected
hosts in the population is treated, whereas the remaining hosts are untreated. Thus, the
probability for a host to be treated is simply α. The rate of reproduction of the haplotypes is
different in treated and untreated hosts. The absolute fitness of a parasite strain is the
expected number of its descendants in the host at the time of the mosquito visit. The
absolute frequency (fitness) of haplotype i in an untreated host before a mosquito takes its

blood meal is denoted by , whereas the absolute frequency of haplotype i in a treated

host before a mosquito takes its blood meal is denoted by . [In the following,
wherever it is appropriate, we use the superscript to (.) to resemble the superscripts (U) and
(T).] Some of these haploids form gametocytes in male or female expressions. The
frequencies of those are assumed to be proportional to the number of respective haplotypes.
Furthermore, we impose that male and female gametocytes occur at the same frequencies.
We assume that the number of different gametocytes taken by a mosquito during its blood
meal from an infected host is proportional to its frequency in the host. Let γ denote the
proportional constant, which is assumed to be the same for each mosquito. Hence, if the

absolute frequencies of parasites in an infected host are , the absolute

frequencies of parasites absorbed during the blood meal are . Note that
this takes drug efficiency into account, because a mosquito will absorb a smaller number of
parasites from a host in which drugs efficiently eliminated parasites.

In the mosquitos’ guts recombination occurs immediately after the blood meal during the
phase in which meiosis occurs. In the gut of a mosquito, which has taken its blood meal
from a host initially infected with mi haplotypes i (i = 1, … , 4), the probability that a male
k-gametocyte fertilizes a female l-gametocyte is

where

is the frequency of parasite haploids in the mosquito’s gut. The above probability is the
relative frequency of a male k-gametocyte times that of a female l-gametocyte. Therefore,
the absolute frequency of pairings of a male k-gametocyte and a female l-gametocyte is, the
probability of such a fertilization times the absolute numbers of parasites in the gut, i.e.,

(2)

The probability that a fertilization of a male k-gametocyte to a female l-gametocyte produces
a haplotype i is denoted by R(kl → i). Therefore, the absolute frequencies of haplotype i in
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the population of mosquitos that took their blood meal from treated and untreated hosts are
respectively

where the sum runs over all multi-indices  with |m| = m. Therefore, the relative
frequencies of haplotypes in the mosquito population become

(3a)

where

(3b)

For what follows, let us define the average fitness of the resistant allele among treated and
untreated hosts by

(4a)

and that of the sensitive by

(4b)

If p(t) denotes the frequency of the resistant allele at time t, it changes according to

, i.e., according to the standard haploid one-locus selection model
(cf. Schneider and Kim 2010). Thus, the resistant allele will sweep through the population if
and only if λ > μ, otherwise it will get lost (or remain constant in frequency). Hence, in the
following we will always assume λ > μ without further mentioning. Note that the spread of
the resistant allele is independent from m. Moreover, it is obvious to calculate the time until
a given level of resistance is reached (cf. Result 2 in Schneider and Kim 2010). Because of
the relatively simple form of the dynamics of the resistant allele it is possible to derive
simple conditions for the spread of resistance and its speed. Example 1 in Schneider and
Kim (2010) directly links the fitness parameters to the spread of fixation. Furthermore,
assuming that the fitnesses in treated hosts are functions of the administered drug
concentration, Example 2 in Schneider and Kim (2010) illustrates the impact of the drug
concentration and α on the spread of resistance and its speed. Assuming that the fitness of
resistant parasites decays slower than that of the sensitive ones as a function of the drug
concentration they found that resistance spreads most quickly for intermediate drug
concentrations and large α.

Anyhow, the focus of this article is genetic hitchhiking. The following relations were
derived in Schneider and Kim (2010).
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(5a)

where

(5b)

(5c)

and

(5d)

It was further shown in Schneider and Kim (2010) that

(6a)

and

(6b)

From the relations (5) and (6) the equilibrium frequency of the neutral allele N1 was
calculated to be

(7)

where p0, Q0, and R0 are the respective initial frequencies,

and

(8)
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It was mentioned by Schneider and Kim (2010) that, for practical purposes, it suffices to
sum (7) until the time of quasi-fixation, for which they provided an explicit formula.
However, it is not at all obvious how Q ̂(m) is influenced by the various model parameters. In
particular, when studying genetic hitchhiking using (7) it seems infeasible to predict the
width of the valley of reduced heterozygosity in terms of the recombinational distance.
Hence, simple but accurate approximations for (7) that permit a simple interpretation in
terms of the model parameters are highly desirable.

3 Approximations
We shall now calculate simple approximations for (7). First, we treat the special case m = 2,
and later deduce the general case from it.

3.1 Equilibrium frequencies at the neutral locus for m = 2
The equilibrium frequency of the neutral allele N1 is given by

where

(9)

is independent of the trajectory pt of the resistant allele and in particular of p0, and

(10)

In the following we will derive upper and lower bounds as well as approximations for Q ̂
which exhibit a much simpler form. This permits us to explore the effects of the various
parameters on Q ̂.

First, note that Λl is monotone decreasing in l. To see this note that Λl < Λl−1 is equivalent to

This can be simplified to

By dividing through λl−1 μl−1 this simplifies to

Moreover, note that
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(11)

Hence, by using

(12)

we obtain

Furthermore, because λ > μ we have

(13)

and consequently Λ̃ ≥ Λ ̅.

Let us define

(14)

Note that by relabeling the alleles, we can assume without loss of generality that R0 > Q0.
Hence, (14) is monotone increasing in a. Thus, we can formulate our first result.

Result 1—Let Q(a) be defined as in (14). Then, Q(a) is monotone increasing in a.
Moreover, let Λ ̲, Λ ̅ and Λ̃ be defined as in (11), (12), and (13), respectively. Then

are upper bounds for Q ̂, and

is a lower bound for Q̂.

Although the expressions of this bounds are simpler than that of Q ̂ they are still not very
explicit. Hence, we shall derive upper and lower bounds for Q ̅ and Q ̲, or more generally for
Q(a).

First, note that ϑ < λ. This is because it is equivalent to
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which obviously holds because

Essentially the same calculation shows ϑ < μ. Therefore, we have  and . This

combined with (11) and (13) implies ,since . Hence, in the following

we will always assume .

Notice that Q ̃ has exactly the same form as in the standard haploid hitchhiking model

derived by Maynard Smith and Haigh (1974; eq. 8), with r replaced by  and p0 replaced

by . Thus, we can interpret this as studying standard hitchhiking with an

‘effective’ recombination rate , which is smaller than r, and an ‘effective’ initial

frequency of , which is smaller than the actual initial frequency. The adjusted
recombination rate leads to a more severe hitchhiking effect, whereas the adjusted initial
frequency leads to a less pronounced hitchhiking effect. Combination of this factors lead to a
more severe hitchhiking effect (cf. Schneider and Kim 2010).

Next, we need two definitions. For a ∈ ℝ and k ∈ ℕ+ the upper Pochhammer symbol is
defined by

The hypergeometric function is defined by

where r, s ∈ ℕ, z, a1, …, ar ∈ ℝ, b1, … , .

With the above definition we are already able to formulate our first theorem.
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Theorem 1—Assume  for l ∈ ℕ, and let csc  denote the cosecant of x. If

, the function

(15)

is a lower bound for Q(a). If ,

(16)

is an upper bound for Q(a).

Proof: Consider the function

(17)

for x > −1 with a ∈ (0, 1), and let

(18)

By calculating the derivative, which is given by

and obviously always negative, we recognize that g is monotone decreasing as a function in
x. Thus, we obtain the estimate

(19)
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Since, we have

it follows from (19) that

(20)

is a lower bound for Q(a), and that

(21)

is an upper bound for Q(a).

We will now manipulate the above equations. First, rewrite g as

(22)

where

(23)

Assume first that cexη < 1. Hence, g is a geometric series, can be rewritten as

(24)

and converges absolutely for all x satisfying cexη < 1. If cexη > 1, we have  and can
expand (22) into the power series

which converges absolutely for all x satisfying cexη > 1.

Let us further define . The assumption  guarantees x0 > 0. The absolute
convergence of the above series enables us to integrate by summands, i.e., for x < x0 we
have
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(25a)

(25b)

(25c)

Note that we have used the fact that  for all k ∈ ℕ in (25b), which is guaranteed by

the assumption  for all k ∈ ℕ.

Similarly, for x > x0 we have

(26a)

(26b)

(26c)

(26d)

It should be mentioned that we did not need the assumption  for all k ∈ ℕ in (26).
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Next, assume  i.e., x0 > 0. Hence, we have

Since , the Leibnitz criterium implies that

(27)

converges, i.e., −∞ < G1(x0) < ∞. Furthermore, by a similar argument we obtain −∞ <
G2(x0) < ∞. We also see that

Hence, for x > x0 this implies that the series representation (26d) of G2(x) is absolute
convergent. Therefore, we obtain

(28)

and

(29)

Similarly, we see that G1(x) is absolute convergent for x0 < x. Therefore, we have

(30)

We obtain
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(31)

If , we have x0 > − 1. The above calculations are still valid and yield

(32)

Let us now simplify (31) and (32). Note that

By using the the well known series

we arrive at

Because  for k ∈ ℕ we have . Because, we assume a ∈ [0, 1] and λ > μ we

also have  for k ∈ ℤ−. Hence, we have . Therefore, we obtain
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and

Combining the above with (20) and (21) and the definitions of ξ, η, and c immediately yields
(15) and (16).

The assumptions , or  hold whenever one aims to study the hitchhiking effect
of a mutation that is initially rare. If the initial frequency of the mutation is not rare because
one is interesting in studying mutations from standing genetic variation that become
beneficial, for instance, because of a change in the environment, i.e., if one wants to study
soft selective sweeps (cf. Hermisson and Pennings 2005), Theorem 1 is not applicable. The

study of soft selective sweeps is relevant and hence we shall also treat the cases  and

.

Remark 1: The proof of Theorem 1 reveals that we have to replace (15) by

(33)

if . Moreover, we have to replace (16) by

(34)

if . Notably, (33) and (34) also hold if  for k ∈ ℕ. Furthermore, (33) and
(34) are the continuations of (15) and (16) as functions in p0.

Theorem 1 assumes  for all k ∈ ℕ. If this assumption is violated we have to make
the following adjustments.

Remark 2: Assume l ∈ ℕ. If ,
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(35)

is a lower bound for . If ,

(36)

is an upper bound for . Moreover, (35) and (36) are the continuations of (15) and (16)

in the limit . If , (35) has to be replaced by (33). If , (36) has to be
replaced by (34).

The proof can be found in Appendix A.1.

Let

(37)

and analogously

(38)

We immediately obtain the following corollary.

Corollary 1—We have Ψ̃ ≥ Ψ̅ ≥ Q ̅ ≥ Q ̂ ≥ ψ ̲, hence Ψ̃ and Ψ̅ are upper bounds for Q ̂, and ψ ̲
is a lower bound for Q̂. Moreover, we have Ψ̃ ≥ Q ̃ ≥ ψ̃, Ψ̅ ≥ Q ̅ ≥ ψ ̅, and Ψ̲ ≥ Q ̲ ≥ ψ ̲.

Figure 1 illustrates Q ̂ and its bounds Q ̲ and Q ̅, as well as their bounds Ψ̅, Ψ̲, ψ ̅, and ψ ̲ for
various parameters. It becomes obvious that the upper bound Q ̅ is very close to Q ̂, whereas
the lower bound Q ̲ greatly underestimates Q ̂.

It turns out that Q ̃ and Q ̅ are almost identical unless p0 is large. The same holds for for Ψ̃
and Ψ̅. This is illustrated in Fig. 2.

Although, Ψ (a) and ψ(a) have closed expressions, these expressions involve the
hypergeometric function. In the following we shall derive approximations for Ψ(a) and ψ(a)
that make no use of the hypergeometric function. Our first step is the following theorem.
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Theorem 2—For  let

(39)

and, for  let

(40)

If , ϕ(a) ≈ ψ(a) and if , Φ(a) ≈ Ψ (a).

The proof can be found in Appendix A.1.

If , or  we have to modify the definitions of ϕ(a), or Φ(a), respectively.

Remark 3: For  let

(41)

and, for  let

(42)

If , ϕ(a) ≈ ψ(a) and if , Φ(a) ≈ Ψ(a). Moreover, (41) and (42) are the
continuations of (39) and (40) regarded as functions in p0.

The proof can be found in Appendix A.1.
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From Theorem 2, Remark 3, and the definitions of Λ̲, Λ ̅, and Λ̃ we immediately obtain the
following corollary.

Corollary 2—Let Ψ, ψ, Φ and ϕ be defined as in Theorems 1 and 2, and Remarks 1–3.
Furthermore, let

(43)

and

(44)

Then Φ̃ ≈ Ψ̃, Φ̅ ≈ Ψ̅, Φ̲ ≈ Ψ̲, ϕ ̃ ≈ ψ̃, ϕ̅ ≈ ψ ̅, and ϕ̲ ≈ ψ ̲.

The approximations provided in Corollary 2 are very accurate unless p0 becomes too large.
This is illustrated in Fig. 3.

Note that we derived the upper and lower bounds for Q(a) by using the estimate (19).
However, we can use (19) for the standard estimate

(45)

Hence, the estimates summarized in the next corollary follow immediately.

Corollary 3—Estimates for Q̂ are given by

(46)

and

(47)

The approximations of Corollary 3 are illustrated in Fig. 4. It is obvious that the above
approximations are very accurate for various parameters.

Although we already arrived at relatively simple approximations for Q ̂, they are still difficult
to interpret in terms of the involved parameters. In the following we will concentrate on the
case in which the initial frequency p0 of the resistant allele is small. This is the most relevant
case for studying genetic hitchhiking.

3.2 Approximations for rare mutations
So far in our derivations we did not assume that the initial frequency p0 of the resistant allele
is small. However, since this is the biologically most relevant situations we shall derive
further approximations for the equilibrium frequencies of the neutral alleles under the
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assumption that the mutation is initially rare, i.e., p0 ≈ 0 and 1 − p0 ≈ 1. Since we have Λ̃ ≈
Λ ̅ under this assumption we focus on estimates based on Λ̃.

For p0 ≈ 0 we obtain the following theorem.

Theorem 3—Let

(48)

For p0 ≈ 0 we have Q°(a) ≈ A(a).

The proof can be found in Appendix A.1.

In accordance to out previous notation we set

(49)

These approximations are illustrated in Fig. 5.

Now, we shall additionally assume that a ≈ 1.

Theorem 4—Let a(x) = 1 − rx with  and

(50)

For p0 ≈ 0 and rx ≈ 0 we have Q°(a(x)) ≈ B(x).

Proof: We have log a(x) ≈ −rx. Hence,

If rx ≈ 0, we can neglect  and obtain

Moreover, because p0 ≈ 0 we have . Thus,
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Note that we have  and . Let us define

(51)

We obtain the following corollary.

Corollary 4—We have

(52)

For p0 ≈ 0 and , we have Q̃° ≈ B̃.

Figure 5 illustrates the approximations A̅, Ã, B̅, B̃. It is easily seen that the approximations
are very accurate unless p0 is too large (p0 ≳ 0.1). Anyway, the approximations are still
acceptably accurate for p0 = 0.1.

By expanding  into a Taylor series around x = 0, and by setting  we
obtain

(53)

Hence, for r ≈ 0 we can further approximate this by neglecting terms of order O(r2) or O(r3)
and higher, and obtain

(54)

and

(55)

Figure 6 shows Q ̂ along with its approximations C̃ and D ̃. It is obvious that these
approximations are only accurate for very small r. Not surprisingly D ̃ is a much better
approximation than the linear approximation C̃.

3.3 The hitchhiking effect for general m
Since the sensitive allele goes extinct in the population, the equilibrium frequency of the
neutral allele N1 is given by (7), i.e., by
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The above formula has the same structure as in the case m = 2. If we set m = 1 there is no
recombination and hence the initial proportions of the neutral allele among genotypes with

the resistant allele remain constant over time. Hence, we have .

We shall now derive approximations for Q ̂(m). As easily seen from (7), we can apply our

approximations from the case m = 2 if we make the approximation  and ϑpτ,m
≈ b. We first approximate ϑpτ,m by a constant. From (5b) we obtain

Let

(56)

and

(57)

Hence, we have

where the last equality follows from the binomial formula. Similarly, we obtain ϑpτ,m ≥
ϑ̲(m).

Therefore, we obtain

Using the same approximation as in the case m = 2 yields
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Hence, by replacing ϑ and a by ϑ̅(m) and Λ̅(m), or ϑ̲(m) and Λ̲(m), respectively, we obtain the
upper and lower bounds

and

respectively.

It turns out that the upper and lower bounds are very inaccurate estimates for Q ̂(m).
However, it is possible to find relative accurate approximations for Q ̂(m), at least if p0 is
small, which is the most important case for our current purpose. If p0 ≈ 0, we have

, so that we obtain

(58)

From (5c) we see that ϑ ̃(m) = θ0,m Moreover, define

(59)

Hence, by approximating ϑpτ,m by ϑ ̃(m) and Λm,l by Λ̃(m) we obtain

(60)

This approximation turns out to be sufficiently accurate unless p0 is too large.

Clearly, Q ̃(m) can be further approximated as in the case m = 2. However, note that for m > 2
the assumption that p0 is small is always implicitly made because otherwise the
approximation (58) for ϑpτ,m will be inaccurate. Hence, only those approximations that were
derived under the assumption of p0 ≈ 0 are meaningful if m > 2, i.e., those of Result 4 and
Corollary 4. We can therefore summarize:

Result 2—Let m ≥ 2 and
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(61)

Then we have Q̂(m) ≈ B̃(m).

Note, that the approximations become worse for large m. However, as noted in Schneider
and Kim (2010), the differences in Q ̂(m) for different values of m become small for large m.
Since, in reality m should be bounded by a maximum possible value it should be sufficient
to assume m < 10. For these values Result 2 is still accurate. This is illustrated in Fig. 7.
Furthermore, note that Result 2 becomes delicate for large m, because it is based on the
approximation (58), which becomes very inaccurate as m → ∞.

4 The general model
Schneider and Kim (2010) also presented two generalizations of their model. First, they
argued that the differentiation into treated and untreated hosts is oversimplified, and that
host heterogeneity should be taken into account. Host heterogeneity can reflect for instance
different levels of drug concentration, drug decay, different levels of host-acquired
immunity, different immune responses etc. Second, they argued that it is oversimplified to
assume that each host is infected by the same number of parasites, i.e., that m is a fixed
parameter, and showed how the model can be generalized to the case in which m follows a
given frequency distribution.

We shall briefly summarize the two generalizations, and show how our results are
generalized.

4.1 Host heterogeneity
Assume again a fixed proportion α of hosts is treated. We divide the treated and untreated
host into various different discrete “treated classes” and “untreated classes”. Let the
proportion of infected hosts that fall into class j (j ∈ ℕ) be αj. Let U ⊆ ℕ and T = ℕ\U be

the sets of treated and untreated classes, respectively. Hence, we have  and

. Let us denote the fitnesses of parasite haplotypes carrying the sensitive and

resistant allele in hosts that fall into class j by  and , and  and , respectively.

Note that in the original formulation of the model we have

, and . Hence, it can be
regarded as the approximation that all untreated hosts are subsumed in just one class, in

which  is the mean fitness of the parasites among them and all treated hosts are

subsumed in just one class, in which  is the mean fitness of the parasites among them.

In the model accounting for host heterogeneity the equilibrium frequency of the neutral
allele N1 is still given by (7), however the parameters λ, μ, are given by

(62a)
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and

(62b)

whereas ϑp,m and Λm,t are still given by (5b) and (8), however in (5b) θk,m has to be
replaced by

(63)

Hence, in all approximations ϑ ̃(m) has to be replaced by

(64)

We summarize:

Result 3—Let m ≥ 2. The equilibrium frequency of the neutral allele N1, Q ̂(m), is
approximately given by

(65)

where λ,μ, and ϑ ̃(m) are given by (62a), (62b), and (64), respectively.

It was mentioned in Schneider and Kim (2010) that accounting for host heterogeneity results
in a more pronounced hitchhiking compared to the basic model if the values of λ and μ

coincide, or more precisely if , and . The reason is that under
this assumption ϑ ̃(m) given by (64) is smaller than if it is given by (58), and (for fixed m) the
respective approximations for the hitchhiking effect corresponds to standard hitchhiking

with recombination rate  and initial frequency . We will prove this in the
Sect. 5.

4.2 Number of co-infections
Now, assume that the number m of parasites that infect a host follows some probability
distribution over the population. Let κm denote the probability that a host is infected by m ≥

1 parasites. Naturally, we have .

As shown in Schneider and Kim (2010), the equilibrium frequency of the neutral allele N1 is
given by
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(66a)

with

(67a)

where ϑpτ,m and Λm,t are given by (5b) and (8) (eventually with λ, μ, ϑp,m, Λm,t, and θk,m
adjusted as in Sect. 4.1 to incorporate host heterogeneity). Hence, the equilibrium frequency
of the neutral allele N1 can be approximated following the calculations of Sect. 3. We can
summarize this in the following result.

Result 4—The equilibrium frequency of the neutral allele N1, Q ̂(κ) is approximately given
by

(68)

with , where λ, μ, and ϑ ̃(m) are given by (4), and (58), respectively. If one
wants to incorporate host heterogeneity, λ, μ, and ϑ ̃(m) are given by (62), and (64),
respectively.

5 Equilibrium heterozygosity and the hitchhiking effect
From now on we assume that m follows a probability distribution as in Sect. 4.2 and we
account for host heterogeneity as in Sect. 4.1 unless otherwise mentioned.

Remember that the equilibrium heterozygozity is given by

(69)

We have seen in the last section that the equilibrium frequency, and its upper and lower
bounds and approximations are given by expressions of the form Q0 + (R0 − Q0) A(r), where
A is a function of the recombination rate that has to be chosen appropriately. For brevity we
will suppress the dependence of Q ̂(κ) on r unless necessary. Let us regard R0, i.e., the initial
frequency of N1 among sensitive parasites, as a random variable and the heterozygosity as a
function of R0. Let us write

(70)

Given the initial frequency of the neutral allele N1 is R0, the beneficial mutation occurs
initially in association with allele N1 with probability R0, and in association with allele N2
with probability (1 − R0). Hence, we have Q0 = 1 with probability R0 and Q0 = 0 with
probability (1 − R0). Therefore, the average heterozygosity given R0 is calculated to be
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(71)

Hence, according to the theorem of total probability, the average heterozygosity is
calculated to be

(72)

The initial heterozygosity is given by H0 = 2R0(1 − R0). Hence, the fraction of the expected
equilibrium heterozygosity over the initial heterozygosity is given by

(73)

which is independent of the distribution of R0. Since A(0) = 0 we have H(0) = 0.

If we further approximate Q ̂ by B̃ given by (52), we obtain

(74)

From (74) it is seen that H(κ) shows a strong genome-wide reduction if κ1 is large and
selection is sufficiently strong. The approximation is illustrated in Fig. 8.

For the special case that m is constant the above reduces to 
which is increasing as a function of m. The reason is that ϑ ̃(m) is monotone increasing in m,
either if it is given by (58) or in the case of host heterogeneity by (64).

It was mentioned in Schneider and Kim (2010) that accounting for host heterogeneity results
in a more pronounced hitchhiking compared to the basic model if the values of λ and μ

coincide, or, more precisely, if  and . The reason is that, for
every m, under these assumptions ϑ ̃(m) given by (64) is smaller than if it is given by (58).
Hence, this holds also for the corresponding values of ϑ ̃(κ), and consequently (74) is smaller
if host heterogeneity is incorporated. We shall summarize this as a remark and prove it in the
appendix.

Remark 4
Host heterogeneity leads to an increased hitchhiking effect, i.e., to a stronger reduction in
relative heterozygosity H ̃(κ)(r), compared to the basic model with only one class of treated

and one class of untreated hosts with corresponding fitness parameters, i.e., ,

and .

For fixed large m the differences in H ̃(m) become very small and vanish in the limit m → ∞
because H ̃(m) approaches the classical approximation for standard hitchhiking.

Schneider and Kim Page 27

J Math Biol. Author manuscript; available in PMC 2012 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Note, that the last statement of the remark is delicate, because the approximation H ̃(m) will
be inaccurate for very large m.

We can use (73), or (74) to calculate the maximum recombination distance for which a
given reduction in relative heterozygosity can be observed. This is relevant for predicting
the width of the valley of relative heterozygosity for given selection parameters. By
comparison of (73), or (74) with empirical data on the relative heterozygosity, it is possible
to re-evaluate or validate parameter estimates (e.g., for α, λ, μ, etc.).

From (73) we obtain that the maximum recombination rate, r ̂, for which the relative
heterozygosity is smaller than β by solving the equation H(r ̂) = β. If we solve this equation
first with respect to A(r ̂), we obtain

(75)

By using the approximation according to (74), we obtain

(76)

Figure 9 illustrates the valley of reduced heterozygosity as a function of α for different
distributions κ of m. Such illustrations can be used to determine the range of parameters that
lead to a given reduction in relative heterozygosity.

6 Discussion
We obtained a closed-form approximation for the expected heterozygosity shaped by genetic
hitchhiking in the model of antimalarial drug-resistance evolution proposed in Schneider and
Kim (2010). This model aims to capture the effect of multiple infections per host (m) and
drug-treatment rate (α), which are considered the most important epidemiological
parameters that characterize geographic differences in the dynamics of drug resistance
(Escalante et al. 2009), as well as the complex malaria transmission cycle on the pattern of
selective sweeps caused by drug-resistant mutations (Daily 2006; Prugnolle et al. 2009).
Due to the model complexity the exact solution is expressed by the summation of infinite (or
a very large number of) terms. Here, we provided numerous approximate solutions with
varying degree of accuracy. Notably, using the assumption that the starting frequency of the
resistant allele under positive directional selection is low, we could obtain a solution that is
simple enough to allow clear biological interpretations regarding the effects of
epidemiological parameters. Furthermore, our approximations are flexible enough to
incorporate arbitrary distributions of hosts with different infection rates and/or host
heterogeneity, e.g., arbitrary distributions of hosts with different drug concentrations. The
latter condition, arising due to a slow decay of antimalarial drugs in the bodies of treated
patients, was demonstrated to be crucial for the initiation of drug resistance evolution
(Hastings et al. 2002). For more discussion on how this model can be used to predict the
spread of resistance and its speed, and how it can be used to design ‘optimal’ treatment
strategies we refer to Schneider and Kim (2010).

The mean fitness of the resistant parasites, λ, and of the sensitive parasites, μ, are crucial in
the considered model. If λ and μ are not too different, log λ − log μ corresponds to the
selection coefficient of the beneficial (resistant) mutation. Then, our approximation (74) is
basically identical to that under the standard model of hitchhiking obtained by Maynard
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Smith and Haigh (1974) except the modifying factors of the recombination rate, , and of

the initial frequency, . Therefore, the dynamics of hitchhiking unique to this

malaria model is summarized by these factors. We have  because 
for all host class j and all m. The latter fraction represents the probability that a given
resistant gametocyte pairs with a sensitive gametocyte in the body of a mosquito which took
its blood meal from a j host, when the frequency of resistant allele is low. (As with the
standard hitchhiking model, the final heterozygosity is predominantly determined by the
dynamics of the resistant allele at its early stage.) If the drug in the host is very effective

( ), it will greatly reduce . Namely, the strength of selection determines the
effective rate of recombination (decay of association between beneficial and neutral allele),
unlike the case of standard hitchhiking model in which the two factors are decoupled.
Moreover, the approximation (74) will be more accurate even for larger r and p0 compared

to the standard hitchhiking model because of the two adjustment factors  and

.

Assume m is constant. It is also obvious from the above that the number, m, of independent
parasite strains infecting a host determines the effective recombination rate. A small value of
m thus increases the hitchhiking effect. In the extreme case of m = 1, genetic variation in the
population is completely wiped out as parasites reproduce effectively asexually. On the
other hand, with m → ∞ our approximation approaches that of standard hitchhiking. Note,

however, that in the exact solution  is still less than one, even with m → ∞, because the
approximation leading to ϑ ̃(m) (Eq. 58) assumes that the frequency of the resistant allele is
low and hence that the probability that a given host is infected by two or more resistant
strains is negligible. However, if m increases to a large number, such chance is no longer
negligible. Therefore, the combined effect of strong drug pressure and the limited number of
clones in hosts can greatly amplify the effect of genetic hitchhiking beyond the level
predicted by the standard model. If m is not constant, the hitchhiking effect is more
pronounced for more left-skewed distributions κ. It will be in particular pronounced if a
large fraction of single infections occurs.

Our approximation also reveals another important departure of our model from the previous
models that assume random mating and homogeneous selective pressures. In the standard
model, the allele-frequency trajectory of a beneficial mutation is necessary and sufficient
information for predicting its hitchhiking effect on the linked neutral variation (Betancourt
et al. 2004; Chevin and Hospital 2008). For example, the speed with which the beneficial
mutation increases in the population determines the size of the genomic regions affected by
hitchhiking. However, in our model with host heterogeneity, different combinations of

parameter values (j and ) that specify the same allele frequency trajectory of the
resistance allele may generate different hitchhiking effects. Schneider and Kim (2010)
showed that the changes of sensitive and resistant allele frequencies are uniquely determined
by their absolute fitness, μ and λ, respectively. With host heterogeneity, the fitness is simply

the mean of  or  weighted by the frequencies of host classes (αj). The modifying
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factor of effective recombination rate,  (ore more generally ), however is not a linear

function of  or . As a result, as shown in Remark 4,  (or )) decreases as one
introduces host heterogeneity while keeping λ and μ constant. This makes our simplest
approximation assuming no host heterogeneity a conservative predictor of the hitchhiking
effect.

Comparison of approximate solutions with empirical observation of local reductions of
genetic variation around the loci of drug resistance mutations, combined with other genetic
(e.g. recombination rate, the frequency change of drug resistance) and epidemiological (e.g.
the mean number of independent parasite clones per host) information, will greatly advance
our understanding of antimalarial drug-resistance evolution. Especially, if empirical data for
the reduction in heterozygosity is available, our results can be used to determine possible
ranges for parameters that are unknown and/or infeasible to measure. It should be noted that
the fraction λ/μ can be easily estimated from retrospective genetic data. Since

, log λ/μ is just the slope of the linear regression of the logarithm of the
ratio of resistant over sensitive parasites measured at different time points. However, it is
difficult to scale time, because the number of transmission cycles per year is difficult to
quantify. Moreover, also the parameter α should be easy to measure. On the opposite, the
distribution of κ of m will be difficult to estimate. However, the distribution of m, and
especially single infections, lead to a genome-wide reduction in relative heterozygosity if
selection is sufficiently strong. This genome-wide reduction might be used to estimate the
distribution κ. However, applying our results to real data lies beyond the scope of this article
and will be accomplished in a follow-up paper.

Appendix A

A.1 Bounds and approximations
Proof of Remark 2

If  for l ∈ ℕ we just need to adapt the proof of Theorem 1. The derivation of G1

assumed . If this assumption is violated we have to adjust the derivation. In this case

we have  and we can replace (24) by

Hence, we have to replace (25) in the proof of Theorem 1 by
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Thus, we have

(77)

(78)

and

(79)

Combining the above with (26), the definitions of ξ, η, c, (31), and (32) yields

(80)

and
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(81)

respectively. Note that we have

(82)

(83)

(84)

(85)

(86)

Hence, (80) and (81) simplify to

(87)

and
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(88)

which equal (36) and (35), respectively.

Now, let us regard g(x) given by (17) as a function in x and a and write ga(x) for it. Clearly
for x ≥ 0, ga(x) is monotone increasing in a, and for x < 0 it is monotone decreasing. Since

by Theorem 1 the integral  exists for x ̃∈ {−1, 0} and , it follows by the
Theorems of monotone convergence and, in case x ̃= −1, also by the theorem of dominated

convergence that . By setting  it follows that (36) and

(35) are the continuations of (16) and (15) in the limit .

If x0 ≤ 0, we do not need the function G1, and hence the derivations from Theorem 1 and
Remark 1 hold for ψ. The same holds for Ψ if x0 ≤ −1. This finishes the proof.

Proof of Theorem 2
For κ ≠ −l(l ∈ ℕ) we have

(89)

First assume  for l ∈ ℕ, i.e., .

Setting  and z = −c gives

(90)

whereas setting  and  gives

(91)
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Moreover, setting  and z = −1 yields

(92)

whereas by setting  and z = −1 we obtain

(93)

First, combining (93), (90), and (92) with (31), and using this approximation in (20) yields
(39) by using the definitions of ξ and η. Similarly, we obtain (40) by combining (93), (91),
(92), with (32) and (21).

Clearly, (39) and (40) are continuous especially also at . Since ψ(a) and Ψ(a) have

continuations at  for (l ∈ ℕ) according to Remark 2, we have ϕ(a) ≈ ψ(a) and Φ(a) ≈
Ψ(a) for all a. This finishes the proof.

Proof of Remark 3

We obtain (41) by combining (33) with (89) for  and , whereas

we obtain (42) by combining (34) with (89) for  and .

Clearly (39), (40), (41), and (42) are continuous functions in p0. For  it is easily seen

that (39) equals (41), whereas for  (40) equals (42). Hence, (41) and (42) are the
continuations in p0 of (39) and (40), respectively.

Proof of Theorem 3
Note that we have

(94)

where
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(95)

Furthermore,  is monotone increasing in x and . Since λ > μ and

, we have . Hence, we obtain

and we have

(96)

which follows from the fact that  can be written as a geometric series.

Therefore,

(97)

For C > 0 we obtain  is monotone increasing in x, because

. Furthermore, we have limx→0 f (x) = log C. By choosing

, we see that
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is negligible compared with

(98)

Furthermore, also

(99)

is negligible compared with (98). Therefore,

(100)

A.2 Relative heterozygosity
Proof of Remark 4

Let  for x, y ∈ ℝ+. Its Hessian matrix is calculated to be

Clearly, we have  and det H = 0, i.e., the leading minors of H are non-positive.
Hence, f is concave but not strictly concave (note that f (x, x) = x/2). Hence, for positive
random variables X and Y defined on a probability space (Ω, A, P) and a sub-σ algebra B the
Jensen’s inequality for higher dimensions yields

Now, choose (Ω, A, P) = (ℕ, P(ℕ), P), where P(j) = αj. Moreover, choose

 and B = {0̷, U, T, ℕ}. Then the Jensen’s, inequality gives
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Similarly, we obtain

Combination of the above yields

(101)

i.e., that ϑ ̃(m) given by (64) is smaller than if it is given by (58).

Clearly in the limit m → ∞ equality holds in (101). Moreover, ϑ ̃(m) → λ. Hence, in the limit
case H ̃(m) reduced to the approximation for standard hitchhiking.

The proof is finished by applying the argument formulated above the remark.
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Fig. 1.
Equilibrium frequency Q ̂ of the neutral allele N1 and various bounds for Q ̂ as a function of r
for different parameter combinations. The panels show Q ̂ along with its upper and lower
bounds Q ̅ and Q ̲, as well as their respective upper and lower bounds Ψ̅ and ψ ̅, and Ψ̲ and ψ ̲.
The parameters for the various plot panels are specified in the boxes above the panels. In all
panels Q ̂ and Q ̅ are almost identical
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Fig. 2.
Equilibrium frequency Q ̂ of the neutral allele N1 and various bounds of Q ̂ as a function of r
for different parameter combinations. The panels show Q ̂ along with its upper bounds Q ̅ and
Q ̃, as well as their respective upper and lower bounds Ψ̅ and ψ ̅, and Ψ̲ and ψ ̲. The parameters
for the various plot panels are specified in the boxes above the panels
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Fig. 3.
Equilibrium frequency Q ̂ of the neutral allele N1 and various bounds of Q ̂ as a function of r
for different parameter combinations. The panels show Q ̂ along with its upper bounds Q ̅ and
Q ̃, as well as their respective upper and lower bounds Ψ̅ and ψ ̅, and Ψ̃ and ψ̃, along with
their approximations Φ̅ and ϕ̅, and Φ̃ and ϕ ̃, respectively. The parameters for the various plot
panels are specified in the boxes above the panels
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Fig. 4.
Equilibrium frequency Q ̂ of the neutral allele N1 and various bounds of Q ̂ as a function of r
for different parameter combinations. The panels show Q ̂ along with its upper bounds Q ̅ and
Q ̃, as well as its approximations Q ̅*, Q ̃*, Q ̅°, and Q ̃°. The parameters are the same as in Fig.
3
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Fig. 5.
Equilibrium frequency Q ̂ of the neutral allele N1 and various bounds of Q ̂ as a function of r
for different parameter combinations. The panels show Q ̂ along with its upper bounds Q ̅ and
Q ̃, as well as the approximations A̅, Ã, B̅, B̃. The parameters are the same as in Fig. 3
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Fig. 6.
Equilibrium frequency Q ̂ of the neutral allele N1 and various bounds of Q ̂ as a function of r
for various parameter combinations. The panels show Q ̂ along with its upper bounds Q ̅ and
Q ̃, as well as the approximations C̃ and D ̃.
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Fig. 7.
Equilibrium frequency Q ̂ (m) (thin lines) of the neutral allele N1 versus the approximation
B(m) (thick dashed lines) for various values of m. The parameters are as in Fig. 3
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Fig. 8.
Relative expected heterozygosity H(κ) (thin lines) of the neutral allele N1 versus the
approximation H ̃(κ) (thick dashed lines) for different distributions κ. In all cases we assume a
truncated exponential distribution with range 1–10 and mean κ̅. By truncated we mean that
the probability of m = 10 is the probability that m ≥ 10 for a poisson distribution with mean
κ̅. The parameters are as in Fig. 3

Schneider and Kim Page 47

J Math Biol. Author manuscript; available in PMC 2012 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 9.
Contour plot of the valley of reduced heterozygosity for different distributions κ. In all cases
we assume a truncated exponential distribution with range 1–10 and mean κ̅. By truncated
we mean that the probability of m = 10 is the probability that m ≥ 10 for a poisson
distribution with mean κ̅. In all panels the same selection parameters are assumed. The
parameters are summarized in the boxes above the panels

Schneider and Kim Page 48

J Math Biol. Author manuscript; available in PMC 2012 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Schneider and Kim Page 49

Table 1

Summary of notation

Haplotypes ASN1 ASN2 ARN1 ARN2

Frequency p1 p2 p3 p4

Fitness in

Untreated hosts 1 1 1 − s 1 − s

Fitness in

Treated hosts 1 − dS 1 − dS 1 − dR 1 − dR

Sensitive/resistant Sen. Sen. Res. Res.

The tables shows the notation of the four haplotypes, their frequencies, fitnesses in treated and untreated hosts, the parametrization of fitnesses that
we are going to use for the illustrations in the following sections, and whether the haplotypes are sensitive or resistant. Here, s reflects metabolic
costs of the resistant allele, while dS and dR indicate how efficiently the drug wipes out the sensitive and resistant parasites, respectively
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