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Abstract
A trio of genome-wide association studies recently reported sequence variants at three loci to be
significantly associated with schizophrenia. No sequence polymorphism had been unequivocally
(P<5×10−8) associated with schizophrenia earlier. However, one variant, rs1344706[T], had come
very close. This polymorphism, located in an intron of ZNF804A, was reported to associate with
schizophrenia with a P-value of 1.6×10−7, and with psychosis (schizophrenia plus bipolar
disorder) with a P-value of 1.0×10−8. In this study, using 5164 schizophrenia cases and 20 709
controls, we replicated the association with schizophrenia (odds ratio OR= 1.08, P= 0.0029) and,
by adding bipolar disorder patients, we also confirmed the association with psychosis (added N=
609, OR= 1.09, P= 0.00065). Furthermore, as it has been proposed that variants such as
rs1344706[T]—common and with low relative risk—may also serve to identify regions harboring
less common, higher-risk susceptibility alleles, we searched ZNF804A for large copy number
variants (CNVs) in 4235 psychosis patients, 1173 patients with other psychiatric disorders and 39
481 controls. We identified two CNVs including at least part of ZNF804A in psychosis patients
and no ZNF804A CNVs in controls (P= 0.013 for association with psychosis). In addition, we
found a ZNF804A CNV in an anxiety patient (P = 0.0016 for association with the larger set of
psychiatric disorders).
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Introduction
Before the publication of recent genome-wide association (GWA) studies,1–3 the sequence
variant having the strongest evidence for unconditional association with schizophrenia was
rs1344706[T]. This variant was reported to be associated with schizophrenia with an odds
ratio (OR) of 1.12 and a P-value of 1.6×10−7. Evidence for association was strengthened
(OR = 1.12, P = 1.0×10−8) when a psychosis phenotype (schizophrenia plus bipolar
disorder) was assessed.4 More recently, rs1344706 was shown to be associated with
alterations in the functional connectivity of various regions of the brain.5 The single-
nucleotide polymorphism (SNP) is located in an intron of ZNF804A, a gene encoding a
protein predicted to be a transcription factor.
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Current discussions of GWA studies have suggested that findings of common SNP
association may be exploited by examining the region surrounding the initial variant for
additional polymorphisms not tagged by the original variant.6–8 Of particular interest are
low frequency (between 5 and 1%) and rare ( < 1%) susceptibility polymorphisms that may
confer a higher risk than the originally described variant but are unlikely, because of their
frequency, to be discovered by standard GWA study. An example of the successful use of
this strategy is in nonalcoholic fatty liver disease where the finding of a common PNPLA3
susceptibility allele was followed by the discovery, using re-sequencing, of an excess of null
sequence mutations in individuals with the highest hepatic fat levels as well as a protective
allele that was rare in European Americans (about 0.3%) but common in African Americans
(about 10%).9 To our knowledge, the discovery of rare copy number variants (CNVs)
associated with disease in regions initially uncovered through common SNP susceptibility
alleles has not been reported.

In this study, we confirmed the association of rs1344706[T] with schizophrenia and also
corroborated the bolstering of the evidence when the phenotype was expanded to psychosis.
In addition, we examined ZNF804A for large structural variants, and found CNVs in three
patients with psychiatric disorders, but not in controls.

Materials and methods
Samples

Full information about each study group is presented in the Supplementary Methods.
Individuals were diagnosed according to International Statistical Classification of Diseases
and Related Health Problems 10th Revision (ICD-10) or Diagnostic and Statistical Manual
of Mental Disorders, Fourth Edition (DSM-IV) criteria. Because of variation in diagnostic
criteria and protocols between the various centers, some phenotypic heterogeneity is
expected. All individuals provided written, informed consent for participation and approval
was obtained from the ethics committees at each location.

In the initial analysis of rs1344706 association with schizophrenia, genome-wide typed
samples from seven European locations were included. After quality control, case/control
samples from England (93/88), Finland/excluding Kuusamo (59/147), Finland/Kuusamo
(123/50), Iceland (589/11 492), Italy (84/89), the Netherlands (693/3689) and Scotland
(658/661) were included. With the exception of the samples from the Netherlands, these
samples derived from the genome-wide data described in our primary GWA report.3

Additional samples from Bonn and Munich that were part of the earlier data set were not
used here as they had been included in the initial ZNF804A study.4 Bipolar samples from
Iceland (N= 404 after quality control) were also incorporated into the psychosis analysis.

In the follow-up study of rs1344706 association with schizophrenia, samples from nine
locations (after quality control)—China (460 cases, 466 controls), Denmark/Aarhus (236
cases, 500 controls), Denmark/Copenhagen (513 cases, 1338 controls), Germany/Bonn (275
cases, 510 controls), Germany/Munich (178 cases, 320 controls), Hungary (264 cases, 223
controls), Norway (201 cases, 357 controls), Russia (483 cases, 487 controls) and Sweden
(255 cases, 292 controls)—were included. The European samples in this set originated from
‘follow-up set 2’ of our primary GWA study,3 although some samples that were used in the
original ZNF804A study4 or that lacked sufficient DNA for typing were excluded. In
addition, 205 bipolar samples from Norway were part of the psychosis analysis.

The CNV portion of the study included schizophrenia case/control samples from 10
European locations (following quality control): Denmark (547/541), England (85/80),
Finland/excluding Kuusamo (61/144), Finland/Kuusamo (129/49), Germany/Bonn
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(485/848), Germany/Munich (585/586), Iceland (603/35 995), Italy (84/86), the Netherlands
(604/489) and Scotland (645/663). These samples corresponded to the genome-wide typed
samples used in our initial SNP association study,3 supplemented by material from Denmark
and the Netherlands. Finally, 407 bipolar and 1173 depression, anxiety and anxiety-related
disorder samples from Iceland were examined.

Genotyping
Genome-wide genotyping for all samples from England, Finland, Iceland and Italy was
carried out at deCODE Genetics using the Illumina HumanHap300 chip (San Diego, CA).
For the samples from Germany/Munich and Scotland, approximately one-third of both cases
and controls were genome-wide typed at deCODE using the Illumina HumanHap300 chip,
whereas the remaining two-thirds of cases and controls were genome-wide typed at Duke
University using the Illumina HumanHap300 (Germany) and Illumina HumanHap550
(Scotland) chips. For the samples from the Netherlands, 715 cases and 643 controls were
typed at UCLA using the Illumina HumanHap550 chip, whereas 3334 additional controls
were typed at deCODE using the Illumina HumanCNV370 chip. The samples from
Germany/Bonn were genome-wide typed at the University of Bonn using the Illumina
HumanHap550 chip. The samples from Denmark were typed at deCODE Genetics using the
Illumina HumanHap610 chip. For all the chips, yield for the two markers used for the
surrogate (rs12477914 and rs1366840) was at least 98% and, in the controls of each group,
neither marker deviated significantly from Hardy–Weinberg equilibrium (P > 0.05). For
both the markers used, when the same study group was typed on more than one chip, there
was no significant difference in allele frequency between the chips in either cases or controls
(P > 0.05).

Of the follow-up groups, the Norwegian sample was genotyped at the University of Oslo
using the Affymetrix 6.0 chip (Santa Clara, CA, USA). The remaining groups were single-
marker genotyped at deCODE Genetics using Centaurus assays (Nanogen, San Diego, CA,
USA). Yield for rs1344706 was at least 94% in both cases and controls of all study groups
and, in the controls of each group, rs1344706 did not deviate significantly from the Hardy–
Weinberg equilibrium (P > 0.01).

Sample quality control
For the genome-wide typed samples, duplicate samples, samples with a sex determined by
X-chromosome homozygosity different from their reported sex and samples determined to
be of non-European ancestry either by running STRUCTURE10 using the HapMap CEU,
YRI and CHB/JPT individuals as reference samples or by examination of identity by state
were removed. In addition, low-yield ( < 98% for the Illumina chips and <95% for the
Affymetrix chip) samples were removed for the SNP association part of the study, whereas
samples with an excess of large CNVs ( > 10 CNVs of at least 10 SNPs) were removed for
the CNV part of the study. For the single-marker typed samples, samples that, based on
additional genotyping, were duplicates of other samples in the data set or were low yield ( <
60%) were removed.

Association analysis
Association analysis of rs1344706 was carried out using a likelihood procedure described
previously.11 For the genome-wide typed samples, a surrogate for rs1344706 made up of a
linear combination of two-marker haplotypes, defined using the HapMap CEU, was used.
This method, which we have used earlier,12 is an extension of the two-marker haplotype
tagging described in Pe’er et al.13 and is similar in spirit to the methods described in
Nicolae14 and Zaitlen et al.15 Genomic control16 was used to correct for relatedness and
potential population stratification in each genome-wide typed study group. With the
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exception of Iceland, genomic control factors were < 1.1; in Iceland, some related
individuals were included in the analysis and genomic control factors were 1.19, 1.12 and
1.18 for the schizophrenia, bipolar and psychosis analyses, respectively. The study groups
within the Illumina genome-wide typed and follow-up sets were combined using the
Mantel–Haenszel model.17 The combined Illumina genome-wide typed and combined
follow-up sets were joined using summary statistics. P-values were calculated by summing
z-scores with each data set’s z-score multiplied by the inverse of that data set’s s.e. divided
by the square root of the sum of the squared inverse s.e., and combined ORs were calculated
by summing log ORs with each log OR weighted by the inverse of its variance. The CNV
association analysis was carried out using exact Mantel–Haenzel tests.

CNV detection
PennCNV,18 a free, open-source tool, was used for copy number variation detection. The
input data for the program are log R ratio, a normalized measure of the total signal intensity
for the two alleles of the SNP, and B-allele frequency, a normalized measure of the allelic
intensity ratio of the two alleles. Values of these quantities are derived with the help of
control genotype clusters (HapMap samples), using Illumina BeadStudio software. A hidden
Markov model is then used to make CNV calls based on the probability of a given copy state
at the current marker as well as the probability of observing a copy state change from the
previous marker to the current one. A built-in correction model for GC content19 is included.
As the samples were genotyped on several different types of Illumina BeadArray chips
(HumanHap300, Human-Hap300-duo, HumanHap550, HumanHap610), we analyzed them
with a twofold approach: first, using the full complement of markers on the chip and second,
using only a subset of markers, present on most of the chip types, to ensure similar
resolution of markers covering the genome. In this study, only CNVs including at least ten
consecutive markers in the region chr2:185,171,338—185,512,459 Mb NCBI Build 36 were
considered.

Results
In an attempt to replicate the association of rs1344706[T] with schizophrenia, we used two
data sets: (1) an initial set of Illumina genome-wide typed samples from Europe
nonoverlapping with the samples of the original report4 (2299 cases, 16 216 controls) and
(2) a set of follow-up samples from Europe and China also without an overlap with those of
the initial study4 (2865 cases, 4493 controls). Because rs1344706 was not included on the
Illumina HumanHap300 or HumanHap550 BeadChips, a surrogate, composed of a linear
combination of haplotypes, was used in the analysis of the genome-wide data.

The OR for rs1344706[T] (or the surrogate) was 1.09 in the initial data set and 1.08 in the
follow-up data set; P-values were 0.037 in the initial sample and 0.033 in the follow-up
sample (Table 1). In the combination of the two data sets, the OR was 1.08 and the P-value
was 0.0029 (Table 1). The average control frequency in the combined sample was 0.59,
identical to that of the original report.4 We found no evidence of heterogeneity between the
study groups (P = 0.66, Supplementary Table 1) and no indication that we should reject the
multiplicative model for the full model (P = 0.95 for the initial sample, P = 0.79 for the
follow-up sample).

We also examined the association of rs1344706[T] with psychosis by including bipolar
samples from Iceland (N= 404) and from Norway (N= 205). The strength of the evidence for
association increased (P = 0.00065 from P = 0.0029, see Table 2 for psychosis analysis and
Supplementary Table 2 for bipolar-only analysis), consistent with the results of the initial
report.4
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To explore the suggestion that loci initially identified through GWA studies may also harbor
independent susceptibility variants, perhaps rarer and of greater effect, we examined the
region overlapping ZNF804A (chr2:185,171,338—185,512,459 in NCBI Build 36) for large
(containing at least 10 consecutive SNPs) CNVs in 3828 schizophrenia patients, 407 bipolar
disorder patients and 39 481 controls not known to have any psychiatric disorder (see
Materials and methods). In addition, 1173 patients with other psychiatric disorders (945
anxiety or anxiety-related disorder patients and 662 depression cases, 434 of whom were
also diagnosed with anxiety or anxiety-related disorders) were available.

We carried out tests for association with schizophrenia and psychosis and also with the
broader phenotype of combined psychiatric disorders. A schizophrenia patient harbored a
deletion of the entire ZNF804A gene (Figure 1), but no ZNF804A structural variants were
identified in the control set, leading to a P-value of 0.49 for association with schizophrenia.
A bipolar disorder patient had a duplication of the first exon of the gene (Figure 1), resulting
in a P-value of 0.013 for association with psychosis. A ZNF804A deletion was also
identified in a patient with anxiety (Figure 1), leading to a P-value of 0.0016 for association
with the larger set of psychiatric disorders.

Carriers of ZNF804A CNVs were of both sexes and were generally unremarkable with
respect to age of onset and other features of their disorder (Supplementary Table 3). For the
duplication carrier, genotypes from the patient’s father and from a sibling of the patient’s
mother were available. Because the mother’s sibling carried the haplotype background the
duplication was located on, but not the duplication, it could be inferred that the duplication
event had most likely taken place either in the germ line of the patient’s mother or during
gametogenesis in one of the maternal grandparents. For the deletion carriers, genotypes were
not available for either the parents or the parents’ relatives; thus, it was not possible to
estimate the timing of the mutation.

Discussion
In the first part of this study, we confirmed the association of rs1344706[T] with
schizophrenia (P = 0.0029), using genotypes from 5164 schizophrenia cases and 20 709
controls. Although, in this study, only a modest number of bipolar disorder cases was
available (N= 609), adding these cases to the analysis increased the evidence for association,
in line with the original report. Thus, rs1344706[T] may confer risk of both schizophrenia
and bipolar disorder, a finding consistent with epidemiological studies suggesting shared
genetic risk factors for the two diseases.20,21

Meta-analysis P-values for rs1344706[T], based on the results from this study and the
original report, were 2.8×10−9 (OR= 1.10) for schizophrenia and 3.8×10−11 (OR= 1.11) for
psychosis, making association with both of these phenotypes unequivocal. In addition, three
schizophrenia GWA studies1,2,22 recently reported association results for rs1344706[T],
although the samples used by each study at least partially overlap the material included here
or in the original study. The International Schizophrenia Consortium (ISC) achieved a one-
tailed P-value of 0.029 (OR= 1.08) based on 2519 cases and 2110 controls, of which about
650 cases and 650 controls were included in this study.1 The Molecular Genetics of
Schizophrenia (MGS) consortium reported a two-tailed P-value of 0.026 (OR= 1.10) using
about 5300 samples, of which ~1900 were part of the original ZNF804A study.2 A third
GWA study gave results for a rs1344706 surrogate;22 however, the Aberdeen samples used
in that study are entirely incorporated into this study. In addition, while this work was under
review, a replication study using the Irish Case–Control Study of Schizophrenia (ICCSS)
sample reported a one-tailed P-value of 0.011 (OR= 1.20) based on a unique group of 993
cases and 570 controls.23 Taken together, the ISC, MGS and ICCSS reports are consistent

Steinberg et al. Page 6

Mol Psychiatry. Author manuscript; available in PMC 2011 December 18.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



with an association between rs1344706[T] and schizophrenia, and they also provide
additional support for that conclusion.

In the second part of the study reported in this paper, we examined the ZNF804A region for
gain or loss of copy number, using 4235 psychosis patients, 1173 patients with other
psychiatric disorders and 39 481 controls. Two psychosis patients harbored CNVs affecting
at least part of ZNF804A, resulting in a P-value of 0.013 for association with psychosis. In
addition, a patient with anxiety had a deletion, leading to a P-value of 0.0016 for association
with psychiatric disorders.

The CNV portion of this study involved a large data set, but additional information about
CNVs is also publicly available. In approximately 12 000 controls from studies included in
the Database of Genomic Variants24 and three other reports,25–27 two CNVs involving
ZNF804A exons, both from the same study,28 are found. One event is a deletion of the
entire gene in an African-American parent–offspring pair, and the second is a deletion
affecting the 3′ exons of the gene in a European-American child. Although these CNV
carriers are classified as healthy controls, the children, aged 0–18 years, may subsequently
develop psychiatric disorders, and the parent, though free of major medical problems, does
not seem to have been extensively interviewed for psychiatric disorders. In about 3800
schizophrenia cases not overlapping with those in this report25,27,29,30 and about 1000
bipolar cases,26 no additional ZNF804A events are found (note that the ZNF804A deletion
observed in the ISC data set1 is from an individual also included in this study), but in
approximately 1700 autism families and 400 unrelated autism cases,31–36 there is a
duplication of the entire gene in two affected siblings and a partial ZNF804A duplication in
another patient. Because of the incompleteness of the available phenotypic information,
drawing strong conclusions about the association of ZNF804A CNVs and mental disorders
from the publicly accessible data is difficult. However, considered together with the
association between ZNF804A CNVs and psychiatric disorders observed in this report, the
existence of two ZNF804A deletion events in controls, several young, and all without
detailed phenotype information, and the presence of two ZNF804A duplication events in
autism patients, suggests that the link between ZNF804A CNVs and mental disorders should
be investigated further.

This is, to our knowledge, the first report of the identification of rare, disease-associated
CNVs in a region initially discovered through common SNP association. Genes implicated
in Mendelian disorders, however, have frequently been found to display a broad spectrum of
mutations. In the cystic fibrous gene, CFTR, more than 1600 mutations have been identified
(Cystic Fibrosis Mutation Database; http://www.genet.sickkids.on.ca/cftr/app), including
large structural events. Rare, risk-conferring sequence mutations have also been identified in
genes such as PNPLA3 that were initially uncovered through common SNP association.9

Similarly, some genes such as TCF2 first connected to disease through rare, highly penetrant
risk alleles were later found, through GWA studies, to harbor common susceptibility alleles
of modest effect.37 At CNTNAP2, the earliest reports associated rare SNPs with epilepsy
and autism;38 more recently, evidence of the association of common SNPs with autism,
although not at the genome-wide significant level, has been described,39,40 and rare
structural variants in individuals with autism have also been identified.41–43

Association with disease is more difficult to establish for very rare genetic variants. In this
study, we pooled deletions and duplications, considering them together. This approach
allowed us to present statistical evidence for the connection of ZNF804A CNVs to
psychiatric disorders. In addition, the large-scale nature of the structural alterations reported
here makes phenotypic effects more likely, compared with most sequence changes. Both the
deletions identified here remove the entire sequence of ZNF804A (Figure 1), which is likely
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to result in differences in mRNA abundance that may have downstream consequences,
especially because ZNF804A is a putative transcription factor, a class of protein that has
often been implicated in haploinsufficiency disorders.44 The duplication that includes one or
two exons of ZNF804A (Figure 1) may lead to a protein that acts in a dominant-negative
manner, interfering with the actions of the wild-type ZNF804A, or, because of the manner in
which the duplicated sequence is inserted, the event may result in alterations in the
transcription of the original copy of ZNF804A.

Mouse models may be useful in helping to understand the functional consequences of these
variants. The reverse may also be true: these rare structural variants may turn out to be more
valuable than the originally identified common variant in establishing a link between
ZNF804A and a psychosis-related phenotype in an animal model. This is because gene
knockout or overexpressing mice can be engineered relatively easily, the penetrance of
pathogenic CNVs is generally much higher than common SNP variants, and temporal or cell
specific manipulation of expression can be carried out with conditional mutants.

The ZNF804A variants examined in this study confer risk of more than one category of
disease. Rs1344706[T] is associated with both schizophrenia and bipolar disorder, and the
CNVs identified here suggest a connection with anxiety as well, although we do not find
evidence for the association of rs1344706[T] with anxiety (data not shown). The functional
connectivity alterations identified in the brains of rs1344706[T] carriers5 provide a possible
mechanism for the link between ZNF804A variants and a diversity of disorders. Thus,
examination of brain functional connectivity in ZNF804A CNV carriers would be of
interest.

In this study, we have replicated the previously reported association of rs1344706[T] with
schizophrenia and psychosis. In addition, we have further explored the locus and have
identified rare CNVs in patients with psychiatric disorders, but not in controls.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Large structural variants in ZNF804A.(a) A deletion in an Icelandic anxiety patient (patient
3), (b) a duplication in an Icelandic bipolar patient (patient 2), (c) a deletion in a Scottish
schizophrenia patient (patient 1). The coordinates are based on NCBI Build 36.
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