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Abstract
Herpesviruses, a large family of double-stranded DNA enveloped viruses, accomplish infection of
their host cells through viral membrane fusion with either the plasma membrane or endocytic
vesicle membranes. Efficient herpesvirus infection of cells requires the concerted effort of
multiple glycoproteins and involves multiple host receptors, making it a remarkably complex
system of viral fusion relative to the majority of enveloped viruses, which generally require only
one or two viral glycoproteins. The structures of the major glycoproteins and receptors involved in
the entry of the prototypical herpesviruses herpes simplex virus (HSV) and Epstein-Barr virus
(EBV) are now known. These structural studies have accelerated our understanding of HSV and
EBV binding and fusion by revealing conformational changes that occur upon receptor binding,
depicting potential sites of functional protein and lipid interactions, and identifying the likely viral
fusogen.

Herpesviruses form a large, diverse family of double-stranded DNA enveloped viruses.
There are eight human herpesviruses (HHV): herpes simplex viruses type 1 and 2 (HSV-1,
HSV-2), Epstein Barr virus (EBV), varicella zoster virus (VZV), cytomegalovirus (CMV),
HHV-6, HHV-7 (roseolovirus), and Kaposi’s sarcoma-associated herpesvirus (KSHV)1.
HHVs are ubiquitous in the human population and establish latent infections in a wide range
of hosts that can be reactivated to cause various diseases. The prototypical herpesviruses
HSV-1 and HSV-2, members of the alphaherpesvirus subfamily, most commonly cause
localized mucocutaneous lesions known as oral herpes (HSV-1) or genital lesions (HSV-2)
but can also cause meningitis and encephalitis. EBV, a member of the gammaherpesvirus
subfamily, is the most common cause of infectious mononucleosis and is causally associated
with several malignancies, including Burkitt’s lymphoma and Hodgkin’s lymphoma.

Although the pathogenesis of infection with herpesviruses differs, they enter host cells
through a similar mechanism and use a conserved set of viral glycoproteins for membrane
fusion. Entry of herpesviruses into cells proceeds in two distinct steps (Fig. 1A). First, the
virus binds to the host cell through specific receptors. This brings the viral fusion apparatus
in close proximity to the membrane of the cell. Some of these receptor-binding events
trigger fusion, whereas others simply serve to tether the virus to the cell and are dispensable
for fusion. Second, the viral membrane fuses with either the host plasma membrane or
endocytic membrane through the action of a viral fusion protein that perturbs the host
membrane. Herpesviruses generally require a larger number of envelope proteins to
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accomplish entry than most other enveloped viruses, which often accomplish target cell
binding and membrane fusion using a single viral envelope protein. Recent structural studies
of herpesvirus envelope glycoproteins have shed light on the complex process of herpes
virus binding and fusion. In this review, we will focus on the requirements for viral binding
and fusion of two prototypic HHVs, HSV and EBV, with a particular emphasis on the
structural properties of the viral glycoproteins responsible for these functions, including
details of the conformational changes that may trigger fusion and the functional domains
present in the primary viral fusion protein and its regulators.

Cell tropism
HSV infects a variety of host cells, including lymphocytes, epithelial cells, fibroblasts, and
neurons. The pathways of HSV entry are varied as well and depend upon the target cell type.
Although initial studies indicated that HSV enters cells by direct fusion with the plasma
membrane at neutral pH, further analyses revealed that HSV entry also can occur by
endocytosis in either a pH-dependent or a pH-independent manner (Fig. 1B)2, 3. The entry
route differs among cell lines and the reason that endocytosis is sometimes required is
unclear. In fact, for some cells in which endocytosis is the required route of entry, cell
surface expression of the viral glycoproteins that mediate entry causes cell-cell fusion 2.
None of the HSV entry glycoproteins require low pH to function, although low pH has been
shown to result in minor conformational differences in glycoprotein B (gB)4, 5. The ability
to enter cells using multiple pathways may facilitate the productive infection of the multiple
cell types encountered by HSV.

EBV, in contrast, predominately infects epithelial cells and B cells and, under some
circumstances can infect other cell types, such as monocytes6. The route of entry used by
EBV is also cell-type dependent; entry into epithelial cells occurs by direct fusion at the cell
surface, whereas entry into B cells occurs via endocytosis in a pH-independent manner7.

Entry machinery
At least a dozen different glycoproteins are expressed on the herpesvirus envelope and a
subset of these is necessary and sufficient for viral entry. The herpesvirus entry process is
complex because not only do the viruses employ multiple glycoproteins to mediate entry,
but also each of these glycoproteins is multifunctional (Table 1). Each entry glycoprotein
may bind multiple receptors, interact with other glycoproteins, and/or undergo
conformational changes to induce membrane fusion. Some glycoproteins are required for
entry, whereas others simply enhance entry. EBV and HSV share a set of three conserved
glycoproteins that are required for fusion with all cell types: gB and a heterodimer
composed of glycoprotein H (gH) and glycoprotein L (gL), referred to as gH/gL. HSV
fusion also requires the receptor binding activity of glycoprotein D (gD). Similarly, EBV
fusion with B cells, but not epithelial cells, requires the receptor binding activity of
glycoprotein 42 (gp42). Glycoproteins that tether the virus to the cell but are not essential
for entry include HSV glycoprotein C (gC) and EBV glycoproteins 350/220 (gp350/220)
and BMRF-2.

Tethering to cells
Both HSV and EBV employ glycoproteins for viral tethering to host cells. In the absence of
these glycoproteins viral entry can still occur, albeit at lower efficiency. Tethering serves to
concentrate the virus at the cell surface but does not specifically trigger fusion. HSV tethers
to host cells through the interactions of gB and gC with heparan sulfate on cell surface
proteoglycans. Although gB is required for HSV fusion, its heparan sulfate-binding activity
is not essential for fusion 8. gC has no required role in HSV fusion and is dispensable for
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viral attachment in vitro, however, gC deletion decreases the efficiency of virus binding9, 10.
gB and gC also bind to dendritic cell-specific C-type lectin (DC-SIGN), which facilitates
attachment during infection of dendritic cells 11.

EBV tethers to target B cells primarily through the interaction of gp350/220, one of the most
abundant EBV envelope glycoproteins, with complement receptor type 2 (CR2/CD21), a B
cell-specific surface receptor12–16. Although gp350/220 is not strictly required for entry into
B cells, its absence reduces infection efficiency17. gp350/220 is a single-pass membrane
protein, which as a result of alternative splicing is made in two forms with approximates
masses of 350 and 220 kDa. The N-terminal residues (1–470) of either form of the protein
can bind CR2/CD2118 and no specific roles for two forms of the protein have been
determined. The structure of gp350 has been solved 19 and the CR2/CD21 binding site maps
to a glycan-free patch on its surface.

gp350/220 is also an important mediator of EBV tethering to epithelial cells (for CR2/
CD21-expressing epithelial cells), as is BMRF-2 (for integrin-expressing oral epithelial
cells). EBV BMRF-2 is a transmembrane envelope glycoprotein with an integrin-binding
RGD motif capable of interacting with the β1 and α5 family integrins expressed on oral
epithelial cells20, 21. Recombinant EBV lacking BMRF-2 shows a 50% reduction in
attachment to oral epithelial cells, suggesting that BMRF-2 plays a significant role at the
portal of entry for human EBV infection in vivo22. BMRF-2 has also been shown to
facilitate lateral cell-to-cell spread of EBV within polarized oral epithelial cells23.

EBV triggers of fusion
EBV gp42 receptor binding on B cells

The tethering of EBV to cells is not sufficient to trigger fusion. EBV gp42 is the receptor-
binding protein required to trigger fusion with B cells. gp42 triggers membrane fusion after
binding human leukocyte antigen type II (HLA class II) on target B cells. EBV entry can be
triggered by all three HLA class II isotypes (HLA-DR, HLA-DP, and HLA-DQ), however
some HLA-DQ alleles are nonfunctional24. gp42 belongs to the C-type lectin superfamily
and contains a C-terminal C-type lectin domain (CTLD). gp42 has sequence homologs
among the closely related primate lymphocryptoviruses and functional homologs in other
herpesviruses such as HSV gD, discussed later in this review. gp42 is a type II membrane
protein with a N-terminal transmembrane (TM) domain. It is cleaved adjacent to the TM
domain, to generate a functional soluble form of gp42 in vivo25. Soluble gp42 can trigger
viral fusion with B cells in the absence of membrane-bound gp42 and a mutation of the gp42
cleavage site that blocks production of soluble gp42 inhibits B cell fusion26.

The structures of both HLA class II-bound gp42 and unbound gp42 have been determined
(Fig. 2A, 2B)27, 28. The structure of gp42 bound to HLA class II revealed three key
structural features that relate well to mutagenic studies of gp42 28. First, HLA class II binds
within the gp42 CTLD (residues 94–221) at a site distinct from the canonical HLA-
interactive site present in other CTLDs, such as that of the natural killer cell receptor
Ly49A, which forms complexes with HLA class I29. Only two key HLA class II β chain side
chains make extensive interactions with gp42: HLA class II glutamic acid at position β46
interacts with gp42 residue 220, and HLA class II arginine β72 interacts with gp42 residues
104–107. Second, the N-terminal portion of gp42, known to interact with gH/gL via residues
36–8130, is flexible and not resolved in the structure. Lastly, a hydrophobic pocket is present
at the canonical ligand-binding site of gp42 Residues within this hydrophobic pocket are
essential for B cell entry31, indicating that this pocket may interact with another ligand
during B cell entry. Crystallographic dimerization of HLA-bound gp42 via its N-terminal
region was observed 28, although dimerization does not occur with high affinity in
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solution32; hence, the oligomeric state of native gp42 at the viral membrane surface is not
yet clear.

In the more recently solved structure of unbound gp4227, 140 two regions of gp42 displayed
noticeably different conformations in the absence of HLA class II, which may indicate a
mechanism by which gp42 triggers membrane fusion upon receptor binding. First, the
hydrophobic pocket of gp42 is widened in response to HLA class II-binding, emphasizing
its critical and seemingly dynamic role in EBV B cell entry. It has been hypothesized that
the gp42 hydrophobic pocket may contain a second, higher-affinity binding site for gH/gL
or a binding site for gB or a cellular receptor27. Second, in the unbound structure, the
flexible N-terminal region of one gp42 molecule (residues 87–93, between the gH/gL
binding region and the CTLD) contacts the HLA-binding site of another gp42 molecule. The
N-terminal region also projects outward from the CTLD in a path distinct from that
observed in the HLA-bound structure. Changes in the gp42 N-terminal region could occur in
response to receptor binding and could contribute to fusion triggering.

gp42 as a viral tropism switch
Whereas a three-part complex of gp42/gH/gL is required along with gB for B cell entry, gH/
gL and gB are necessary and sufficient for epithelial cell entry. Soluble gp42 can rescue the
B cell infectivity of gp42-null EBV; however the presence of soluble gp42 is inhibitory to
epithelial cell membrane fusion and entry33, 34. This gp42-mediated inhibition of epithelial
cell entry is due to the binding of gp42 to gH/gL, since an N-terminal peptide of gp42
(residues 36–81) that is sufficient for gH/gL binding also inhibits epithelial cell entry30, 32.
This gp42 peptide inhibits B cell fusion as well when fusion is triggered in vitro with soluble
gp42, however when gp42 and gH/gL are co-expressed in the same cell, the peptide exhibits
only minimal B cell fusion inhibition, likely because gp42/gH/gL complexes are preformed
during biosynthesis prior to exposure to inhibitory peptide at the cell surface. Virions
synthesized in B cells contain lower amounts of gp42 in the virion envelope due to
sequestration by cellular HLA class II, whereas EBV synthesized in infected epithelial cells
contains higher amounts of gp42 in its envelope35. Hence, EBV appears to utilize gp42 as a
switch of cell tropism. Interestingly, some other herpesviruses, including the
betaherpesviruses CMV36 and HHV637, also encode glycoproteins that redirect cell tropism
by forming stable complexes with gH/gL. No such stable complexes with HSV gH/gL have
been reported.

EBV gH/gL receptor binding on epithelial cells
Compared to EBV B cell entry, epithelial cell entry has only recently begun to be
understood. Integrins, broadly expressed receptors that mediate attachment of cells to
surrounding tissue, seem to be intimately involved in EBV epithelial cell attachment and
fusion. The minimal required viral glycoproteins for EBV attachment to epithelial cells are
gH/gL38. Although it has been noted for some time that EBV gH/gL can bind epithelial, but
not B cells39–41, the first epithelial receptor for gH/gL was determined only recently42.
Binding of a soluble form of gH/gL to epithelial cells is reduced by siRNA-downregulation
of αv integrins. Soluble gH/gL is also capable of co-precipitating with αvβ6 and αvβ8, but
not αvβ3 integrins. Furthermore, the addition of soluble αvβ6 or αvβ8 integrin induced
fusion of cells expressing gH/gL and gB42. Taken together, these lines of evidence strongly
suggest EBV gH/gL binds these integrins and this receptor-binding is sufficient to trigger
EBV entry into epithelial cells.
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HSV triggers of fusion
HSV gD receptor binding

gD is the main HSV receptor-binding protein. It binds three classes of receptors: herpes
virus entry mediator (HVEM), a member of the TNF receptor family; nectin-1 and nectin-2,
cell adhesion molecules of the immunoglobulin superfamily; and 3-O-sulfated heparan
sulfate43, 44. Soluble forms of gD and its receptors can trigger fusion, indicating that the gD-
receptor interaction does more than tether the virus to the cell 45–47. Which receptors are
important during in vivo infection is not clear, however in mouse models of both genital
herpes and herpes simplex encephalitis, nectin-1 is the dominant receptor utilized by
virus48–50. Notably, nectin-1 is expressed in neurons, the site of HSV latency. Interestingly,
insertion of heterologous ligands into the gD sequence can be used to retarget HSV to novel
receptors, such as IL13Rα251 or HER252.

The structure of a truncated soluble form of gD in complex with HVEM has been solved,
revealing a V-like immunoglobulin fold at the gD core flanked by a large C-terminal
extension and an N-terminal loop. The C-terminal extension wraps around the core domain
and anchors the protein to the viral membrane53 (Fig. 2C). The N-terminal loop contains all
of the HVEM contact sites within gD at residues 7–15 and 24–3253–55. These N-terminal gD
residues are critical for interaction with all of the gD receptors. Mutagenesis studies have
shown that gD residues 7–32 are required for fusion triggered by 3-O-sulfated heparan
sulfate binding56 and that the nectin-1 and nectin-2 interaction also involves residues at the
gD N-terminus, most notably Y38, as well as underlying residues within the core of
gD57, 58.

Although the N-terminal region of gD contains the receptor-binding site, the C-terminal
region of gD is necessary for its the ability to trigger fusion and has been termed the “pro-
fusion domain”45. The structure of unliganded gD revealed that in the absence of receptor,
the gD N-terminus is flexible and the gD C-terminus is anchored near the N-terminus,
masking the receptor-binding site 59 (Fig. 2D). When the gD C-terminus was locked in a
‘receptor-unliganded state’ by introducing an intramolecular disulfide bond, receptor
binding and virus entry were abrogated. This suggests that the C-terminus of unbound gD
autoinhibits the N-terminal receptor-binding site59, 60. Upon receptor binding, the C-
terminus moves and this movement is necessary for both binding receptor and triggering
fusion61. Consistent with an autoinhibitory model, deletion of portions of the gD C-terminus
increases binding affinity for both HVEM and nectin-162.

HSV gB receptor binding
gB can bind to paired immunoglobulin-like type 2 receptor alpha (PILRα) and this
interaction can trigger viral fusion in the presence of gD63. The relatively new finding that
gB receptor-binding can trigger fusion is of particular interest because it is a departure from
the dominant model in which gD acts as the receptor-binding glycoprotein and gB acts
strictly as a fusion protein. PILRα is likely an immune system regulator and the in vivo
significance of the gB-PILRα interaction has yet to be explored, but it mediates the infection
of several cell lines in vitro63, 64, and may play a minor role in HSV-2 entry into human
retinal pigment epithelial cells65.

In addition to PILRα, two recently-identified receptors also have been shown to interact with
gB and trigger HSV-1 entry: non-muscle myosin heavy chain IIA (NMHC-IIA)66 and
myelin-associated glycoprotein (MAG)67, a protein expressed on neural tissues.
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HSV gH/gL receptor binding
Although gH/gL receptor binding has not been shown to be a critical trigger for HSV entry,
some studies have indicated a receptor-binding role for gH/gL. HSV gH contains an RGD
motif, which may mediate attachment to integrins but is not essential for virus entry 68. A
soluble form of gH/gL has been shown to bind to αvβ3 integrin-expressing cells in an RGD
motif-specific manner69 and engagement of αvβ3 integrin by gH/gL in the virion may direct
the route of entry of HSV70. In addition, soluble gH/gL has been shown to bind cells
independent of αvβ3 integrin, and to inhibit virus entry into a number of cell types in vitro71.
Similarly, expression in target cells of gH/gL from HSV71or CMV72 inhibits infection,
possibly by sequestering cellular receptors.

Conserved core fusion machinery
The HSV and EBV receptor binding activities described above act to trigger fusion, yet are
not sufficient for the completion of fusion. To mediate membrane fusion, HSV and EBV
employ the conserved proteins gB and gH/gL, collectively considered the core fusion
machinery of herpesviruses. The structures of both HSV-1 and EBV gB demonstrate that it
has structural homology to viral fusion proteins and is likely a key fusion protein in
herpesviruses73, 74. Fusion proteins can insert into target membranes and refold through
large conformational changes to draw viral and target cell membranes together, resulting in
fusion pore formation. The role of gH/gL during viral fusion is less clear. Recently, the gH/
gL structures of HSV-2, EBV, and a partial structure of pseudorabies virus (PRV) gH were
solved74–76, helping to define their roles as regulators of fusion.

The role of gH/gL during membrane fusion
The specific role gH/gL plays in fusion has been the most elusive among the required entry
glycoproteins. Several studies previously suggested that gH/gL acts as a fusion protein,
possibly mediating the hemifusion step77 (Fig. 1A). Peptides corresponding to HSV gH
heptad repeats, common features of fusion proteins, were shown to inhibit fusion and
peptides corresponding to gH hydrophobic regions, candidate “fusion peptides”, were shown
to bind lipids78–83. VZV gH/gL expressed alone using recombinant vaccinia virus was
shown be sufficient for cell-cell fusion84, 85. Lastly, 255 HSV gH/gL was shown to promote
fusion of the virion envelope with the outer nuclear membrane during viral egress 86.

While these studies suggested that gH/gL has fusogenic capability, a more recent study was
unable to demonstrate the ability of gH/gL to induce hemifusion87 and transfection of cells
in a vaccinia virus-free setting demonstrated that a combination of VZV gH/gL and gB was
required for fusion67. Most importantly, the recently solved crystal structures of the gH/gL
ectodomains demonstrate that gH/gL has no structural homology with any known fusion
protein74–76 and the candidate ‘fusion peptides’ of gH are buried76. Thus, the structural data
support a model in which gH/gL acts not as a fusogen, but primarily as a regulator of fusion
through interactions with gB.

HSV-2 gH/gL has an unusual “boot-shaped” structure composed of three domains, with the
N-terminal domain formed by both gH and gL76 (Fig. 3A). The interface of gH and gL
within this N-terminal domain is extensive and the proteins likely require one another for
proper folding. Interestingly, the EBV gH/gL structure has a more linear domain
arrangement with significantly different interdomain packing arrangements and modified
domain designations74 (Fig. 3B). This difference in the orientation of the N-terminal
domains may represent static structural variation between the two protein complexes.
Alternatively, the structural differences may reflect that gH/gL domains can undergo
dynamic rearrangement.
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The gH domains proximal to the viral membrane are more conserved among viruses and
adopt similar arrangements in the HSV and EBV structures. In contrast, the N-terminal
domains of gH/gL are the most divergent in sequence among herpesviruses, suggesting that
this membrane distal portion of the complex might interact with other virus- or cell-specific
proteins. For example, EBV gH domain II contains an integrin-binding KGD motif within
an exposed loop. In addition, the EBV gH/gL domain arrangement creates a prominent
interdomain groove, near the KGD motif and a domain I-II linker, which could serve as an
interaction site for gp42 or an epithelial cell receptor. Using chimeric gL molecules
comprised of EBV and rhesus lymphocrytovirus sequences, a species-specific functional
interaction between gH/gL and gB was mapped to EBV gL residues 54 and 9488. This gB
interaction site on EBV gH/gL is distinct from that proposed for HSV gH/gL. The HSV gB
interaction site is proposed to lie further down the complex, just below the epitope for
antibody LP11 (Fig, 3A), on the surface of domain H2 in a region that is conserved between
HSV-1 and HSV-276.

Neutralizing antibodies (Ab) bind multiple regions of gH/gL, possibly reflecting the fact that
gH/gL must interact with several partners for function. For example, the anti-HSV gH/gL
neutralizing Ab LP11 binds at the border of domains H1B and H2, whereas the neutralizing
Ab 52S maps to the opposite face of the complex in domain H2 (Fig. 3A). Similarly, the
anti-EBV gH/gL neutralizing Ab E1D1 binds in domain I near residues 65 and 69, whereas
the neutralizing Ab E1D1 maps to domains III and IV 40, 41.

Mutagenesis studies also indicate that both the membrane distal and membrane proximal
domains of the gH/gL ectodomain contribute to fusion promotion, consistent with gH/gL
having multiple roles during entry. HSV gH is relatively tolerant of insertion mutations,
however insertions in multiple domains reduce fusion efficiency and insertions at membrane
proximal HSV gH residues 791 and 799, downstream of the solved structure but prior to the
TM, abrogate fusion68, 89. Similarly, mutation of membrane proximal EBV gH residue 594
abrogates epithelial and B cell fusion, whereas mutation of residue 595 enhances B cell
fusion and decreases epithelial cell fusion41. At the other end of the complex, mutation of
EBV gH residue 74, which lies in the domain I-II linker near the interdomain groove,
moderately enhances fusion promotion90.

The solved structures depict only the ectodomains of gH/gL, however mutagenesis studies
indicate that the gH TM domain and cytoplasmic tail also play a role in fusion
promotion 89, 91–93. Although a soluble version of the HSV gH/gL lacking the TM and
cytoplasmic tail was shown to promote fusion94, its efficiency was greatly reduced.

gB: A conserved herpesvirus fusion protein
The HSV-1 and EBV gB structures revealed surprising structural homology to both
glycoprotein G from vesicular stomatitis virus (VSV G), the sole fusion protein of VSV, and
baculovirus gp64, the major envelope protein of baculovirus that is necessary and sufficient
for cell entry73, 95–97. This structural homology could not be predicted by sequence
similarity and indicates that, despite being insufficient for herpesvirus fusion alone, gB has a
similar fold to known fusion proteins and may undergo large conformational changes to
bring about fusion. While evidence for gB refolding has yet to be obtained, a model for
‘prefusion gB’ has been proposed95 and it seems likely that gB undergoes a refolding
transition during fusion. Together these proteins represent a newly defined class of fusogens,
called class III, with structural characteristics distinct from the well described class I
fusogens, such as influenza virus hemagglutinin, and class II fusogens, such as flavivirus E
protein98.
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HSV and EBV gB are trimers and each protomer contains five distinct domains (Fig. 4). The
fusion loops of gB are critical for membrane fusion99, 100, and are located in domain I,
structurally close to the expected location of the TM region. The core of the protein is
composed of an alpha-helical coiled-coil, a feature typical of many viral fusion proteins
including those of classes I and III. Long linker regions leading into and out of domains I
and II are hypothesized to permit a large-scale rotation necessary for the transition from pre-
to post-fusion conformations. Mutational and antigenic analyses highlight that multiple
domains of gB are critical for function, oligomerization is critical for function, and in the
case of EBV, gB may participate in the determination of cell tropism101–103. Insertion
mutations in all five of the gB domains can abrogate fusion, consistent with the concept that
gB undergoes a complex and ordered refolding process to drive fusion102, 103 (Fig. 4).

Overall, the HSV and EBV structures are remarkably similar. The most noticeable
difference between the HSV-1 and EBV gB structures is a shift in the position of domain IV,
the crown domain that contains epitopes for neutralizing anti-HSV antibodies. The fusion
loop sequences and electrostatic surfaces of the trimers also differ, perhaps indicating that
they interact with target phospholipid membranes in differently95.

It seems likely that the gB structures represent the post-fusion conformation of the protein.
Both pre- and post-fusion forms of the structurally homologous VSV G protein have been
solved97, 104 and the gB structures more closely resemble the VSV G post-fusion or low pH
structure. Furthermore, the gB fusion loops sit in close proximity to where the C-terminal
TM domain would lie, a feature shared with other post-fusion fusion protein structures,
including influenza virus hemagglutinin and paramyxovirus F protein98, 105. However,
nearly 50 residues at the C-terminus of the gB ectodomain are absent from both gB
structures and these could interrupt the perceived proximity between the fusion loops and
TM domain. Additionally, the epitopes for neutralizing anti-gB antibodies map to the
surface of the solved structure of HSV gB. Neutralizing antibodies could reasonably be
expected to recognize the pre-fusion structure of the protein, and at least some of these
epitopes would likely be obscured 345 in the post-fusion form of the protein. How gB
undergoes substantial folding changes to adopt distinct pre-fusion and post-fusion
conformations remains to be understood.

The gB cytoplasmic tail is not included in the solved structures, however many studies have
highlighted its role in gB function. Mutations in the HSV gB cytoplasmic tail can disrupt its
transport to the cell surface, reduce fusion, or enhance fusion, depending on the mutation
location106, 107. The HSV gB cytoplasmic tail expressed alone can interact with membranes,
possibly providing a mechanism for negative regulation of fusion108. Close but distinct
regions within the EBV gB tail positively and negatively regulate fusion109. Furthermore,
distinct mutations within the EBV gB tail can cause increased cell-surface expression and
fusion independent of gH/gL38. Collectively, these studies highlight that in addition to the
structurally complex gB ectodomain, several functional regions exist within the intracellular
cytoplasmic tail of gB.

Interaction of viral proteins
Triggering virus fusion with the right cells at the right time requires coordinated interactions
among multiple entry glycoproteins (Fig. 5). The most well defined interactions are those of
gp42 and gD with their receptors, which are stable enough for co-crystallization. EBV gp42
and gH/gL also have a high affinity interaction and a future structure of gH/gL bound to
gp42 or the previously mentioned gp42 peptide should reveal how the complex forms.
Details of the other glycoprotein interactions are not completely understood because they are
likely low affinity and/or transient and difficult to capture using wild-type proteins. Upon
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binding receptor, gD and gp42 must transmit a signal to gH/gL and/or gB. Several studies
suggest that a critical step in fusion is the interaction between gH/gL and gB, with the latter
glycoprotein being required for a committed and expanding fusion pore110–113.

EBV gp42 and gH/gL form a stable complex via the N-terminus of gp4230, 114. Since gp42
inhibits epithelial cell entry33, 34, it is likely that gp42 binding on gH/gL overlaps with an
epithelial receptor binding site, possibly near the loop that contains an integrin-binding KGD
motif (Fig. 3B). EBV gL residues 54 and 94 contribute to a functional interaction with gB88,
suggesting that the N-terminal region of EBV gH/gL may physically interact with gB.

HSV gD has been reported to associate with both gH/gL and gB. gD mutations mapped a
gD-gH/gL interactive site to the gD pro-fusion domain between residues 260–310 and a gD-
gB interactive site to gD residues 240–260 and 304–305115. A gD interaction with both gH/
gL and gB also has been detected using bimolecular complementation (BiMC). In BiMC,
two inactive halves of a fluorescent protein are fused onto separate glycoproteins of interest.
The resulting proteins are transiently expressed and their interaction restores a fluorescent
signal.

An association of HSV gH/gL with gB has also been shown using BiMC, however it is
unclear whether the gH/gL-gB interaction requires that gD first bind a receptor110, 112. A gB
interaction site on HSV gH/gL has been proposed to overlap with the epitope for the
neutralizing antibody LP11, since that antibody inhibits the gH/gL-gB BiMC signal76 (Fig.
3A). The gH/gL-gB interaction likely occurs prior to fusion and not as a result of fusion,
since some anti-HSV gB antibodies can block fusion without disrupting gH/gL-gB
BiMC116. In addition, mutations within the gB fusion loops blocked both gB-gH/gL BiMC
and fusion, perhaps suggesting that gB must insert its fusion loops into the membrane prior
to its interaction with gH/gL.

Whether the associations detected by BiMC represent functional interactions remains to be
determined. A more recent study suggests that gD binding to receptor activates gH/gL and
this activated gH/gL triggers gB in a cascading fashion to drive fusion 94. The interaction of
gH/gL with gB does not appear to require coexpression on the same membrane, since cell-
cell fusion has been reported when gB and gH/gL were expressed on distinct cells for both
HSV and CMV 94, 117.

Concluding remarks and key questions
With the recently solved gH/gL crystal structures, the structures for each glycoprotein
required for virus entry (HSV gD, gB, gH/gL and EBV gp42, gB, gH/gL), as well as two of
the cellular receptors that bind virus and trigger fusion (HVEM and HLA class II), are now
known. The structures illustrate conformational changes that may trigger fusion and identify
the viral fusogen. These viral glycoproteins serve as targets for neutralizing antibodies and
each represents a potential target for anti-viral therapy. Inhibitors of entry that target either
the viral or the receptor side of the interaction have been successful for HIV therapy118 and
dissection of the EBV gH/gL/gp42 interactions have identified a high affinity peptide
inhibitor of EBV fusion30, 114. These herpesvirus structures can be used both for rational
design of novel attachment and/or fusion inhibitors and to analyze inhibitors identified via
drug screens. The ability to model the conserved glycoproteins gB and gH/gL from the other
human and animal herpesviruses using these structures further expands their significance.

The structural examination of the proteins that mediate virus entry is ongoing and current
working models of HSV and EBV fusion will continue to be refined (Fig. 5). The structures
of the receptors nectin-1, PILRα, MAG, NMHC-IIA, and integrin αvβ6/8 remain to be
solved, both alone and in complex with glycoproteins. Furthermore, it is likely that multiple
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entry receptors remain to be identified, since soluble forms of both HSV gB and gH/gL bind
to cells and inhibit virus entry71, 119. On the viral side, the structures of the tethering proteins
HSV gC and EBV BMRF2 and the tripartite gp42/gH/gL complex have not been solved. In
addition, a structural comparison of the prefusion versus postfusion conformations of gB
would shed light on how this fusion protein refolds to mediate membrane fusion during
virus entry. Analysis of gB conformational changes will contribute to our understanding of
entry of other viruses that employ class III fusogens, including VSV and baculovirus.
Although many viruses enter cells using a single protein for both attachment and fusion,
herpesviruses are not alone in their complexity. Understanding how herpesvirus entry
proteins interact may provide insight into the entry of paramyxoviruses, which use separate
binding and fusion glycoproteins105 and poxviruses, which probably use even more entry
proteins than herpesviruses120.

Box 1: Therapeutic benefits of structural studies

Currently, no entry inhibitors for herpesvirus entry are routinely used clinically. Studies
focused on herpesvirus entry are valuable for the design of such inhibitors. Two types of
inhibitors could emerge from such studies. First, inhibitors that block virus glycoprotein-
glycoprotein or virus glycoprotein-cellular receptor interactions essential for receptor
binding and the triggering of fusion may result. As an example, gp42 peptides have been
identified that prevent B cell and epithelial cell fusion by interfering with the essential
interaction of gH/gL with gp42 for B cell infection or possibly with receptor for epithelial
infection30. High throughput screening approaches using biochemical assays developed
from this observation114 may result in small molecule inhibitors that interfere with
normal gH/gL function in EBV entry. Similar interactions between gD, gB, and gH/gL
may also be exploited. Second, inhibitors that prevent the fusion function of gB may be
developed. A large number of peptides have been designed that recognize heptad repeat
regions in herpesvirus gB, some of which are able to block fusion and entry possibly by
preventing conformational changes that occurs as gB refolds to its post-fusion
form121, 122. Solving the gB prefusion structure would simplify the design and
understanding of how such inhibitors function. This class of drug has shown previous
therapeutic success in the form of Fuzeon, a drug that targets the HIV fusion protein.
Finally, the determination of the structure of herpesvirus protein complexes and the
mapping functional domains will allow a better understanding of why certain antibodies
are neutralizing while others are not. This may lead to the development of more effective
vaccines to prevent herpesvirus infections.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Glossary

Enveloped virus Viruses that when outside of the cell, contain a phospholipid
membrane surrounding the viral protein coat.

Endocytic vesicle A membrane-bound vesicle participating in the endocytic membrane
transport pathway from the plasma membrane (outer membrane of a
cell) to the lysosome (a membrane-bound organelle containing
digestive enzymes that can, among other things, degrade invading
bacteria and viruses).

Latent virus
infection

A persistent viral infection that can occur in some cell types, during
which the virus ceases to replicate but limited expression of some
viral genes (a “latent phase transcriptional program”) still occurs.
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Heterodimer A compound consisting of two non-identical subunits (in this case, a
dimer composed of one gH molecule and one gL molecule).

C-type lectin
superfamily

A large family of functionally diverse proteins containing conserved
structures of double-loops stabilized by disulfide bridges, termed C-
type lectin-like domains.

Hydrophobic
pocket

A groove or pocket in a protein that may serve as a binding site and
is composed of mostly hydrophobic amino acid residues.

Cell tropism The preferential targeting of specific cell types within a host by a
pathogen.

Proteoglycans Proteins that contain an abundance of sugars including one or more
glycosaminoglycan chains on their surface.

Fusion peptide or
loop

A sequence of hydrophobic amino acid residues within a fusion
protein, sometimes in the shape of a loop, that inserts into a target
cell membrane during the fusion event.

Antibody epitope The portion of an antigen (a protein capable of eliciting an immune
response) recognized by a specific antibody directed against that
antigen.

Heptad repeat A structural motif in the amino acid sequence of proteins that can
signal the formation of a coiled-coil, a structure common to viral
fusion proteins.
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Figure 1. Herpesvirus entry
(A) Routes of entry. Depending upon cell type, both HSV and EBV can enter cells by fusion
at the plasma membrane or fusion with an endocytic membrane after endocytosis. Examples
of common cells for which each entry route is used are noted. (B) Two steps of virus entry.
1. Virus binds to cellular receptors (purple) via envelope glycoproteins (green). Some
receptor binding events serve simply to tether the virus to the cell. Other specific receptor
binding events trigger conformational changes in the entry glycoproteins that mediate
membrane fusion (asterisks). 2. Fusion of the viral and cellular membranes progresses
through a hemifusion intermediate, in which the outer membrane leaflets (blue) mix. This is
followed by full fusion, where the inner membrane leaflets (red) mix and a fusion pore is
formed. This figure is not drawn to scale.
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Figure 2. EBV and HSV receptor binding proteins, in bound and unbound states
(A) EBV gp42 bound to class II HLA-DR1 (PDB ID 1KG0). (B) Unbound gp42 (PDB ID
3FD4). gp42 binds HLA class II (blue) at a non-canonical site within the gp42 CTLD
(yellow, residues 94–221). HLA class II residues E46 and R72 (blue sticks) make extensive
contacts with gp42 residues 104–107 and R200 (green sticks). The canonical CTLD
interaction site lies on an opposite face of gp42 at a pocket lined with hydrophobic residues
(magenta sticks). Asterisks denote conformational differences seen in gp42 in the presence
or absence of HLA class II. When bound to HLA, gp42 loops at residue 158 (cyan) and 167
(red) are shifted and the hydrophobic pocket (HP) widens compared to unbound gp42. In the
absence of HLA, the gp42 N-terminus projects outward in a path distinct from that observed
for HLA-bound gp42. The N-terminus of gp42 is flexible and the residues that bind to gH/
gL (gp42 residues 36–81) were not resolved. Peptide loaded in the HLA class II is colored
orange. (C) HSV-1 gD bound to HVEM (PDB ID 1JMA). A truncated form of the gD
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ectodomain (gD285) with high affinity for HVEM was crystallized in complex with HVEM
(blue). (D) Unbound gD (PDB ID 2C3A). A cysteine was added to the C-terminus of the
gD ectodomain [gD(23–306)307C] which stabilized a gD dimer. A monomer is shown. The
core of gD forms an Ig fold (yellow) that is flanked by N-terminal (green) and C-terminal
(red) extensions. Asterisks denote conformational differences seen in gD in the presence or
absence of receptor. In the presence of HVEM, the N-terminus of gD (green) forms a loop
that serves as the receptor binding site and is stabilized by receptor binding. The C-terminal
region, residues 260–285, is disordered in the crystal. In the absence of HVEM, the C-
terminal region (red), which includes the pro-fusion domain, is anchored near the N-terminal
region (green). The C-terminus masks the receptor binding site and the N-terminal loop
conformation is not present. The structure of gD285 (PDB ID 1L2G, not shown) in the
absence of receptor demonstrates a similar loss of the N-terminal loop and its N-terminus is
disordered past residue 14 59.
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Figure 3. Conserved entry glycoproteins gH/gL
(A) HSV-2 gH/gL (PDB ID 3M1C). The HSV gH/gL heterodimer adopts a boot-like
configuration. The N-terminal gH domain H1, comprised of subdomains H1A (red) and
H1B (green), clamps gL (blue) and make extensive contacts. The C-terminal gH domains
H2 (yellow) and H3 (orange) are shown. Substitution mutations at gH residues 168 or 329
(magenta spheres) or insertion mutations at gH residues 300, 313, 316, or 317 (magenta
sticks) prevent binding of the neutralizing MAb LP11. On the opposite face of the complex,
substitution mutations at gH 536 or 537 (cyan spheres) prevent binding of the neutralizing
MAb 52S. (B) EBV gH/gL (PDB ID 3PHF). EBV gH/gL domain designations differ
somewhat from HSV-2. Domain I is comprised of gL (blue) and the N-terminus of gH (red).

Connolly et al. Page 22

Nat Rev Microbiol. Author manuscript; available in PMC 2012 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Domain II (green) contains an eight-stranded β-sheet that forms a ‘picket fence’ separating
domain I from a helical bundle within domain II that lies parallel to the fence. Domain III
(yellow) is mainly helical and domain IV (orange) forms a β-sandwich. The EBV gH/gL
heterodimer is more linear and elongated than the HSV-2 complex because the interdomain
packing arrangements of EBV gH/gL differ significantly. Packing angles differ by ~90°
between domains I and II and ~45° between domains II and III. EBV gL residues Q54 and
K94 (blue spheres) contribute to a functional interaction with EBV gB. A KGD motif (green
sticks) is located in a prominent loop of domain II and lies adjacent to the helical linker
between domains I and II. A mutation at residue gH-L74 (green spheres) near the linker
results in increased fusion promotion. Mutations at gH residues G594 or E595 (orange
spheres) differentially affect fusion promotion.
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Figure 4. Conserved fusion protein gB
(A) HSV-1 gB (PDB ID 2GUM). (B) EBV gB (PDB ID 3FVC). Domain I (blue) contains
hydrophobic fusion loops (magenta) that insert into the target cell membrane. For
crystallization, the hydrophobic residues in the EBV gB fusion loops were replaced with
corresponding residues from HSV-1 gB. The C-terminal domain V (red) packs against the
coiled-coil core formed by domain III (yellow) and proceeds through domain I, headed
towards the transmembrane (TM) region. This creates a hairpin-like organization of the
structure wherein the fusion loops and TM lie at the same end of the trimer. The location of
insertion mutations that reduce fusion without preventing gB expression are noted (spheres
colored according to domain).
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Figure 5. Models of fusion
(A) HSV fusion with a target cell at the plasma or endosomal membrane. 1. gD is expressed
as a dimer with its C-termini occluding its receptor binding site. 2. Upon binding HVEM,
the N-terminus of gD (red) forms a loop and displaces the gD C-terminus that contains the
profusion domain (purple). Nectin-1 binds to an overlapping site on gD and displaces its C-
terminus in a similar manner. The gB trimer also possesses receptor-binding activity and the
gH/gL heterodimer may bind to a cellular receptor as well. 3. Different sites within the gD
profusion domain can interact with gH/gL and gB. In addition, gH/gL and gB may interact
with one another in response to gD binding receptor. These interactions trigger gB to insert
its fusion loops (orange) into the target membrane. 4. gB then refolds to its postfusion
conformation to mediate fusion of the viral and cellular membranes. (B) EBV fusion with B
cell endosomal membrane. 1. gp42, a type II glycoprotein, undergoes N-terminal cleavage
and is retained on the virion by binding gH/gL via the gp42 N-terminus. 2. When HLA class
II binds to gp42, a hydrophobic pocket (purple) on gp42 widens. gH/gL may also bind a
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receptor. 3. Conformational changes within gp42 and/or gH/gL trigger gB fusion loop
(orange) insertion. The hydrophobic pocket in gp42 may serve as an interaction site to
promote fusion. 4. gB refolds to a postfusion conformation, thereby mediating membrane
fusion. (C) EBV fusion with epithelial cell plasma membrane. 1. gp42 functions as a tropism
switch and inhibits entry into epithelial cells. Virus produced in B cells is deficient in gp42
and thus able to infect epithelial cells. 2. gH/gL binds to receptor such as integrin. 3. After
receptor binding, gH/gL interacts with gB and triggers fusion loop (orange) insertion. 4. gB
refolds to a postfusion conformation, thereby driving membrane fusion. Checkmarks denote
structures that have been solved. Note that gp42 and gH/gL were not solved in complex.
Structures for the other protein complexes and conformations, such as receptor-bound gH/
gL and pre-fusion gB, remain to be determined.
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Table 1

Glycoprotein functions and receptor interactions

Glycoproteins Function Cellular Receptor(s)

EBV

BMRF2 Binds epithelial cells (dispensable for fusion) β1 or α5β1 integrins

gp350 Binds cells (dispensable for fusion) CR2/CD21

gp42 Binds B cells, triggers fusion HLA class II

gH/gL Binds epithelial cells Triggers/regulates fusion with epithelial
and B cells αvβ6 & αvβ8 integrins

gB Catalyze membrane fusion

HSV

gC Binds cells (dispensable for fusion) Heparan sulfate

gD Binds cells, triggers fusion HVEM, nectin-1, nectin-2, 3-O-sulfated heparan
sulfate

gH/gL Triggers/regulates fusion unknown

gB Catalyze membrane fusion heparan sulfate, DC-SIGN PILRα, MAG,
NMHC-IIA
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