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Abstract
X-ray fluoroscopy is widely used for intra-operative dosimetry in prostate brachytherapy. Three-
dimensional locations of the implanted radioactive seeds can be calculated from multiple X-ray
images upon resolving the correspondence of seeds. This is usually modeled as an assignment
problem that is NP-hard. We propose an algorithm that allows us to derive an equivalent problem
of reduced dimensionality based on practical observation that the optimal solution has almost zero
cost if the C-arm pose is known. The reduced problem is efficiently solved by linear programming
in polynomial time. Additionally, our method solves the hidden seeds problem. Simulation results
demonstrate that the implanted seeds can be localized with a matching rate of ≥ 98.8 % and
reconstruction error of ≤ 0.37 mm using three images with hidden seeds in a few seconds when
the pose of the C-arm is known.

Index Terms
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1. INTRODUCTION
Prostate cancer is one of the most prevalent cancers in men, with 186,320 new cases and
28,660 deaths annually in the United States alone [1]. Low dose permanent brachytherapy is
one of the most common treatment methods for low risk prostate cancer [2]. Its success
mainly depends on the ability to treat the target gland with a therapeutic dose by implanting
a sufficient number of radioactive seeds. Typically, a pre-operative implantation plan is
made based on an ultrasound volume study. However, even though the implant procedure
will be guided by ultrasound as shown in Fig. 1(a), the seeds are not always positioned
accurately for various reasons including patient motion and edema. X-ray imaging has been
previously proposed for imaging and reconstructing seed positions [3–8], thereby permitting
intra-operative dosimetry modifications leading to improved outcomes.

The most common approach to the reconstruction of brachytherapy seeds from X-ray
images is to 1) acquire a small number of images from several angles, 2) segment the seeds
within each image, 3) determine which segmented seeds in each image correspond to the
same physical seed, and 4) “triangulate” the positions of each physical seed from the
corresponding seeds. At least three images are necessary to eliminate ambiguities and the
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optimization problem that is required to determine seed correspondence is NP-hard [6]. An
underlying assumption is that all the seeds are segmented and their image coordinates are
known. Since overlapping seeds are common [9], however, it is practically impossible to
reliably identify and localize every seed in every image. Hidden seeds are usually recovered
manually, and it is sometimes impossible to recover them when one seed completely hides
another. The problem of overlapping seeds represents a significant impediment to the
routine application of seed reconstruction in the clinic.

There has been some research on solving this so-called hidden seed problem where seeds
cannot be reliably identified and localized on the projection images. Su et al. [9] extended
Fast-CARS [4] to incorporate hidden seeds, but the new algorithm reconstructed a greater
number of seeds than were actually present. Narayanan et al. [10] proposed a method which
ordered the seeds using the epipolar constraints. However, it required co-planar images (co-
linear X-ray sources) and could not reconstruct undetected seeds if they existed in the same
search restriction band. Su et al. [11] proposed an adaptive grouping technique which
divides the seed images into groups for efficient seed reconstruction and is capable of
handling hidden seed problem. However, it may fail to detect overlapping seeds when the
projection with the largest number of seed images among the divided groups is incomplete.
Also, incorrect division of triplets, referred to as “overdividing” may cause false positive
seeds. Intensity-based methods using tomosynthesis [12] and Hough trajectory [13] have
also been proposed. However, these methods require unfeasibly large number of images to
guarantee stable reconstruction.

We have previously proposed an optimal matching algorithm using dimensionality reduction
[8]. In the present paper, we extend the previous method in order to address the hidden seed
problem. This new algorithm also uses dimensionality reduction and it also introduces a
pruning algorithm for efficient cost computation which allows us to significantly reduce the
total computation time.

2. METHODS
When at least three images are used and all the 2-D seed locations are identified in every X-
ray image, the correspondence problem can be formulated as a 3-D assignment problem
(3DAP) [6, 8]. Given these matched seed locations, a reconstruction of the seed locations in
3-D can be achieved provided there are no ambiguities. It is more likely that such
ambiguities are avoided when there are more X-ray images, but this in turn increases the
complexity of the problem. The 3DAP is usually solved under the assumption that all the
seeds are segmented and their image coordinates are known. However, in reality, there are
significant amount of overlapping seeds, resulting in varying number of segmented seeds in
each image. Here, we describe a new extension of the 3DAP to reconstructing overlapping
seeds that are occluded in one or more X-ray images. The extended method uses three
images, which is often sufficient in practice, and is extendable to more images.

2.1. 3-D Reconstruction as a matching problem: extension to hidden seed problem
In contrast to the 3DAP where exactly N implanted seeds are identified in every image, we
consider a different number Ni of identified seeds in each image i with Ni ≤ N. We also
consider I (≥ 3) X-ray images. Then the 3DAP can be extended to an extended assignment
problem (EAP) in order to handle hidden seed problem in the following way.
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(1)

where

(2)

ci1i2i3…iI is the cost of matching point  to points { } and xi1i2i3…iI is a
binary variable deciding the correctness of the match 〈i1, i2, i3, …, iI〉. Note that inequalities
are used in the constraints (2) to handle the occurrence of hidden seeds. In this problem, a
point can be chosen more than once in an image. The last equality forces the total number of
seeds to be N which does not appear in the constraints set of the 3DAP.

2.2. Solving EAP with dimensionality reduction
2.2.1. Principle of the dimensionality reduction—A feasible solution of a 3DAP
with I projection images, without hidden seeds, has (n!)I−1 feasible solutions. Since the
number of implanted seeds N in prostate brachytherapy is not small (~ 100), it is hard to
solve (1) within clinically adequate time. However, both 3DAP and EAP have a salient
feature that we can exploit: the optimal solution has a near-zero cost when the pose error is
low (it is actually zero when the pose is known without error). We utilize this feature to
reduce the number of variables in the problem, thus permitting us to get the optimal solution
at a reasonable computational cost.

Let N′ = N1N2 … NI. We rewrite the variables xi1i2…iI and the costs ci1i2…iI in vectorial
forms such that x, c ∈ ℝN′. In the sequel we also make use of the notation uℓ to denote
ui1i2…iI. The EAP (1)–(2) reads as the following integer linear program

(3)

with the constraint set = {x: Mx ≥ [1, …, 1]t, xt[1, …, 1] = N, xℓ ∈ {0, 1}}, where M is a
matrix form of (2), except the last equation.

Since the value of x is either 0 or 1 and there must be N 1’s, an optimal solution of the
problem P can be thought of as the selection of N cost coefficients such that the resulting
cost is minimum while constraints  are satisfied. Given a feasible solution, Lemma 1 in [8]
states that all cost coefficients that are greater than the cost associated with this solution
cannot be selected in the optimal solution. Since those coefficients can never be selected, the
dimension of the problem can be reduced by removing those coefficients from further
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consideration. This yields a following equivalent problem of reduced dimensionality (for
proof, see [8, Sec.2.2]):

(4)

where x̃, c ̃∈ ℝK (K ≤ N′) and with the constraint set  = {x̃: M̃x̃ ≥ [1, …, 1]t, x˜t[1, …, 1] =
N, xℓ̃ ∈ {0, 1}} with M̃ = MR and where R is the dimensionality reduction matrix of size N′

× K such that .

Once the reduced problem P̃ is solved, the optimal solution to the original problem P is
simply given by x* = Rx̃*. If the dimensionality reduction is sufficiently large, then the new
problem can be solved exactly in reasonable time even though the original problem is far too
costly to solve.

2.2.2. Reconstruction accuracy and seed reconstruction—To compute , we need
to compute 3-D intersection of the corresponding straight lines in space. Due to various
errors, these straight lines never intersect, forcing us to compute a symbolic 3-D intersection
point. The symbolic intersection is typically defined as the global minimum of an error
function. Here we use reconstruction accuracy (RA2) based on L2 norm of Euclidean
distance from the intersection point to the lines as a cost function and propose a simple and
quick method to minimize it.

Let I be the total number of 3-D straight lines, with line i defined as having unit direction li
(ai, bi, ci) and a point pi on it, as shown in Fig. 1(b). Let PI (x, y, z) be the representative
intersection of these I lines. Let di be the Euclidean distance of PI from line i. Thus, by
definition, PI achieves the minimum L2 norm for the vector (d1, d2, …, dI). In other words,
we need to find a PI such that it minimizes a function :

(5)

Then PI can be analytically computed by solving .

This is the final seed coordinate. It can be computed very quickly by a few summations
followed by a 3 × 3 matrix inversion. Note that PI is chosen so as to minimize RA2.

Once the EAP (1)–(2) is solved with RA2 costs, the estimation of the 3-D location of the N
implanted seeds can be determined by the symbolic 3-D intersection points P used to
compute the N chosen RA2 costs in the solution (those that corresponds to 1 in x).

2.2.3. Efficient computation of cost coefficients—Number of the cost coefficients
increases exponentially as a function of the number of images. For N seeds and I images,
there are NI cost coefficients, when there is no hidden seeds. For three images, the
computation of all the 1003 RA2 cost coefficients with 100 implanted seeds requires only
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about 10 s using MATLAB on a Pentium4 PC. For six images, however, the computation of
all the 1006 RA2 cost coefficients would require an astonishing 116 days (1006 × 10 s) and
thus is utterly impractical. An alternative to the exhaustive cost coefficients computation is
required.

The dimensionality reduction approach described in Section 2.2.1 requires only to compute
the K cost coefficients lower than a threshold. This implies that the exact value of most of
the cost coefficients is not required. An efficient way to tell if a cost coefficient is actually
higher than the dimensionality reduction threshold would allow to skip its exact
computation. This unnecessary cost computation can be avoided by utilizing the following
Lemma.

Lemma 2.1: Every RA2 cost coefficient has the following lower bound:

(6)

where d(li1, li2) is the Euclidean distance of line i1 to line i2 and with I images.

Proof: The midpoint PI from I images is defined by .

Let then P{i1,i2} = arg minP Σi={i1,i2}||(P − pi) × li||2, then Σi={i1,i2}||(PI − Pi) × li||2 ≥
Σi={i1,i2||(P{i1,i2 − pi) × li||2 = d(li1, li2)2/2. Combine this and

 to get

. Finally, this and (5) give us (6).

Based on Lemma 2.1, we propose a pruning algorithm for efficient RA2 cost computation.

Pruning algorithm for efficient computation of RA2 costs lower than a
threshold

1. Compute every possible d(li1, li2)2 for I images.

2. Compute c1̃,2,…,I (i1, i2, …, iI) = Σi1,i2∈{1,2,…,I}, i2i1 d(li1, li2)2 lower than the
dimensionality reduction threshold η by pruning.

For the first i images, we have

. Thus, c ̃1,2,…,i (i1, i2, …, ii) increases as a function of the number of image i.
When c1̃,2,…,i (i1, i2, …, ii) > η, the computation of c1̃,2,…,I (i1, i2, …, iI) is not
required. Actually, a huge family of cost coefficients can be pruned in this case.
This family is the following N I−i coefficients {c1̃,2,…,I(i1, i2, …, ii, 1: N, …, 1: N)},
assuming no hidden seed. This nice property allows a recursive algorithm where
images are virtually added one at a time and where a list of coefficients lower than
η is updated.

3. Compute the RA2cost coefficients whose indexes (i1, i2, …, iI) are the same as
those of the list of coefficients c1̃,2,…,I (i1, i2, …, iI) lower than.

More RA2 costs coefficients are actually computed from the indexes of coefficients c1̃,2,…,I
lower than the dimensionality reduction threshold η, than strictly required because (6) is

Lee et al. Page 5

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2011 December 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



only an inequality. The performance of the pruning algorithm directly depends on the ratio
of the number of RA2costs coefficients computed and the number of those actually lower
than η. In practice, we observed that this ratio is in the range of 3 to 15, which is very
compelling.

2.3. Optimization strategy: Linear programming
Integer Program (IP) such as 3DAP can be directly solved with standard techniques such as
branch and bound. However, IP problems are NP-hard and may take an exponential amount
of computation time. It has been shown that the linear program corresponding to the 2-D
assignment problem (2DAP) has an integer solution even without integer constraints [14].
As well, this linear program can be solved efficiently in polynomial time using interior point
methods [15]. To our knowledge, however, there is no analogous result for the 3DAP or
EAP. We have implemented the linear program for the EAP followed by a test to see if its
solution is binary (up to numerical errors) using MATLAB command linprog.

3. NUMERICAL RESULTS
The EAP algorithm was implemented using MATLAB 7.1 and tested on a Linux PC
(Pentium4 2.92 GHz, 3.8GB RAM). We performed simulation studies using synthetic
projection images. We considered seed density of 2 and 2.5 seeds/cc and prostate size of 35
and 45 cc, resulting in four cases with N = {72, 84, 96, 112} implanted seeds. For each case,
three different data sets were generated. We assumed that the C-arm is calibrated and the
pose of the C-arm is known without error. We also assumed that the image acquisition angle
was 10° and generated six projection images on a 10° cone along the AP-axis in each data
set. In each image, there were up to 5.6% hidden seeds. A total of 240 reconstructions were
computed ( ) using three images, and Table 1 shows the results. The
results imply that implanted seeds can be localized with detection rate of ≥ 98.8% and
reconstruction error of ≤ 0.37 mm up to 112 seeds when the pose is known. And average
computation time for the seed matching was only 2 s or less.

In order to evaluate the robustness of the algorithm to pose error, we added random error
which is uniformly distributed on [−h, h] (we report this as h error) to the known pose. For
rotation, random errors from 1° to 4° with 1° steps were added to the known rotation at each
pose around random rotation axes. Translation errors varied from 2 mm to 10 mm with 2
mm steps. When we generated translation errors, we incorporated the fact that translation
errors in depth are always significantly greater than those parallel to the plane [6]. Shown in
Figure 2, our results imply that the EAP algorithm reliably finds the correct match and
reconstruct the seeds with > 95% accuracy with up to 2° rotation error and 4 mm translation
error. Contemporary tracking systems can easily achieve this tracking accuracy [16].

4. CONCLUSION
This paper presents a computationally tractable and clinically feasible seed correspondence
approach for brachytherapy seed reconstruction. The approach solves the problem of hidden
seeds without the use of manual intervention while still maintaining low computation times
using a new pruning algorithm for efficient computation of the RA2 cost. In simulations, it
matched over 98.8% of the seeds with a reconstruction error of less than 0.37 mm using
three images. Simulation results also show that the algorithm is robust to realistic C-arm
pose errors. Although the algorithm is formulated for any number of images, our testing
herein was limited to just three images. Future work will explore the tradeoffs in
computation time and performance when using more than three images and validations will
be performed using both phantom and clinical data.
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Fig. 1.
(a) A schemetic describing prostate brachytherapy procedure. (b) A symbolic intersection is
calculated by finding the point with minimum sum of square distances from the lines.
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Fig. 2.
Matching rates and reconstruction errors as a function of (a, c) rotation and (b, d) translation
pose errors.
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Table 1

Simulation results. Pose of the C-arm is assumed to be known without error. Up to 5.6% of seeds are hidden in
each projection image.

Number of seeds Mean match rate (%) Mean ± STD recon. error (mm) Computation time (s)

72 99.3 0.33 ± 0.06 1.01

84 99.0 0.30 ± 0.06 1.28

96 99.1 0.37 ± 0.06 1.58

112 98.8 0.35 ± 0.07 2.07
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