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Abstract
Quantile regression (QR) is a very useful statistical tool for learning the relationship between the
response variable and covariates. For many applications, one often needs to estimate multiple
conditional quantile functions of the response variable given covariates. Although one can
estimate multiple quantiles separately, it is of great interest to estimate them simultaneously. One
advantage of simultaneous estimation is that multiple quantiles can share strength among them to
gain better estimation accuracy than individually estimated quantile functions. Another important
advantage of joint estimation is the feasibility of incorporating simultaneous non-crossing
constraints of QR functions. In this paper, we propose a new kernel-based multiple QR estimation
technique, namely simultaneous non-crossing quantile regression (SNQR). We use kernel
representations for QR functions and apply constraints on the kernel coefficients to avoid crossing.
Both unregularised and regularised SNQR techniques are considered. Asymptotic properties such
as asymptotic normality of linear SNQR and oracle properties of the sparse linear SNQR are
developed. Our numerical results demonstrate the competitive performance of our SNQR over the
original individual QR estimation.
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1. Introduction
Regression is central to statistics. Different from ordinary least squares regression, quantile
regression (QR) tries to estimate the conditional quantile function. It was originally
introduced by Koenker and Bassett (1978) and has been extensively studied afterwards. It
has been applied in many different areas. Interested readers are referred to Koenker (2005)
for a comprehensive review on QR.

Many real applications ask for a complete understanding of the conditional distribution of
the response given covariates. One approach is to estimate multiple conditional quantile
functions. A naive method is to individually estimate different conditional quantile
functions. This individual estimation method is simple and easy to carry out. Theoretically
different conditional quantile functions should not cross each other according to the basic
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principle of conditional distribution functions. However, the naive individual estimation
may lead to estimated conditional quantile functions that cross each other. Thus, it is
desirable to jointly estimate multiple QR with non-crossing constraints embedded. Another
important motivation of joint estimation is that multiple quantile functions may share
strength among them (Zou and Yuan 2008a). As a result, simultaneous estimation may help
to improve the estimation accuracy of an individual quantile function.

In the literature, there exist some techniques addressing the crossing issue of multiple
quantile function estimation. He (1997) proposed the location-scale shift model to impose
monotonicity across the quantile functions. However, as noted by Neocleousa and Portnoy
(2007), even for linear regression quantiles, corresponding models can be much more
general. Thus, a more general development of the estimation of non-crossing regression
quantiles is needed. Shim, Hwang and Seok (2009) also considered the location-scale model
and proposed to estimate both location and scale functions simultaneously by doubly
penalised kernel machines to achieve non-crossing of quantiles. Takeuchi, Le, Sears and
Smola (2006) proposed to impose non-crossing constraints on the data points. Although
their approach can help to reduce the chance of crossing, their data constraints may not
ensure non-crossing in the entire covariate space. Takeuchi and Furuhashi (2004) further
extended the method of Takeuchi et al. (2006) by using the ε-insensitive check function in
the support vector machine framework. Recently, Wu and Liu (2009) proposed a stepwise
procedure to perform the estimation of multiple non-crossing QR functions. Despite
improvement over individually estimated quantile functions, the stepwise procedure does
not produce a simultaneous estimation. In a recent paper, Bondell, Reich and Wang (2010)
proposed an method for non-crossing quantile regression curve estimation using spline-
based constraints.

For nonparametric non-crossing quantile estimation, several people have proposed to first
estimate the conditional cumulative distribution function via local weighting and then invert
it to obtain the quantile curve. Yu and Jones (1998) suggested a double kernel smoothing
method with a minor modification of this estimate in a second step, so that the
corresponding quantile curves are monotone. Hall, Wolff and Yao (1999) proposed an
adjusted Nadaraya-Watson estimate, which modifies the weights of the Nadaraya–Watson
estimate such that the resulting estimate of the conditional distribution function is monotone.
Chernozhukov, Fernandez-Val and Galichon (2009) proposed to estimate non-crossing
quantile curves via a monotonic rearrangement of the original non-monotone function. They
also studied the asymptotic behaviour of their bootstrap-type method. Dette and Volgushev
(2008) proposed a similar approach to achieve non-crossing quantile curves via solving the
problem of inversion and monotonisation on the initial estimates. Although these indirect
approaches are effective in obtaining nonparametric quantile curves without crossing, it can
be difficult to quantify the effect of the predictors. For instance, if variable selection is a
desirable goal, a direct approach is needed to estimate multiple non-crossing quantiles.

In this paper, we propose a new method to perform simultaneous estimation of multiple non-
crossing conditional quantile functions. We call the method simultaneous non-crossing
quantile regression (SNQR). We employ simple constraints on the kernel coefficients which
can guarantee the estimated conditional quantile functions never cross each other. This
kernel formulation covers both linear and nonlinear models. Furthermore, we demonstrate
that through sharing strength among different quantiles, SNQR can produce better
estimation than individually estimated quantile functions. We have also developed
asymptotic normality of linear SNQR and oracle properties of the sparse linear SNQR.

To illustrate the effect of quantile crossing and the benefit of joint estimation, we consider a
simple illustrating one-dimensional toy example. Consider the underlying model Y = X + ε,
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where X ∼ Uniform[−1, 1] and ε ∼ N(0, 0.25) are independent of each other. Figure 1
displays the true and estimated quantile functions based on a simulated data set of size 40
using individual and joint estimations, respectively. The Gaussian kernel was used for the
estimation. From the plots, we can clearly see that individual estimation has severe quantile
crossing, while our SNQR does not. More importantly, it appears that the individual
estimation performs poorly for small or large τ values such as 0.1 and 0.9. In contrast,
through the joint estimation, our proposed SNQR gives much improvement on the
estimation of all quantile functions.

The rest of this article is organised as follows. In Section 2, we briefly review the standard
QR and then introduce the proposed SNQR. In Section 3, we develop the asymptotic
properties of a linear SNQR. We demonstrate the numerical performance of our proposed
SNQR using simulations in Section 4 and the baseball data example in Section 5. Some final
discussion is given in Section 6. Proofs of theoretical results are collected in the appendix.

2. Methodology
In this section, we first briefly review the standard QR and then introduce the proposed
SNQR. In this paper, we use the kernel representation for quantile functions and embed non-
crossing constraints on the kernel coefficients. Due to the use of kernel formulation, we first
introduce the nonlinear version in Section 2.1, followed by the linear case in Section 2.2.

Suppose that we are given a sample {(xi, yi), i = 1, 2, …, n} with covariates xi ∈  ⊂ ℝd

and the response yi ∈ ℝ. The conditional τth quantile function fτ(x) is defined such that

(1)

for 0 < τ < 1. By tilting the absolute loss function, Koenker and Bassett (1978) introduced
the check function which is defined as ρτ (z) = z(τ − I(z < 0)) and illustrated in Figure 2.
Here I(·) denotes the indicator function. Further they demonstrated in their seminal paper
(Koenker and Bassett 1978) that the τth conditional quantile function can be estimated by
solving

(2)

Depending on how large the function space  is, a regularisation term may be necessary to
avoid over-fitting and improve generalisation ability as considered in Koenker, Ng and
Portnoy (1994) and Koenker (2004). Namely, we add a roughness penalty term J(fτ) and
solve

(3)

where λ is a tuning parameter balancing the data fitting measured by the check function and
the complexity of fτ(·) measured by the roughness penalty J(fτ). The kernel QR by Li, Liu
and Zhu (2007) fits in the form of Equation (3).

Liu and Wu Page 3

J Nonparametr Stat. Author manuscript; available in PMC 2011 December 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Although QR works well for estimating a quantile function for any particular τ, in certain
scenarios, it is desirable to estimate multiple conditional quantile functions simultaneously.
For example, one may be interested in estimating K quantile functions for 0 < τ1 < τ2 < ⋯ <
τK < 1. A naive way is to estimate fτk(·) individually by solving Equation (2) or (3) one at a
time to get estimates f̂τk, k = 1, 2, …, K. Despite its simple implementation, there are some
drawbacks with the naive approach. First of all, in theory, different quantiles should not
cross each other. However, the naive estimates may suffer from quantile crossing for the
finite sample case, especially when the sample size is small. Secondly, the naive estimation
cannot share the strength of other quantile estimation due to the individual estimation
scheme. Therefore, it is desirable to have a joint estimation technique which can ensure non-
crossing of different quantiles and also improve the estimation accuracy of the quantile
functions.

In this section, we propose a new general method that guarantees non-crossing of the
estimated multiple quantile functions. Our method is based on the use of kernel
representation of quantile functions. To introduce the proposed technique, we first discuss
the nonparametric case using a Mercer kernel. Then we extend our method to the parametric
linear case. For both cases, we assume that our input domain  is bounded. This bounded
domain assumption is natural and necessary for our nonparametric technique. Even for the
linear case, the bounded domain assumption is very reasonable due to the fact that two linear
lines will eventually cross each other in ℝd unless they are parallel.

2.1. Nonlinear case
For a Mercer kernel function K(·, ·), the representer theorem (Kimeldorf and Wahba 1971)

allows us to represent the τth quantile function by . Our key
observation is that for two quantile functions fτ1 and fτ2, if the kernel function is non-
negative with K(·, ·) ≥ 0, then we have fτ1(x) ≤ fτ2(x) for any x ∈  if wτ1,i ≤ wτ2,i; i = 1, …,
n and bτ1 ≤ bτ2. One typical example of non-negative kernels is the Gaussian kernel with
K(x1, x2) = exp(−‖x1 − x2‖2/σ2), where σ2 is the kernel parameter. Using this observation,
we can use simple constraints on the kernel coefficients to jointly estimate K kernel-based
quantile functions without crossing.

Using the additional constraints, our SNQR technique estimates the QR coefficients by
solving the following joint optimisation problem

(4)

(5)

(6)

where wτk = (wτk,1, wτk,2, …, wτk,n)T and K is a matrix of size n × n with its (i, j) element

being K(xi, xj). Here the regularisation term for the kth quantile function is  as a
consequence of the representer theorem (Kimeldorf and Wahba 1971).
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Note that the set of simple constraints (5) and (6) can guarantee the non-crossing of the
estimated quantile functions as long as K(·, ·) ≥ 0. Here we want to note that the non-
negativity assumption on the kernel K(·, ·) is not essential. According to Scholkopf and
Smola (2002), K(·, ·) + C is a Mercer kernel as long as K(·, ·) is a Mercer kernel and C ≥ 0.
Thus, for any Mercer kernel K(·, ·), we define K+(·, ·) = K(·, ·) − K , where K  = min{0,
infx∈ ,x′∈  K(x, x′)}. Then the new kernel K+ (·, ·) satisfies the non-negativity assumption.

Denote the solution to Equation (4) by  and  when the new kernel K+(·, ·) is used. Our
estimated conditional quantile functions are given by

 for k = 1, 2, …, K.
Note that our estimate f̂τk(x) can still be expressed in terms of the original kernel K(·, ·) that
we begin with.

As a remark, we note that the objective function (4) aggregates the check function losses for
different τ's and treats them equally. However, the value of

 may not be on the same scale for different τ's. Equal
treatments of the loss function for different τ may be suboptimal. The following proposition
gives the expected value of the check function when the error term is normally distributed.

Proposition 1—Let ε ∼ N(0, 1) and denote Φ−1(τ) as the τth quantile of ε, where Φ(·) is
the CDF of N(0, 1). Then, we have

where ϕ(·) is the density of N(0, 1).

Proposition 1 indicates that the expected value of the check function can vary greatly with
different τ's. In the Gaussian case, the expected check function varies in the same way as the
Gaussian density. In particular, the value for τ = 0.5 is the largest and it decreases as τ gets
closer to 0 or 1. If we treat them equally, then those with τ around 0.5 will receive much
larger emphasis than other quantiles. The quantiles with very small or large τ's tend to be
ignored. To fix this problem, one can use weight adjustment for different quantiles. In
particular, we can extend the objective function in Equation (4) to a weighted version as
follows:

(7)

where Wk is the weight for the τkth quantile. In this paper, we consider two different weight
vectors: equal weights and Gaussian-induced weights with Wk = 1/ϕ(Φ−1(τ)). The Gaussian-
induced weight can help to correct the scale difference of the check loss function for
different quantiles when the error is normal. Even when the error distribution is not normal,
the Gaussian-induced weight provides a helpful adjustment for different quantile
estimations. Furthermore, if some prior knowledge on the error distribution is available, then
the corresponding weight can be adjusted accordingly.
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2.2. Linear case
Different from nonlinear learning, we assume a parametric conditional quantile function fτ =
xT βτ + β0τ in linear learning. However, the linear conditional quantile estimation can be
achieved in the kernel representation framework using the linear kernel  and

assuming . These two representations are equivalent in the

sense that  and β0τk = bτk.

Note that the linear kernel  does not satisfy the non-negativity assumption in
general. As discussed above, we can define a new kernel L+(·, ·) = L(·, ·) − L , where

. Then L+(·, ·) is a well-defined Mercer kernel and also
satisfies the non-negativity assumption. With the new kernel L+(·, ·), we can formulate our

linear QR by defining  with slight abuse of notations. In this
way, linear QR without crossing can be achieved by solving

(8)

(9)

(10)

In terms of the original linear kernel  the linear quantile function can be

rewritten as .

One interesting point is that our kernel representation of linear quantile functions is
equivalent to the other parametric representation fτ(x) =xTβτ + β0τ via the connection

 and . This connection allows us to apply
techniques for linear QR. For example, we can incorporate various penalties in linear QR
that are capable of variable selection.

Another approach to estimate linear non-crossing quantile functions is to use the parametric
representation fτ(x) = xT βτ + β0τ directly. Suppose  = [0, ∞)d. Then linear non-crossing
QR functions can be obtained by solving

(11)

(12)
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(13)

The constraints here ensure quantile functions with larger τ's to be always above of those
with smaller τ's to prevent crossing.

As a remark, we note that the kernel representation (8) requires (K − 1)(n + 1) inequality
constraints while the linear parametric representation (11) requires (K − 1)(d + 1) inequality
constraints. For low-dimensional problems with d < n, the formulation (11) can be easier to
solve as it involves fewer constraints. In contrast, the formulation (8) is more preferable for
high-dimensional low sample-size problems with d > n.

2.3. Variable selection for linear quantile functions
Variable selection plays an important role in the model-building process. In practice, it is
very common to have a large number of candidate predictor variables available. These
variables can be included in the initial stage of modelling for the consideration of removing
potential modelling bias (Fan and Li 2001). However, it is undesirable to keep irrelevant
predictors in the final model since this makes it difficult to interpret the resulting model and
may decrease its predictive ability.

In the regularisation framework, many different types of penalties have been introduced to
achieve variable selection. The L1 penalty was used in the least absolute shrinkage and
selection operator (LASSO) proposed by Tibshirani (1996) for variable selection. Zou
(2006) proposed the adaptive LASSO to improve the original LASSO. Fan and Li (2001)
proposed the smoothly clipped absolute deviation (SCAD) function and also studied its
oracle properties in the penalised likelihood setting. For the QR, Koenker (2004) applied the
LASSO penalty to the mixed-effect QR model for longitudinal data to encourage shrinkage
in estimating the random effects. One important special case of QR with τ = 0.5, the least
absolute deviation regression, was studied by Wang, Li and Jiang (2007). Li and Zhu (2008)
developed an algorithm to derive the entire solution path of linear L1 QR. Wu and Liu
(2008) studied both the adaptive L1 and SCAD QR and developed the corresponding oracle
properties. They also developed the difference convex algorithm (Liu, Shen and Doss 2005)
for the SCAD penalised methods.

For variable selection in multiple quantile estimation, Zou and Yuan (2008b) proposed a
hybrid of L1 and L∞ penalties to perform variable selection. The sup-norm is applied on the
coefficients of the same variable for multiple quantile functions to encourage simultaneous
sparsity. A similar sup-norm penalty was used by Zhang, Liu, Wu and Zhu (2008) for
variable selection in multicategory support vector machines. To achieve simultaneous
variable selection for multiple quantile functions, we also consider a sup-norm type of
penalty to achieve simultaneous variable selection. One fundamental difference of our
approach from the approach by Zou and Yuan (2008b) is that their approach cannot
guarantee non-crossing of different quantile functions. Using the connection of

, we propose to solve the penalised version of Equations (8)–(10) as follows:

(14)
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(15)

(16)

where pλ(·) is a general penalty function with the regularisation parameter λ. Similar to the
nonlinear case in Section 2.1, constraints (15) and (16) can guarantee that our estimated
linear conditional quantile functions do not cross each other in the bounded input space .

Similar to the kernel version, we can also extend the parametric linear formulation in
Equations (11)–(13) with penalties as follows:

(17)

(18)

(19)

In this paper, we used the SCAD penalty (Fan and Li 2001); however, many other penalty
functions can be adopted here. The SCAD penalty is mathematically defined in terms of its
first-order derivative and is symmetric around the origin. For θ > 0, its first-order derivative
is given by

(20)

where a > 2 and λ > 0 are tuning parameters. Note that the SCAD penalty function is
symmetric, non-convex on [0, ∞) and singular at the origin.

2.4. Computation
Computation of the proposed SNQR can be done in a similar way as the original
unregularised and regularised QR. For example, problems (4) and (8) can be implemented
using quadratic programming and linear programming (LP), respectively. For problem (14),
in order to handle the SCAD penalty, we make use of the local linear approximation
algorithm proposed by Zou and Li (2008). In particular, at each step with the current

solution wτ̃k,i, we replace  by
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(21)

To simplify Equation (21), we introduce a slack variable ηj to simplify the max function. In
particular, we modify Equation (21) as

(22)

subject to

Then using approximation (22), problem (14) can be solved using the iterative LP.
Similarly, the parametric penalised version (17)–(19) can also be computed using the
iterative LP.

3. Theoretical properties
In this section, we consider the theoretical properties of our non-crossing linear conditional
quantile estimates presented above. To that end, we first consider the standard unpenalised
and penalised linear QR without non-crossing constraints. Then we investigate the
behaviour of the constraints as n grows to infinity to explore the theoretical properties of the
new proposed technique.

3.1. Asymptotic normality of unconstrained and constrained linear QR
We first consider the unpenalised version by establishing asymptotic properties of the
solution to Equation (8). Without the non-crossing constraints, it is equivalent to the naive
individual estimate by solving

(23)

one at a time for each k = 1, 2, …, K. Denote the optimal solution of Equation (23) by β̃0τk
and β̃τk.

Define n to be an event that individually estimated conditional quantile functions, obtained
by solving Equation (23) with a random sample of size n, cross each other, namely, there

exist k and x ∈  such that . We prove that P( n) → 0 as n → ∞
by showing P( n) decays exponentially in n.

As in Koenker (2005, p. 120), we consider a general form of the linear quantile model. Let
Y1, Y2, … be independent random variables with distribution functions F1, F2, … and
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suppose that the τth conditional quantile function is linear in the covariate vector x by
assuming

The conditional distribution functions of the Yi's will be written as P(Yi < y∣xi) = FYi(y∣xi) =
Fi(y), and then

To proceed, we assume that the following two conditions are satisfied.

Condition A: The distribution functions {Fi} are absolutely continuous, with continuous
densities fi(·) uniformly bounded away from 0 and ∞ at points {ξi(τ1), ξi(τ2), …, ξi(τK)}, i =
1, 2, ….

Condition B: There exist positive-definite matrices Σ0 and Σ1 (τk) for k = 1, 2, …, K such
that

1.

2.

3.

where .

Recall that the naive individual estimate is denoted by β̃0τk and β̃τk. Denote the
corresponding true parameters by β0(τk) and β(τk). Our non-crossing estimates are denoted
by β ̂0τk and β ̂τk.

Lemma 1—Under conditions A and B, as n → ∞, the naive individual estimates have the
following asymptotic normality

(24)

Proposition 2—When the domain  is bounded, under the conditions of Lemma 1, there
exists a constant c > 0 such that P( n) ≤ e−nc asymptotically.
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Proposition 2 shows that the quantile crossing phenomenon is only a finite sample
behaviour. As the sample size n increases, the probability of quantile crossing decreases
exponentially in n. Thus, we can expect that the non-crossing quantile technique shares the
same asymptotic behaviour as the corresponding QR methods without non-crossing
constraints if the constraints are necessary for non-crossing under certain cases.

As discussed earlier, constraints (9) and (10) or (12) and (13) are sufficient to ensure the
non-crossing of the resulting estimated multiple quantile functions. The following
proposition states the necessity of the constraints for non-crossing.

Proposition 3—Suppose  with (β0τk, βτk); k = 1, …, K, bounded and x ∈
 = [0, ∞)d. Then (i) constraints (12) and (13) are necessary and sufficient to ensure the

non-crossing of fτk in ; (ii) if d > n, constraints (9) and (10) are also necessary and
sufficient to ensure the non-crossing of fτk's in .

Our next theorem states the same asymptotic normality of the non-crossing estimators as the
unconstrained estimators. Since the probability of the crossing event goes to 0
asymptotically as shown in Proposition 2, the non-crossing estimators asymptotically behave
the same as the unconstrained estimators if the constraints are sufficient and necessary for
non-crossing.

Theorem 1—Assume that the non-crossing constraints are necessary and sufficient. Under
the conditions of Proposition 2, then with the probability tending to 1, the simultaneous non-
crossing estimates obtained by solving Equation (8) have the asymptotic normality

(25)

3.2. Oracle properties of sparse constrained linear SNQR
In this section, we develop the oracle properties of our sparse penalised linear SNQR in the
notion of Fan and Li (2001). With a non-concave penalty pλ(·), similar to the development in
Section 3.1, we first consider the version without non-crossing constraints by solving

(26)

Without loss of generality, in this section, we set Wk = 1; k = 1, …, K. The results can be

directly generalised to other weights Wk's. The corresponding optimiser is denoted by 

and .

Recall that the true parameters are denoted by β(τk) = (β1(τk), β2(τk), …, βp(τk))T, β0(τk) for k
= 1, 2, …, K. Denote  for i = 1, 2, …, n and k = 1, 2, …, K.

The behaviour of  and  follows from the consideration of the
following objective function
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(27)

where αk = (α1k, α2k, …, αpk)T and

. This minimiser of Equation (27)
is given by  and .

By reordering if necessary, we assume without loss of generality that the first s predictors

are important, which means that  for any j ≤ s. It also implies that βj(τk) = 0

for j > s and k = 1, 2, …, K. Denote  to be the true
active set. Note that the set  includes all variables that have at least one non-zero
coefficient among all quantile functions considered. We do not require all quantile functions

to have the same non-zero coefficients. Denote . Set c = {s + 1, s
+ 2, …, p},  = {1, 2, …, s + 1}, and c = {s + 2, s + 3, …, p + 1}. Use β k to denote the
subvector of βk with indices in  and Σ1, , c to denote the submatrix of Σ1 with a row
index in  and a column index in c.

Lemma 2—If λ = λn → 0, cn = O(n−1/2) and  under
conditions A and B, then there exits a local minimiser α ̂k and α̂k, k = 1, 2, …, K, for
Equation (27) such that ‖α ̂k‖ = Op(n−1/2) and α̂k = Op(n−1/2).

Lemma 3—If , under the conditions of Lemma 2, then
with the probability tending to 1, for any ak and α k satisfying

 and for any constant C > 0,

Theorem 2—If λ → 0 and , under the conditions of Lemma 3, then with the
probability tending to 1, the  consistent local minimiser β̃τk and β̃0τk, k = 1, 2, …, K, of
Lemma 2 satisfies that

1. β̃jτk = 0 for j ∉ ,

2. the optimiser β̃jτk for j ∈  and β̃0τk has the same asymptotic property of the
minimiser of the following objective function

(28)

As a remark, we note that the absolute value of the true parameters may have a tie for some j
≤ s, namely, |βj(τk)| = |βj(τk′)| for some 1 ≤ k, k′ ≤ K and 1 ≤ j ≤ s. Thus, it is not easy to
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derive the asymptotic properties of the minimiser of Equation (28) for a general non-
concave penalty. When the SCAD penalty by Fan and Li (2001) is used, we have the
following result as stated in Proposition 4.

Proposition 4—When the SCAD penalty is used, under the conditions of Theorem 2, as n
→ ∞, with the probability tending to 1, we have that

1. β̃jτk = 0 for j ∉ .

2. the optimiser β̃jτk for j ∈  and β̃0τk satisfies

(29)

The following theorem states the same oracle property of the constrained sparse SNQR with
the unconstrained sparse SNQR.

Theorem 3—Assume that the non-crossing constraints are necessary and sufficient for
non-crossing. With the probability tending to 1, asymptotic results in Theorem 2 and
Proposition 4 apply to the proposed non-concave penalised non-crossing quantile estimation
(14) under the same conditions.

As a remark, we note that model selection techniques that enjoy the oracle property may
have unsatisfactory asymptotic behaviours in the ‘uniform sense’ with respect to the
unknown parameter as one referee pointed out. The pointwise asymptotic distribution of the
estimator may not be representative for the finite sample performance of the estimator (see,
e.g. Leeb and Potscher 2008; Potscher and Leeb 2009; Potscher and Schneider 2010). We
will not further explore this aspect on the proposed SNQR in this paper.

4. Simulations
In our simulated examples, our training sample size is denoted by n. An independent tuning
set of size n and an independent test set of size 10n are generated in the same way to tune
the regularisation parameter and calculate test errors, respectively. The tuning parameter λ is

selected via a grid search by minimising , where (x̌i, y̌i)
denotes an pair of observations in our tuning set, f̂(·) denotes an estimate of the conditional
quantile function and Wk is the weight for τk. We evaluate the test error,

, to compare the performance of our new method with
competitive estimators, where (x̃i, ỹi) denotes a pair of observations in our test set.

To examine the performance of the proposed SNQR, we compare it with the individual QR.
For individual penalised QR as in Examples 4.1 and 4.2, we carry out two different tuning
procedures. One is to separately tune λ for different QR functions. The other one is to jointly
tune λ as in SNQR so that all different quantile terms use the same λ. Besides the
unconstrained QR, we also compare SNQR with the QR with constraints on the training data
only as suggested by Takeuchi et al. (2006). While comparing two different methods, we
report the pairwise t-statistic between test errors over 100 repetitions for each example,

namely , i = 1, 2, …, 100)/std(TEi(f̂M2) − TEi(f̂M1, i =
1, 2, …, 100). For the nonlinear quantile estimation, we use the Gaussian kernel

.

Liu and Wu Page 13

J Nonparametr Stat. Author manuscript; available in PMC 2011 December 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Example 1 (Nonlinear example with i.i.d. noise)
In this example, our predictor is univariate and uniformly distributed over [−1, 1], namely, X
∼ Uniform[−1, 1]. Conditional on X, Y = 2 sin(π X) + 0.5ε, where ε ∼ N(0, 1) denotes the
independent noise. We set τk = 0.1k for k = 1, 2, …, 9. We compare different estimators with
the Gaussian kernel. The training sample size is set to be n = 100. Results over 100
repetitions are given in Table 1, which reports the pairwise t-test statistics for comparing test
errors of different methods. The weight and error options indicate the types of weight used
in model-building and calculation of the testing error, respectively. The results show that the
proposed SNQR (M3) gives the best performance among all methods considered here. When
we use the joint tuning procedure for λ, the simultaneous method with data point restriction
(M2) works better than the individually estimated QR (M1). Interestingly, when we perform
separate tuning for individual multiple quantile estimation (M1′), the results are better than
the simultaneous method with data point restriction (M2). Furthermore, the types of weights
and errors do not appear to have much influence on the methods in this example.

In Figure 3, we plot the average individual difference of the test error 

and the Bayes error  with respect to individual τk's for different
methods, where fτk(·) denotes the true conditional quantile function. It clearly shows the
improvement of our method.

Example 2 (Nonlinear example with non-i.i.d. noise)
In this example, the predictor is the same as in the previous example, namely, X ∼
Uniform[−1, 1]. Conditional on X, Y = 2 sin(π X) + 0.5(1 + X2)ε, where ε ∼ N(0, 1) denotes
the independent noise. The sample size is chosen to be n = 100. Results over 100 repetitions
are reported in Table 2. The results are similar to that of Example 1, although the differences
among methods are smaller in this example. In particular, the proposed SNQR (M3) works
the best, followed by individual estimation with separate tuning (M1′), simultaneous
estimation with data point restriction (M2) and individual estimation with joint tuning (M1).

Example 3 (Linear example with i.i.d. noise)
Data are generated from

with X1 ∼ Uniform[0, 1], X2 ∼ Uniform[0, 1], ε ∼ N(0, 1) being independent of each other
We set n = 100, d = 2 and τk = k/10 for k = 1, 2, …, 9. For this example, we compare
unpenalised QR methods, i.e. individual estimation (M1), simultaneous estimation with data
point restriction (M2) and SNQR (M3). Results over 100 repetitions are reported in Table 3.
The results show that SNQR (M3) works the best, then followed by the data restriction
method (M2). The individual estimation (M1) gives the worst estimation accuracy.

Example 4 (Linear example with non-i.i.d. noise)
Consider the following location-scale model
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where Xj ∼ Uniform[−1, 1], j = 1, 2, 3, and ε ∼ N(0, 1) are independent of each other.
Similar to Example 3, we compare three unpenalised QR methods: individual estimation
(M1), simultaneous estimation with data point restriction (M2) and SNQR (M3). We set n =
100, d = 3 and τk = k/10 for k = 1, 2, …, 9. Results over 100 repetitions are reported in Table
4. The results once again demonstrate that SNQR (M3) works the best, followed by the data
restriction method (M2) and then the individual estimation (M1).

Example 5 (SCAD linear example with i.i.d. noise)
In this example, we simulate predictors X ∼ N(0, Σ) with Σ = (σij), where σij = 0.5|i − j| for 1
≤ i, j ≤ p. Data are generated from the model

where ε ∼ N(0, 1) is the independent error. Here we consider two settings, β = (3, 1.5, 0, 0,
2, 0, 0, 0)T as in Tibshirani (1996) and β = (1.5, 0.75, 0, 0, 1, 0, 0, 0)T which has a lower
signal level. Among the eight covariates, three are important variables and the remaining
five are noise variables. We use this example to examine the performance of sparse
penalised QR.

For comparison, we consider five different methods: the individual QR estimation with joint
tuning on λ (M1), the individual QR estimation with separate tuning on λ (M1′), the
simultaneous SCAD-max QR estimation without non-crossing constraints (M1″), the
simultaneous SCAD-max QR estimation with non-crossing restrictions on training data
(M2) and the simultaneous SCAD-max SNQR (M3). Tables 5 and 6 report the pairwise t-
statistics for the comparison of these five methods. For example, the first entry 1.0840 in
Table 5 is the pairwise t-statistic tM1′,M1 which shows that M1 gives a smaller test error than
that of M1′. Overall, we can conclude that the simultaneous SCAD-max SNQR (M3) works
the best in terms of test errors. Between the uniform and normal weights, the results are
similar although the improvement of SNQR over other methods appears to be larger when
we use the normal weight than that of the uniform weight.

Similar to Example 1, in Figures 4 and 5, we plot the individual average differences of test
errors and the Bayes errors with respect to individual τk for five different methods. Once
again, the plot clearly demonstrates the competitiveness of the proposed SNQR for both
settings of β.

Tables 7 and 8 show the results on variable selection of Example 5. We report the average
correct and wrong zero coefficients across all quantiles. Since there are three important
variables and five noise variables, the true model has five zero coefficients and three non-
zero coefficients for each QR function. As expected, the performance for the weaker signal
setting is worse than that of the stronger signal setting. For the individual estimation, joint
tuning appears to work better than separate tuning in terms of variable selection.
Interestingly, for simultaneous estimation methods, the method M1″ without non-crossing
constraints works better in variable selection than the methods with constraints.
Nevertheless, in view of the big advantage of SNQR in terms of test errors, SNQR is more
preferable for multiple QR estimation.

One reviewer suggested another setting of the parameter vector β = (3, 1.5, 0, 0, 2, 0, 0.1,
0.1)T. In this case, the last two parameters are replaced by small non-zero values, 
with n = 100. A similar example was considered by Leeb and Potscher (2008). Since the last
two parameters are close to 0, it can be more difficult to select them compared with other
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non-zero parameters. On the other hand, a model with only X1, X2, X5 could be a reasonable
model as well in terms of prediction and interpretability.

We examine the performance of five different methods, M1, M1′, M1″, M2 and M3, on this
example with the new parameter setting. The results with normal weights are displayed in
Figure 6. The left panel shows the average squared differences between β ̂ and β,

, based on 100 replications. Similar as before, our proposed SNQR works the
best in terms of parameter estimation. The right panel shows the number of non-zero
estimates of β3, β4, β6, β7, and β8 for the quantile function with τ = 0.4 among these 100
replications. Notice that all methods have higher percents of non-zero estimates for β7, β8
than those of β3, β4 and β6. This is expected since β7 and β8 are non-zero while the other
three are zero. Due to the small values of these two parameters, all methods estimate β7 and
β8 as zero over 50% times. We do not plot the selection results for β1, β2 and β5 since the
corresponding estimates are non-zero for all replications. Overall, the performance of the
proposed SNQR is very reasonable compared with other methods.

5. Real data
In this section, we apply our proposed SNQR to analyse the Annual Salary of Baseball
Players Data provided by He, Ng and Portnoy (1998). This data set consists of n = 263
North American major league baseball players for the 1986 season. Following He et al.
(1998), we use the number of home runs in the latest year (performance measure) and the
number of years played (seniority measure) as predictor variables. The response variable is
the annual salary of each player (measured in thousands of dollars). We first standardise
both predictor variables to have mean zero and variance one. We apply the nonlinear QR
using the Gaussian kernel with data width parameter σ chosen to be the median pairwise
Euclidean distance of the standardised predictor variables. Similar recommendation on data
width parameter selection was previously provided by Brown et al. (2000). We use 10-fold
cross-validation to select the regularisation parameter λ.

The conditional quantile function is estimated at τ = 0.1, 0.2, …, 0.9. In Figure 7, we plot the
individually estimated median function and the Gaussian weighted SNQR estimated median
function on the top left and right panels, respectively. To visualise quantile crossing, we plot
the difference f̂0.8(x) − f̂0.7(x) on the bottom row. The one from the individual estimation is
shown on the bottom left panel, and the one from SNQR is displayed on the bottom right
panel. Several interesting remarks can be made from the plots. First of all, the conditional
median plots suggest that players with large numbers of home runs and moderate numbers
of years played have the highest median salaries. This matches our expectation since that
group of players have relatively better skills than other players and are possibly in the peak
time of their Baseball career. Between the individually estimated median function and the
SNQR median function, the shapes are quite similar although the SNQR median function
appears to be slightly more peaked. As to quantile crossing, we can see from the bottom left
panel of Figure 7 that the individually estimated 70% quantile function can be higher than
that of the 80% quantile function. This undesirable phenomenon disappears when the SNQR
is applied. Furthermore, due to the joint estimation, the difference curve of our SNQR is
smoother than that from the individual estimation.

6. Discussion
In this paper, we study the problem of multiple conditional quantile function estimation.
When individual optimisation is performed, the obtained quantile functions may cross each
other and as a result violate the basic property of quantiles. A new method SNQR, which
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avoids quantile crossing via simple constraints, is proposed. We demonstrate that SNQR can
not only help to obtain more interpretable quantile functions, it can also help to improve the
estimation efficiency.

As in other regularisation problems, the choice of the regularisation parameter λ is very
important for the performance of QR. It is common for one to select a finite set of
representative values for λ and then use a separate validation data set or certain model
selection criterion to select a value for λ. In this article, we have used separate validation sets
for simulation and cross-validation for the real data analysis. As an alternative, one can use
certain model selection criterion to choose λ. Two commonly used criteria are the Schwarz
information criterion (Schwarz 1978; Koenker et al. 1994) and the generalised approximate
cross-validation criterion (Yuan 1978). These criteria are well studied for unconstrained QR
and require further developments for our constrained methods.

Our asymptotic study is restricted to the linear SNQR. It will be interesting to explore the
asymptotic behaviour of the nonlinear SNQR as well. The existing asymptotic results (e.g.
Yu and Jones 1998; Hall et al. 1999; Dette and Volgushev 2008; Chernozhukov et al. 2009)
can shed some light here. Further investigation is needed.
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Appendix

Proof of Proposition 1
The result can be shown directly using integration by parts. The details are not included here
to save space.

Proof of Lemma 1
The result is straightforward by applying Theorem 4.1 of Koenker (2005) to each τk.

Proof of Proposition 2
In theory, it is guaranteed that

due to Condition A. Using the triangle inequality, we have

Another application of the triangle inequality leads to
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(A1)

Denote M = supx∈  ‖x‖. Consequently, we have

(A2)

Based on Lemma 1, the sum of probabilities in Equation (A2) decays exponentially. Thus,
we have P(supx∈  {β̃0τk+1 − β̃0τk +xT(β̃τk+1 − β̃τk)} < 0) < e−nak asymptotically for some ak
> 0. This completes the proof by noting that

Proof of Proposition 3
The sufficiency of the constraints is straightforward. For necessity, we prove parts (i) and
(ii) separately. For(i), the necessity of constraint (12) can be shown by letting x* = (0, …, 0)
for fτk (x). For Equation (13), let x* = (0, …, 0, M, 0, …, 0), i.e. all elements are 0 except the
jth element being M > 0. Then fτk (x*) = β0τk + βτk,j M and fτk+1 (x*) = β0τk+1 + βτk+1,j M.
Since β0τk and β0τk+1 are bounded, the constraint βτk,j ≤ βτk+1,j is necessary to ensure fτk (x*)
≤ fτk+1 (x*) for arbitrarily large M. The conclusion in (i) then follows.

For (ii), . Without loss of generality, assume that the design
matrix is of rank n. Since d > n, there exists x* ∈  such that x* ⊥ xi for ∀i ≠ i′ and 〈x*,
xi′〉 = M. Then fτk (x*) ≤ fτk+1 (x*) implies that wτk,i

′ M + bτk ≤ wτk+1, i′ M + bτk+1. When M
= 0, we have bτk ≤ bτk+1. Moreover, we have wτk,i′ ≤ wτk+1,i′ with M being arbitrarily large.
Then part (ii) follows.

Proof of Theorem 1
The desired result is straightforward by combining Lemma 1 and Proposition 2.

Proof of Lemma 2
It is enough to show that for any δ > 0, there exists a large constant C such that
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This will imply that with probability at least 1 − δ there exists a local minimum inside the
ball of , , k = 1, 2, …, K with αk and ak satisfying

.

Note that

where the last inequality is due to the fact that  for j ∉ A and pλ (·) is non-
decreasing on [0, ∞).

Note further that

According to Koenker (2005), we have

(A3)

where Wk ∼ N(0, τk(1 − τk)Σ0).

Recall that we assume that cn = O(n−1/2) and . Thus
asymptotically,

is dominated by the quadratic term  when C is large enough.
This completes the proof.
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Proof of Lemma 3
Note that

Note that

Recall that βj(τk) = 0 for j > s. Thus

This completes the proof by noting that  and as a result

dominates
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asymptotically as n → ∞.

Proof of Theorem 2
This is straightforward due to Lemmas 2 and 3.

Proof of Proposition 4
Note for the SCAD penalty, pλ(θ) is flat as long as |θ| > aλ. Lemma 2 implies that β̃jτk is
consistent. Thus we are solving Equation (28) in a neighbourhood of true βj(τk) and,
consequently, when n is large enough,  is flat by noting that λ → 0 as n →∞.
Then the asymptotical normality (29) is valid.

Proof of Theorem 3
This can be proved in the same way as how Theorem 1 is proved using Proposition 2.
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Figure 1.
Illustration plot of quantile crossing of individual estimation and quantile non-crossing of
the proposed SNQR estimation on the one-dimensional toy example. The left panel displays
the true quantile functions for τ = 0.1, 0.2, …, 0.9. The middle and right panels display the
estimation results of the original individual and proposed simultaneous estimation of the
nine quantiles for one data realisation.
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Figure 2.
Plot of the check function for three different values of τ.
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Figure 3.
Plot of the average differences between the test errors and Bayes errors for Example 1. The
left and right panels correspond to the uniform and normal weights respectively.
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Figure 4.
Plot of the average differences between the test errors and Bayes errors for Example 5 with
β = (3, 1.5, 0, 0, 2, 0, 0, 0)T. The left and right panels correspond to the uniform and normal
weights, respectively.
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Figure 5.
Plot of the average differences between the test errors and Bayes errors for Example 5 with
β = (1.5, 0.75, 0, 0, 1, 0, 0, 0)T. The left and right panels correspond to the uniform and
normal weights, respectively (lower signal- to-noise ratio).
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Figure 6.
The left panel shows the average squared differences between β ̂ and β for five different
methods using normal weights. The right panel shows the corresponding number of non-
zero estimates of β3, β4, β6, β7 and β8 for the quantile function with τ = 0.4 based on 100
replications.
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Figure 7.
Plots for the Baseball data example. Top left panel: individually estimated median function;
top right panel: SNQR estimated median function; bottom left panel: the difference between
the individually estimated quantile functions of τ = 0.8 and τ = 0.7; bottom right panel: the
difference between the SNQR estimated quantile functions of τ = 0.8 and τ = 0.7.
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Table 3

Pairwise t-test for test errors of linear i.i.d of Example 3.

Weight Error M2 versus M1 M3 versus M2 M3 versus M1

Uniform Uniform −4.3214 −6.6111 −7.2070

Normal −4.3348 −5.3270 −6.0527

Normal Uniform −3.9829 −7.4806 −8.0344

Normal −3.9335 −6.3636 −7.0218

Notes: M1, individual estimation; M2, simultaneous estimation with data point restriction; M3, SNQR.
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Table 4

Pairwise t-test fortest errors of linear non-i.i.d Example 4.

Weight Error M2 versus M1 M3 versus M2 M3 versus M1

Uniform Uniform −6.8340 −10.9368 −12.2511

Normal −6.6010 −10.4753 −11.8933

Normal Uniform −6.4172 −10.7988 −11.7562

Normal −6.2999 −10.7351 −11.9027

Notes: M1, individual estimation; M2, simultaneous estimation with data point restriction; M3, SNQR.
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