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BACKGROUND: Formalin-fixed, paraffin-embedded (FFPE) tumour tissue represents an immense but mainly untapped resource with
respect to molecular profiling. The DASL (cDNA-mediated Annealing, Selection, extension, and Ligation) assay is a recently
described, RT–PCR-based, highly multiplexed high-throughput gene expression platform developed by Illumina specifically for
fragmented RNA typically obtained from FFPE specimens, which enables expression profiling. In order to extend the utility of the
DASL assay for breast cancer, we have custom designed and validated a 512-gene human breast cancer panel.
METHODS: The RNA from FFPE breast tumour specimens were analysed using the DASL assay. Breast cancer subtype was
defined from pathology immunohistochemical (IHC) staining. Differentially expressed genes between the IHC-defined subtypes
were assessed by prediction analysis of microarrays (PAM) and then used in the analysis of two published data sets with clinical
outcome data.
RESULTS: Gene expression signatures on our custom breast cancer panel were very reproducible between replicates (average
Pearson’s R2¼ 0.962) and the 152 genes common to both the standard cancer DASL panel (Illumina) and our breast cancer DASL
panel were similarly expressed for samples run on both panels (average R2¼ 0.877). Moreover, expression of ESR1, PGR and ERBB2
corresponded well with their respective pathology-defined IHC status. A 30-gene set indicative of IHC-defined breast cancer
subtypes was found to segregate samples based on their subtype in our data sets and published data sets. Furthermore, several of
these genes were significantly associated with overall survival (OS) and relapse-free survival (RFS) in these previously published data
sets, indicating that they are biomarkers of the different breast cancer subtypes and the prognostic outcomes associated with these
subtypes.
CONCLUSION: We have demonstrated the ability to expression profile degraded RNA transcripts derived from FFPE tissues on the
DASL platform. Importantly, we have identified a 30-biomarker gene set that can classify breast cancer into subtypes and have shown
that a subset of these markers is prognostic of OS and RFS.
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It is estimated that in the United States nearly 40 000 women die
from breast cancer every year, making breast cancer the second
most frequent cause of cancer death (behind lung) among women
(Jemal et al, 2008). Recent publications have methodically shown

the heterogeneity of this disease (Wood et al, 2007) and a
subsequent disparity in pathological course manifested between
race/ethnicities (Carey et al, 2006; Stead et al, 2009).

Currently, breast cancer is divided into major subgroups based
on the combined expression of the oestrogen receptor (ER),
progesterone receptor (PR) and human epidermal growth factor
receptor 2 (HER2). These subgroups have important implications
in breast cancer aetiology, the systemic therapies prescribed and
their expected effectiveness, and in the clinical outcome measured
in both recurrence-free survival (RFS) and overall survival (OS)
(Sørlie et al, 2001, 2006). The hormone receptor-positive (HRþ )
(ERþ and/or PRþ ), HER2-negative (HER2�) subtype appears to
account for the majority of breast cancers (450%) and has theReceived 15 June 2011; revised 19 July 2011; accepted 7 August 2011
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best prognosis because of effective targeted hormonal therapies
and a more indolent disease phenotype. The two HER2þ subtypes
(HRþ /HER2þ and HR�/HER2þ ) account for B7% and 14%,
respectively. Before targeted therapy, HER2þ tumours portended
some of the worst prognoses, but the development of targeted
therapies, such as trastuzumab, has resulted in a marked
improvement in outcome. The triple-negative (TN) subtype
(defined as ER�, PR� and HER2�) comprises 10– 30% of all
invasive breast cancers. However, this estimation varies dramati-
cally depending on race/ethnicity (Carey et al, 2006; Stead et al,
2009). In general, across all ethnic groups, TN breast cancer is
considered a subtype that can often confer a poor clinical outcome.
However, no effective targeted therapies have been devised to date
for this subtype.

Gene expression profiling has become an important research-
screening tool in the identification and development of biomarkers
that assess prognosis and prediction. Expression profiles have the
potential to define cancer subtypes, prognosticate clinical outcome
(i.e., recurrence of disease), predict response to specific therapies
and identify critical oncogenic pathways (Huang et al, 2003).
Investigations of signalling pathways and interactions indicated by
gene signatures that are truly predictive of the clinical end points
are necessary to understand the biology underlying this predictive
value. When these gene signatures are combined with clinical and
demographic factors, multiple forms of molecular (gene-based and
protein) data can provide information that identifies unique
tumour characteristics leading to individualised treatment strate-
gies (van de Vijver et al, 2002; Nevins et al, 2003).

Although most array-based platforms utilise high-quality RNA
prepared from frozen specimens, the newer DASL (cDNA-
mediated Annealing, Selection, extension and Ligation) assay
(Illumina Inc., San Diego, CA, USA) was specifically designed to
profile small fragmented transcripts typically extracted from
formalin-fixed, paraffin-embedded (FFPE) tissues because of the
formalin-fixation process (Bibikova et al, 2004; Fan et al, 2004;
Li et al, 2006; Abramovitz et al, 2008). The DASL platform utilised
in this study is based upon multiplexed RT– PCR applied in a bead
array-based format that enables mRNA transcript quantification
from up to 512 genes using three independent probe sets per gene
and can be used to expression profile up to 96 samples in a high-
throughput manner (Bibikova et al, 2004; Fan et al, 2004).

In an initial DASL assay study, a more limited 231-gene cancer
panel was used in order to profile both breast and colon cancer
FFPE tumour samples. Cluster analysis was able to separate breast
from colon tissue types and subsequently divide each tissue sample
set into cancer vs normal (Bibikova et al, 2004). In a subsequent
study, Bibikova et al (2004) demonstrated the utility of Illumina’s
commercially available 502-gene human cancer panel to profile
prostate, colon, breast and lung, and were able to identify
differentially regulated genes between cancerous and healthy FFPE
tissues. More recently, Ravo et al (2008) have shown, on a limited
set of 13 breast carcinomas, that the DASL assay used in
conjunction with the HCP is reliable and sensitive and compared
favourably with results obtained by microarray analysis of RNA
extracted from the same frozen tumour samples. The DASL assay
has also been used, in conjunction with a panel of 512 prostate-
related genes, to identify RNA signatures in prostate cancer,
including a 16-gene set that correlates with prostate cancer relapse
(Bibikova et al, 2007).

In an effort to expand the utility of the DASL platform for breast
cancer, we have designed a 512-gene custom human breast cancer
panel (BCP) and used it to expression profile FFPE breast cancer
tissue specimens currently not amenable for analysis on standard
microarray platforms. Here we describe the validation of our
512-gene BCP and characterisation of breast cancer subtypes on
the DASL bead array-based platform. We have identified a 30-gene
set, which can be used to differentiate pathology-defined subtypes
of breast cancer. Furthermore, several of these genes are prog-

nostic of OS and RFS in publically available microarray data sets,
indicating that they are valid biomarkers associated with the
different outcomes related to the different breast cancer subtypes.

MATERIALS AND METHODS

Tumour tissue samples

Tumour samples from women with confirmed invasive carcinomas
of the breast were obtained in the form of FFPE blocks. All archived
FFPE tumour specimens were obtained from St Mary’s Hospital
(Montreal, Quebec, Canada) according to institutional guidelines.
In total, we obtained 87 FFPE breast carcinomas that had
previously been scored for the breast cancer markers, ER, PR and
HER2 by immunohistochemistry (IHC) according to guidelines
based on the ASCO/CAP recommendations for ER, PR and HER2
testing (ER/PR testing (http://www.cap.org/apps/docs/laboratory_
accreditation/summary_of_recommendations.pdf); HER2 testing
(http://www.cap.org/apps/docs/committees/immunohistochemistry/
summary_of_recommendations.pdf)). In some IHC-equivocal cases
of HER2 staining (IHC 2þ ), fluorescent in situ hybridisation
(FISH) was used to confirm genomic amplification. The majority of
the breast cancer tumour specimens used in this study were invasive
ductal carcinomas (IDCs), including 2 tubular carcinomas and 1
invasive cribriform carcinoma; 2 of them had a sarcomatous
component and 9 were mixed with invasive lobular carcinomas
(ILCs). There were also 9 ILCs, the majority of which fell in the
HRþ subtype. The FFPE blocks were archived 2 to 3 years before
analysis.

RNA extraction, purification and quality assessment

Three 5 mm sections per FFPE block were used for RNA isolation.
RNA deparaffinisation, extraction and purification were performed
according to the High Pure FFPE RNA Micro Kit (Roche,
Mannheim, Germany) protocol. RNA concentration and Å260/
Å280 ratio were determined using the NanoDrop ND-1000
spectrophotometer (NanoDrop Technologies Inc., Wilmington,
DE, USA). In addition, TaqMan (Applied Biosystems, Foster City,
CA, USA) assays were performed on the ribosomal protein RPL13a
gene in triplicate using 200 ng of RNA converted to cDNA to
quantify usable copies of RNA molecules per sample. RNA quality
was assessed by quantitative RT–PCR analysis of the housekeep-
ing gene RPL13A (forward primer, 50-GTACGCTGTGAAGGCAT
CAA-30, and reverse primer, 50-GTTGGTGTTCATCCGCTTG-30)
and the reactions were run on a HT7900 real-time PCR instrument
(Applied Biosystems).

Custom breast cancer DASL assay pool (DAP)

The custom breast cancer panel list of 512 candidate genes was
submitted to Illumina for synthesis. The optimal oligonucleotide
sequence for each of the 1536 gene probes was determined using
an oligonucleotide-scoring algorithm. Illumina synthesised the
oligonucleotide pool or DAP for the BCP for use with their 96-well
Universal Array Matrix (UAM).

DASL assay

In the procedure, biotinylated random nonamers (biotin-d(N)9)
and oligo d(T)18 were used for cDNA synthesis and probes were
designed such that they targeted unique regions of the gene
without limiting the selection of the optimal probe to the 30 ends of
transcripts. Sequence-specific query oligonucleotides encompass-
ing primer extension, ligation and universal PCR in highly
multiplexed reactions (1536-plex), two-colour labelling and
redundant (B30-fold redundancy of each bead type) feature
representation were used to probe up to three different exonic
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sites per gene. This protocol has been shown to increase assay
sensitivity and reproducibility for quantitative detection of
differential expression using RNA from FFPE tissues (Bibikova
et al, 2004; Fan et al, 2004).

The DASL assay was performed on our 512-gene custom
designed human BCP using 200 ng of input RNA at the Emory
Biomarker Service Centre (Emory University, Atlanta, GA, USA).
The manufacturer’s instructions were followed without modifi-
cation. Samples, including technical replicates (singleton to
quadruplicate), were run in the DASL assay on two UAMs. The
hybridised UAMs were scanned using the BeadStation 500
Instrument (Illumina Inc.).

Data and statistical analysis

DASL transcript intensities were interpreted in GenomeStudio.
Samples with insufficient signal-to-noise ratios (o3) were
removed from subsequent analysis and the remaining samples
were quartile normalised with plate scaling. Technical replicates
within samples were average combined to create one signature per
tumour.

The 30-gene set used to differentiate subtypes was determined
using prediction analysis of microarrays (PAM) (Tibshirani et al,
2002), which was optimised by minimising the cross-validation
training error (see Supplementary Table 2). Hierarchical clustering
was conducted in R using the heatmap.2 package for each probe/
gene-level data (Free Software Foundation, Boston, MA, USA),
which was Z-score normalised with a dissimilarity metric based on
Euclidean distance and an average algorithm for clustering.
Significance for ESR1, PGR and ERBB2 being differentially
expressed between their respective IHC-positive and IHC-negative
categories was assessed by Welch’s t-test (Figure 1).

Analysis of UNCCH-177 and NKI-295 cohorts

Data for the 295 patients from the Netherlands Cancer Institute
(NKI-295) (van de Vijver et al, 2002) study were downloaded from
the NKI website (http://bioinformatics.nki.nl/data.php), and data
for the 177 patients from the University of North Carolina Chapel
Hill (UNCCH-177) (Parker et al, 2009) were downloaded from
Gene Expression Omnibus (GSE10886). Outcome data for the two
studies were obtained for the associated Supplementary Informa-
tion for the two publications. When clustering the data using the
30-gene set identified here, all probes for the given gene were used
to cluster the data (Figure 3). Likewise, for the survival analysis of
the 30 genes, all probes on the platforms for the NKI-295 and
UNCCH-177 studies were analysed. One gene (MLPH) was not
found on the NKI-295 platform. The 30 genes identified by PAM
(Supplementary Table 2) were analysed for association with RFS
and overall survival OS in the UNCCH-177 and NKI-295 cohorts

using the Cox proportional hazards method implemented in R by
the function ‘coxph’ of the ‘survival’ package (Supplementary
Tables 3 and 4). All results of the survival analyses used in this
manuscript have been included in Supplementary Tables 3 and 4.
The raw PAM analysis spreadsheet identifying the 30 subtype
differentiating genes in our cohort has also been provided as
Supplementary Table 5.

All files used in the data analysis of this manuscript have been
included in the Supplementary materials.

RESULTS

Design of the human custom BCP for use in the DASL
assay

In order to extend the utility of the DASL assay to the study of
breast cancer utilising FFPE tumour specimens, we designed our
own 512-gene BCP such that it incorporates previously identified
signature genes from various breast cancer expression profiling
studies that have been used in the intrinsic subclassification of
breast tumours (Sørlie et al, 2001; Sotiriou et al, 2003), in
prognosis (MammaPrint) (van’t Veer et al, 2002) and as predictors
of outcome to treatment (Ayers et al, 2004; Jansen et al, 2005;
Pawitan et al, 2005), including OncotypeDX (Paik et al, 2004). We
also selected genes taken from published data on breast cancer
(McLean et al, 2005) as well as additional genes that have been
implicated in a number of cancer-related processes including
proliferation, angiogenesis (Zhong et al, 2000; Heuze-Vourc’h et al,
2005), metastasis (Kang et al, 2003; Minn et al, 2005), DNA repair,
apoptosis (Miller et al, 2005) and thrombosis (Kwaan et al, 2003).
Additional cancer-related genes included in the panel are
oncogenes, tumour-suppressor genes, cell cycle genes, telomer-
ase-related genes, amplified genes, breast cancer stem cell genes
and senescence-related genes (Brabletz et al, 2005; Collado et al,
2005; Dikmen et al, 2005; see Supplementary Table 1 for the list of
genes that make up the BCP).

Comparison to Illumina’s human cancer panel

In order to compare data generated with the BCP to data generated
with the HCP, we evaluated 174 RNA samples that were composed
of 6 singletons, 82 duplicates, 4 triplicates and 1 quadruplicate,
making for 98 technical replicate correlations across 87 tumour
specimens. Technical replicates run on the BCP and HCP had
average correlations of 0.9612 and 0.9613, respectively (Pearson’s
r2 correlation, see Supplementary Figures 1A and B). To further
validate the BCP, we compared data generated with the BCP
against data previously generated with the HCP using a set of
152 genes present in both panels (see Supplementary Figure 1C).
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We compared 81 FFPE tumour samples analysed on both
panels and observed an average r2 correlation of 0.88 (see
Supplementary Figure 1D). The lower correlation of technical
replicates between panels, as compared with within panels,
was most likely because of the intrinsic nature of competitive
multiplexed PCR reactions using common primers with different
sets of amplicons.

Comparison of IHC data with DASL data for ER, PR
and HER2

A total of 87 FFPE tumour specimens came from three major IHC
subclasses and were composed of 24 ER�/PR�/HER2� (desig-
nated TN); 8 ER�/PR�/HER2þ (designated HER2þ ); 8 ERþ /
PR-/HER2þ ; 11 ERþ /PRþ /HER2þ ; 13 ERþ /PR�/HER2�; and
23 ERþ /PRþ /HER2� (designated HRþ ).

To determine whether the DASL assay yields comparable data to
IHC data, the DASL assay gene intensity (expression) data were
compared with the available IHC protein expression data for ER,
PR and HER2 on the set of 87 tumour samples. For purposes of
comparison of IHC data with DASL data, the IHC data provided
for ER and PR were scored as either negative for staining (IHC
staining o1%; no expression detected) or as positive for staining
(IHC staining X1%; which included weak, moderate or strong
expression). For HER2, a score of 3þ was indicative of gene
amplification (equivocal samples with a score of 2þ were tested in
the FISH assay in order to rule out gene amplification). The
tumours positive and negative for ER, PR and HER2 showed a
significantly different level of expression for their respective genes
ESR1, PGR and ERBB2 (Po0.01, Welch’s t-test; Figure 1). These
data show that the concordance of DASL data with IHC data for all

three receptors is very high, which is consistent with previous
studies relating mRNA and IHC protein levels (Cronin et al, 2004;
Gong et al, 2007).

Samples that stained positive for ER, PR and HER2 resulted in
DASL mRNA average transcript fold changes in ESR1, PGR and
ERBB2 (95% CI) of 4.46 (2.01 –6.90), 3.41 (1.24– 5.58) and 3.59
(1.40–5.77) greater than their respective IHC-negative tumours.
Taken together, these data indicate concordance of DASL assay
intensity with IHC-determined protein expression. Of interest,
among HER2þ tumour samples, expression levels were found to
be highest in the HR� group compared with the HRþ groups.
This is consistent with previous work in which activated ER has
been shown to downregulate expression of HER2 in human breast
cancer cell lines (Russell and Hung, 1992).

Analysis of the data by IHC subtype

Unsupervised clustering of all samples was initially performed and
clustering of the major subtypes, TN, HER2þ and HRþ , is shown
in Supplementary Figure 2. In order to define a set of genes that
could be used to classify tumour samples, PAM (18) was used to
identify 30 genes (Supplementary Table 2) that were indicative of
the IHC breast cancer subtype in the Montreal cohort of 87
patients. Of these 30 genes, only 10 overlapped with Illumina’s
HCP. Additionally, 7 of the 30 genes overlapped with the PAM50
(FOXA1, MLPH, ESR1, SLC39A6, NAT1, GRB7 and ERBB2) (Parker
et al, 2009) and 4 genes overlapped with OncotypeDX (ESR1,
ERBB2, CTSL2 and GRB7), 3 of which (underlined) were common
to all three gene sets (see Supplementary Figure 3). Unsupervised
hierarchical clustering across the 30 genes, as shown in Figure 2,
tended to segregate TN, HER2þ and HRþ tumours.
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This 30-gene set was then applied to the University of North
Carolina Chapel Hill Lineberger Comprehensive Cancer Centre
(UNCCH) published microarray data set originally described by
Parker et al (2009) in order to determine if it would reproduce the
delineation of intrinsic subtypes defined independently. Using the
UNCCH cohort data set (n¼ 177), unsupervised hierarchical
clustering of the expression data using each probe for the 30
genes was performed and the heatmap is shown in Figure 3. The
TN (basal-like), HER2þ and Normal-like clustered together
whereas luminal B clusters were interspersed throughout the
luminal A samples. Conversely, we also applied 33 genes of the
PAM50 gene set, derived from fresh/frozen tissues and represented
on the BCP, to our Montreal cohort with similar results (see
Supplementary Figure 4). Thus, the 30-gene set applied to the
UNCCH microarray data set was able to reproduce the delineation
of intrinsic subtypes defined independently.

We then conducted an analysis of these 30 genes using the
UNCCH data set as well as the NKI (n¼ 295) published
breast cancer microarray data set (van de Vijver et al, 2002), with
respect to OS and RFS (Supplementary Figure 5 and Supplemen-
tary Tables 3 and 4). Several of the genes were significant
by univariate Cox regression analysis in both data sets. Although
this analysis does not identify or recommend a prognostic
based on these genes, it does suggest that the genes that
differentiate subtype found on our custom breast DASL panel
are of prognostic importance in other cohorts, further inferring
our ability to identify relevant expression patterns from FFPE
material.

DISCUSSION

In order to extend the utility of the DASL assay with respect to
microarray analysis of FFPE breast cancer tumour specimens,
which represent a vast archive of well-characterised clinically
annotated samples (Lewis et al, 2001), we have designed a 512-gene
custom BCP for use in the DASL assay to expression profile mRNA
transcripts using RNA extracted from FFPE tissues. The RNA
isolated from FFPE tissue sources is highly degraded (average size
B175 nt) and chemically modified (Masuda et al, 1999), and hence
not amenable for conventional microarray analysis. In the DASL
assay, because of the small size of the targeted gene sequence (B50
nucleotides), the use of random primers in the cDNA synthesis and
three independent probe sets per gene are important factors that
enable the expression profiling of degraded RNAs on this bead
array-based platform using a minimal amount of total RNA
(200 ng per assay).

Although FFPE samples used in this study were 2 to 3 years old,
others have shown that older samples, despite increasing RNA
degradation with age (Cronin et al, 2004), can also be used
successfully in the DASL assay (Bibikova et al, 2004). It has also
been recently shown that the DASL assay can generate comparable
expression profiling data when directly comparing FFPE and fresh/
frozen tumour tissue pairs (Mittempergher et al, 2011). Taken
together, there are many advantages to using the highly multiplexed
DASL assay specifically for FFPE tumour samples that otherwise
would not be easily amenable to other standard techniques such as
RT–PCR, microarrays or RNA deep sequencing.

Breast cancer subtype Basal-like HER2 Luminal ALuminal B Normal-like

0.3

Colour key
and density plot

Row Z-score

0
–2 –1 0 1 2

D
en

si
ty

Figure 3 Hierarchical clustering of expression data from UNCCC cohort using probes from the 30 genes indicative of immunohistochemical (IHC)
subtype in the Montreal cohort. Probes (rows) mapping to the 30 genes indicative of IHC subtype were used to hierarchically cluster patients (columns) in
the Parker et al (2009) published microarray data (GEO data set GSE10886). These 30 genes segregate patients by ‘intrinsic subtype’. Red indicates
upregulation and green downregulation of transcripts for probes labelled on the right. Probe transcript expression levels are Z-score normalised with a
colour key indicated in the top left corner. Hierarchical clustering was conducted in R using the heatmap.2 package, with a dissimilarity metric based on
Euclidean distance and an average algorithm for clustering.
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Given that we were limited to expression profiling of 512 genes
on the DASL platform, we designed our own BCP such that 70%
(360 out of 512) of the genes differed from Illumina’s commercial
HCP resulting in a panel composed of genes specifically related to
breast cancer pathology including those from the OncotypeDX
(Paik et al, 2004) and MammaPrint (van de Vijver et al, 2002) as
well as angiogenic, metastatic and other breast cancer prognostic
and predictive markers. Our BCP also includes 33 of the 50 PAM50
genes from a recently published breast cancer biomarker study
(Parker et al, 2009), indicative of selection of highly relevant genes.

We first validated our BCP for use in the DASL assay through
concordance of DASL data with ER, PR and HER2 IHC data as well
as by comparison of 152 genes in common with the HCP. The data
clearly demonstrate that degraded RNA isolated from FFPE breast
tumour specimens can be expression profiled using our BCP in a
highly reproducible, accurate and high-throughput manner on the
bead array-based DASL platform. Results from such analysis are
consistent with clinical pathology IHC markers for ER, PR and
HER2 and comparable to results from fresh/frozen specimens on
traditional microarray platforms as demonstrated on independent
published microarray-generated data sets (see below).

We used PAM analysis and identified 30 genes that were
indicative of IHC breast cancer subtype that segregate the
pathology-defined subtypes in an unsupervised hierarchical
analysis. The majority of these genes (19 out of 30) have previously
been associated with particular breast cancer subtypes (Rouzier
et al, 2005; Hu et al, 2006; Parker et al, 2009) except 11 genes,
including AFF3, DUSP4, ENO1, ERBB4, MMP7, MYB, PERP, RARA,
SPP1, TFF1 and TFF3. This is not surprising as even biomarker
signatures developed for women with similar breast tumour
characteristics on similar microarray platforms and using only
fresh/frozen extracted mRNA may not share many genes in
common. For example, the Rotterdam 76-gene signature (Wang
et al, 2005) and the 70-gene MammaPrint signature (van de Vijver
et al, 2002) in fact share not a single gene in common.

There were two genes, in addition to HER2, clearly over-
expressed in HER2þ tumours, GRB7 and MED24, which are both
upstream of ERBB2 on chromosome 17 and previously associated
with the HER2þ subtype (Sørlie, 2004). Both GRB7 and MED24
have been found to be part of the smallest region of amplification
(SRA), which extends from 34.73 to 35.48 Mb in HER2-amplified
tumours but does not include TOP2A (Arriola et al, 2008). Another
gene further upstream on chromosome 17, the retinoic acid
receptor (RARA), was only found to be overexpressed in only some
of the HER2þ tumour samples. The authors also found that in
HER2/TOP2A co-amplified samples, the SRA that extended from
34.73 to 365.54 Mb also encompassed four additional genes
including RARA (Arriola et al, 2008). These genes that are
co-amplified along with HER2 may also play a role in cancer
progression. For example, evidence in breast cancer cell lines
suggests that GRB7 may be involved in proliferation and that
inhibiting both HER2 and GRB7 may enhance the inhibitory effect
on cell growth (Pero et al, 2007).

When we applied our 30-gene set to published microarray data
sets, we could reproduce the delineation of intrinsic subtypes

defined independently. As it is well known that breast cancer
subtypes have differing prognoses, we used these 30 genes to
reanalyse two published breast cancer microarray studies, Parker
et al (2009) and Van de Vijver et al (2002), with respect to OS and
RFS. Seven genes were found prognostic of OS in both data sets
and five of these seven were also prognostic of RFS. Several of
these genes have previously been associated with the various
subtypes. For example, ESR1, NAT1, SLC39A6 and XBP1 have been
associated with the luminal A subtype (Sørlie, 2004), and CSTL2
and LYD6 are associated with the basal-like or TN subtype (Sørlie,
2004; Sørlie et al, 2006). In addition, we found that expression of
NDRG1, which was prognostic of RFS but not OS, was mainly
increased in TN tumours. This gene has been shown to be
upregulated by hypoxic conditions and induced by the hypoxia-
inducible factor HIF1A, the key transcription factor involved in the
response of tumours to hypoxic conditions. Genes involved in
the cellular response to hypoxia, including NDRG1, are associated
with a significantly poorer prognosis in breast and ovarian cancers
(Chi et al, 2006).

In this study we have shown that it is feasible to use degraded
RNA prepared from FFPE breast tumour specimens, which
represent the largest collection of well-annotated, clinical tumour
samples that are readily available for conducting large retro-
spective studies, for expression profiling on the DASL platform.
We have demonstrated the utility of conducting expression
profiling of breast tumour samples using a custom selected set
of genes to investigate pathological processes related to subtype.
To exemplify this, we have herein identified markers that can
be used to classify breast cancer into subtypes consistent with
independent means of classification and shown these markers
to be prognostic of OS and RFS. Finally, this study is further
evidence that expression profiling of FFPE tumour banks can
be productive, something that has now been demonstrated
many times, for example, in a series of published studies of
the Oncotype DX tests (Paik et al, 2004; Tang et al, 2011) and
that analysis of FFPE samples on the DASL assay could lead to
the discovery of biomarker sets that will have relevance in the
clinical setting.

DATA DEPOSITION

Gene Expression data are deposited in Gene Expression Omnibus
(GEO) (http://www.ncbi.nlm.nih.gov/geo/) under series GSE17650.
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