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BACKGROUND: Upregulation of PIM kinase expression has been reported in many malignancies, suggesting that inhibition of PIM kinase
activity may be an attractive therapeutic strategy. We hypothesised that inhibition of PIM kinase activity with SGI-1776, a novel small
molecule inhibitor of PIM kinase activity, would reduce the viability of renal cell carcinoma (RCC) cells and enhance the activity of
sunitinib.
METHODS: Immunoblotting, qRT–PCR, and gene expression arrays were carried out to identify genes modulated by SGI-1776
treatment. The anticancer activity of SGI-1776 and sunitinib was determined by viability and apoptosis assays and in tumour
xenografts in vivo.
RESULTS: Treatment with SGI-1776 led to a decrease in phosphorylated and total c-Myc levels, which resulted in the modulation of
c-Myc target genes. SGI-1776 in combination with sunitinib induced a further reduction in c-Myc levels, which was associated with
enhanced anticancer activity. siRNA-mediated knockdown of c-Myc demonstrated that its expression has a key role in regulating the
sensitivity to the combination of SGI-1776 and sunitinib. Importantly, the combination significantly reduced tumour burden in two
RCC xenograft models compared with single-agent therapy and was very well tolerated.
CONCLUSION: These data indicate that targeting PIM kinase signalling is a promising treatment strategy for RCC.
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Renal cell carcinoma (RCC) accounts for 85% of kidney cancers
with clear cell RCC (ccRCC) being the most common subtype
representing B75% of all cases (Kaelin, 2008). Loss of expression
of the von Hippel-Lindau (VHL) tumour suppressor causes
stabilisation of hypoxia-inducible factors (HIFs) and occurs in
70% of sporadic ccRCC patients (Kaelin, 2007). Hypoxia-inducible
factors alter the cellular environment by activating target genes
involved in angiogenesis and metabolism (Turner et al, 2002). The
anti-angiogenic multi-tyrosine kinase inhibitors sunitinib and
sorafenib demonstrated efficacy for the treatment of RCC likely
due to the highly vascularised nature of these tumours. Despite the
success of these agents, drug resistance is a major obstacle that
highlights the need for new treatment strategies to improve clinical
outcomes (Sosman et al, 2007).

The PIM kinases are a family of serine/threonine kinases (PIM-1,
PIM-2, PIM-3) that have been associated with tumourigenesis and
drug resistance (Adam et al, 2006; Cibull et al, 2006; Beier et al,
2007; Chen et al, 2008, 2009a). All three kinases have an ATP-
binding pocket, an active site, a kinase domain, and lack regulatory
domains making them constitutively active. The expression of PIM
kinases is mediated by the Janus-activated kinase/signal transdu-
cers and activators of transcription (STAT) signalling pathway

(Amaravadi and Thompson, 2005). PIM kinases regulate cell-cycle
progression by directly phosphorylating p21, p27, Cdc25A, and
Cdc25C and suppress apoptosis via phosphorylation of the
pro-apoptotic protein Bad (Mochizuki et al, 1999; Li et al, 2006;
Popivanova et al, 2007; Zhang et al, 2007b; Morishita et al, 2008;
Hu et al, 2009). Overexpression of PIM-1 has been reported in
haematological malignancies and in many solid tumours, which
suggests that blocking PIM-1 kinase activity may be a promising
approach for cancer therapy (Eichmann et al, 2000; Cibull et al,
2006; Beier et al, 2007; Chen et al, 2008; Hogan et al, 2008).

While PIM-1 is not a potent oncogene, it interacts synergistically
with c-Myc to promote tumourigenesis (Moroy et al, 1991).
Phosphorylation of c-Myc by PIM-1 leads to c-Myc stabilisation
and enhanced transcriptional activity (Zippo et al, 2007; Zhang
et al, 2008). Given the central role of Myc in many cancers,
including RCC, inhibition of PIM-1 activity may promote Myc
degradation and subsequently decrease tumour cell proliferation
(Pelengaris et al, 2002; Nilsson and Cleveland, 2003; Tang et al,
2009). This approach may be especially effective in a subset of
VHL-deficient RCCs that express HIF-2a, but not HIF-1a, which
promotes elevated c-Myc activity (Gordan et al, 2007a, 2008).

In this study, we evaluated the efficacy of a novel small molecule
inhibitor of PIM kinase activity, SGI-1776, in RCC alone and in
combination with sunitinib. SGI-1776 demonstrated activity in a
panel of RCC cell lines, which was associated with decreased
phosphorylation of the PIM kinase substrates, Bad and c-Myc.
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Furthermore, SGI-1776 reduced total protein levels of c-Myc and
microarray analyses displayed gene expression patterns consistent
with blunted c-Myc activity. Importantly, targeting PIM-1 with
either siRNA or SGI-1776 significantly enhanced the activity of
sunitinib in RCC models. Our results establish that SGI-1776
decreases c-Myc levels, reduces RCC viability, and enhances the
activity of sunitinib. Collectively, these findings indicate that
inhibition of PIM kinase activity in combination with sunitinib
warrants further investigation for the treatment of RCC and other
malignancies.

MATERIALS AND METHODS

Cells and cell culture

786-O, A498, Caki-1, Caki-2, and ACHN renal cancer cell lines
were obtained from the American Type Culture Collection
(Manassas, VA, USA). Cancer cell lines were cultured in RPMI
supplemented with 10% fetal bovine serum and maintained in a
humidified incubator at 37 1C with 5% CO2. Human normal renal
proximal tubule epithelial cells (RPTECs) were purchased from
Clonetics (Walkersville, MD, USA) and cultured in the recom-
mended media (REGM BulletKit, Clonetics).

Antibodies and reagents

Antibodies were obtained from the following commercial sources:
anti-PIM-1 (Santa Cruz Biotechnology, Santa Cruz, CA, USA); anti-
phospho-Bad (Ser112) and Bad (Cell Signaling, Danvers, MA,
USA); anti-actin and tubulin (Sigma-Aldrich, St Louis, MO, USA);
anti-c-Myc, phospho-c-Myc (Ser62), and Bad (immunohisto-
chemistry) (Novus Biologicals, Littleton, CO, USA); antiproliferat-
ing cell nuclear antigen (PCNA) (Dako, Glostrup, Denmark); goat
anti-rabbit horseradish peroxidase (HRP)-conjugated secondary
antibodies (Jackson Laboratories, West Grove, PA, USA); Rat
anti-mouse IgG2a-HRP (Serotec, Raleigh, NC, USA); and sheep
anti-mouse-HRP and donkey anti-rabbit-HRP (Amersham, Pitts-
burgh, PA, USA). SGI-1776 was kindly provided by SuperGen Inc.
(Dublin, CA, USA). Sunitinib was purchased from the Cancer
Therapy and Research Center pharmacy.

Quantification of drug-induced cytotoxicity

Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) assay and the pro-apoptotic
effects of SGI-1776 and sunitinib were quantified by propidium
iodide (PI) staining and fluorescence-activated cell sorting (FACS)
analysis of sub-G0/G1 DNA content as previously described (Carew
et al, 2009).

Clonogenic survival assays

Clonogenic survival assays were conducted as previously described
(Mahalingam et al, 2010). Briefly, cells were treated with 5 mM SGI-
1776, 5 mM sunitinib, or the combination for 24 h. After drug
exposure, cells were washed twice in PBS followed by the addition
of fresh media and incubated for 10 days in a humidified incubator
at 37 1C with 5% CO2. Colonies were then washed in PBS, fixed
with methanol, and stained with crystal violet. Colonies were
scored using an Alpha Innotech (San Leandro, CA, USA) gel
documentation system.

Immunoblotting

Renal cell carcinoma cells were treated with the indicated
concentrations of drugs. Immunoblotting was performed as
previously described (Nawrocki et al, 2008). Quantification of
bands was performed using ImageJ software (Bethesda, MD, USA).

Transfection of siRNAs

PIM-1, c-Myc, and non-target SMARTpool siRNA were obtained
from Dharmacon (Lafayette, CO, USA). Cells were transfected with
100 nM of each siRNA using Oligofectamine (Invitrogen, Carlsbad,
CA, USA) according to the manufacturer’s protocol. Transfected
cells were incubated at 37 1C for 24 h and then treated with
SGI-1776, sunitinib, or the combination for 48 h. Efficiency of
RNAi was measured at 48 h by immunoblotting.

Expression microarrays

786-O and Caki-1 cells were treated with 5 mM SGI-1776 for 24 h.
Following drug treatment, total RNAs were isolated using the
RNeasy Plus Mini Kit (Qiagen, Germantown, MD, USA) and
treated with TURBO DNA-free Kit (Applied Biosystems, Foster
City, CA, USA). In all, 300 ng of total RNA per sample was
amplified and hybridised to GeneChip Human Gene 1.0 ST arrays
(Affymetrix, Inc., Santa Clara, CA, USA) according to the
manufacturer’s instructions. Affymetrix CEL files were imported
into Partek Genomics Suite 6.4 (Partek Inc., St Louis, MO, USA)
using the default Partek normalisation parameters and the robust
multi-array average (RMA) analysis adjusted for probe sequence
and GC content (GC-RMA). Data normalisation was performed
across all arrays using quantile normalisation.

Quantitative real-time polymerase chain reaction

786-O and Caki-1 cells were treated with 5 mM SGI-1776 for 24 h.
cDNA from control and SGI-1776-treated cells were used for
relative quantification by real-time polymerase chain reaction
(RT–PCR) analyses. First-strand cDNA synthesis was performed
from 1 mg RNA in a 20-ml reaction mixture using the high-capacity
cDNA Reverse Transcription Kit (Applied Biosystems). CDC25A,
ODC1, SKP2, CDKN1A, DDIT3, PIM-1, and GAPDH transcripts
were amplified using commercially available TaqMan Gene
expression assays (Applied Biosystems). Relative gene expression
was calculated with the 2�DDCt method using GAPDH as a
housekeeping gene (Pfaffl, 2001).

Xenograft studies

All experiments were conducted in accordance with the guidelines
for the welfare and use of animals in cancer research (Workman
et al, 2010). Animal protocols were approved by the Institutional
Animal Care and Use Committee of the University of Texas Health
Science Center at San Antonio. 786-O and Caki-1 renal cancer cells
(1� 107) were suspended in a mixture of HBSS and Matrigel (BD
BioSciences, San Jose, CA, USA) and subcutaneously implanted
into female nude mice (BALB/c background) from Harlan
(Indianapolis, IN, USA). Tumour-bearing animals from each cell
line xenograft were randomised into treatment groups. Mice were
treated with vehicle, sunitinib (40 mg kg – 1 PO), SGI-1776
(200 mg kg – 1 free base PO), or both agents on a QDx5 (every
day for 5 days) schedule for 3 weeks. Mice were monitored daily
and tumour volumes were measured twice weekly.

Immunohistochemistry

Paraffin-embedded tumour sections were deparaffinised in xylene,
treated with a graded series of alcohol, and rehydrated in PBS (pH
7.5). Heat-induced epitope retrieval was performed by micro-
waving slides in a citrate buffer. Primary antibodies were added
and slides were incubated at 4 1C overnight. After washing with
PBS, slides were incubated in appropriate secondary antibodies for
1 h at ambient temperature. Positive reactions were visualised by
immersing the slides with stable 3,3-diaminobenzidi (Research
Genetics, Huntsville, AL, USA) and counterstained with Gill’s

Targeting PIM kinase enhances activity of sunitinib

D Mahalingam et al

1564

British Journal of Cancer (2011) 105(10), 1563 – 1573 & 2011 Cancer Research UK

T
ra

n
sla

tio
n

a
l

T
h

e
ra

p
e
u

tic
s



haematoxylin (Sigma). Images were captured using an Olympus
fluorescent microscope (Center Valley, PA, USA) with a DP71
camera and a � 20 objective. Image-Pro Plus software Version
6.2.1 (MediaCybernetics, Bethesda, MD, USA) was used for image
acquisition and quantification by densitometric analysis of five
random fields containing viable tumour cells.

Terminal deoxyribonucleotide-transferase-mediated dUTP
nick-end labelling assay

DNA fragmentation was analysed using a FITC-labelled TUNEL assay
kit (Promega, Madison, WI, USA). The assay was performed
according to the manufacturer’s instructions and PI was used to
counterstain the nucleus. Percentages of TUNEL-positive cells were
determined by manual counting of five random fields per section.

Statistical analyses

Statistical significance was determined using the Tukey–Kramer
comparison test or the Student’s t-test. Differences were
considered significant in all experiments at Po0.05.

RESULTS

PIM-1 expression is increased in RCC cells

Upregulation of PIM kinase expression has been observed in many
malignancies, but has not been investigated in RCC. Considering
the proposed role of PIM-1 in tumourigenesis and drug resistance,
we evaluated its expression in a panel of RCC cell lines and in
normal RPTECs. PIM-1 displayed varying degrees of expression in
RCC cell lines, but was consistently increased in all lines compared
with normal RPTECs (Figure 1A).
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Figure 1 PIM-1 is overexpressed in RCC cell lines and inhibition of PIM kinase activity with SGI-1776 promotes apoptosis and reduced viability. (A) PIM-1
kinase expression in RCC cell lines. Immunoblotting demonstrates elevated PIM-1 levels compared with normal RPTECs. Band intensity was quantified using
ImageJ software. (B) SGI-1776 reduces RCC cell viability. Five RCC cell lines and RPTEC cells were incubated with the indicated concentrations of SGI-1776
for 72 h and cell viability was measured by MTT assay. Mean±s.d., n¼ 3. (C) SGI-1776 reduces RCC clonogenic survival. Cells were treated with indicated
concentrations of SGI-1776 for 24 h, washed and incubated in fresh media for 10 days. Colonies were fixed, stained with crystal violet and quantified.
Mean±s.d., n¼ 3. *Indicates a significant difference compared with control. Po0.05. (D) SGI-1776 decreases Bad phosphorylation at Ser112. Cells were
treated with SGI-1776 for 48 h and phospho- and total Bad levels were determined by immunoblotting. Phospho-Bad band intensity was quantified using
ImageJ software. (E) SGI-1776 induces apoptosis in RCC cell lines. Cells were treated with SGI-1776 for 48 h and apoptosis was measured by PI-FACS
analysis. Mean±s.d., n¼ 3. *Indicates a significant difference compared with control. Po0.05.
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Figure 2 SGI-1776 decreases phospho- and total c-Myc levels, resulting in altered expression of c-Myc target genes. (A) SGI-1776 reduces functional
c-Myc levels. RCC cells were treated with 5 mM SGI-1776 for 48 h. Phospho- and total c-Myc levels were measured by immunoblotting. Phospho-c-Myc and
c-Myc band intensity was quantified using ImageJ software. (B) Affymetrix expression arrays identify differential expression of c-Myc target genes following
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expression arrays were performed as described in Materials and methods. (C and D) qRT–PCR analysis of selected genes that are upregulated (CDC25A,
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Targeting PIM kinase enhances activity of sunitinib

D Mahalingam et al

1566

British Journal of Cancer (2011) 105(10), 1563 – 1573 & 2011 Cancer Research UK

T
ra

n
sla

tio
n

a
l

T
h

e
ra

p
e
u

tic
s



2A

C

D

E F

B
1.8

Control
Sunitinib

*

*

*1.6

1.4

1.2

1

0.8

P
IM

-1
(r

el
at

iv
e 

ex
pr

es
si

on
 to

 G
A

P
D

H
)

0.6

0.4

0.2

90
60

50

Control siRNA
PIM-1 siRNA

40

30

P
IM

-1
 (

re
la

tiv
e 

in
te

ns
ity

)

20

10

0

80

70

Control

Sunitinib

*

*
*

*

*

*

60

50

%
 D

N
A

 fr
ag

m
en

ta
tio

n

%
 D

N
A

 fr
ag

m
en

ta
tio

n

40

30

20

100 SGI-1776
SGI-1776+sunitinib

SGI-1776
SGI-1776+sunitinib

80

60

%
 C

el
l v

ia
bi

lit
y

C
lo

no
ge

ni
c 

su
rv

iv
al

(%
 o

f c
on

tr
ol

)

40

20

Caki-1 786-O
0

100

80

60

40

20

0

100

80

60

%
 C

el
l v

ia
bi

lit
y

40

20

0
0

*
*

**

*
*

*
*

****
**

*
*

0.5 1

SGI-1776 (�M)

2.5 5

Control

90

80

**

**

**
**

*

*

* *
*

*
*

*

70

60

50

40

30

20

10

0

SGI-1776
Sunitinib

SGI+Sun

Control

SGI-1776
Sunitinib
SGI+Sun

10 0 0.5 1

SGI-1776 (�M)

2.5 5 10

10

Caki-2
control
siRNA

Caki-1
control
siRNA

786-O
control
siRNA

Caki-2
PIM-1
siRNA

Caki-1
PIM-1
siRNA

786-O
PIM-1
siRNA

0

Caki-2

Caki-2

Caki-1

Caki-1

786-O

786-O

Caki-2 Caki-1 786-O

Caki-2 A498Caki-1786-O Caki-2 A498Caki-1786-O

PIM-1

C
on

tr
ol

 s
iR

N
A

P
IM

-1
 s

iR
N

A

P
IM

-1
 s

iR
N

A

P
IM

-1
 s

iR
N

A

C
on

tr
ol

 s
iR

N
A

C
on

tr
ol

 s
iR

N
A

Tubulin

0

Figure 3 Inhibition of PIM-1 kinase activity augments sunitinib-induced cell death. (A) Sunitinib induces PIM-1 expression. Cells were treated for 24 h with
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The PIM kinase inhibitor SGI-1776 reduces RCC viability

We next evaluated the ability of the small molecule PIM kinase
inhibitor SGI-1776 to reduce RCC viability. The MTT assays
demonstrated that SGI-1776 exhibited activity against all
of the RCC lines tested with less toxicity against normal RPTEC
cells (Figure 1B). Furthermore, SGI-1776 also effectively reduced
RCC cell clonogenic survival (Figure 1C). PIM kinases have
been previously reported to phosphorylate the pro-apoptotic protein
Bad at Ser112, which promotes its sequestration in the cytosol by
14-3-3 and thus, blocks its mitochondrial interaction with Bcl-2 or
Bcl-XL (Fox et al, 2003; Yan et al, 2003; Aho et al, 2004; Li et al,
2006). Therefore, we hypothesised that inhibition of PIM kinase
activity may stimulate apoptosis by freeing Bad to interact with anti-
apoptotic proteins. As expected, abrogation of PIM kinase activity
reduced Bad phosphorylation at Ser112 (Figure 1D) and induced
apoptosis in a panel of RCC cell lines (Figure 1E).

SGI-1776 inhibits c-Myc phosphorylation and modulates
the expression of c-Myc target genes

In addition to Bad, another target of PIM kinase phosphorylation is
the oncogene c-Myc. Overexpression of PIM kinases are frequently
associated with elevated Myc levels. Since c-Myc has an important

role in the biology of RCC, we determined the effect of SGI-1776 on
its phosphorylation status in the 786-O and Caki-1 cell lines.
Treatment with SGI-1776 induced a strong reduction in c-Myc
phosphorylation at Ser62 (Figure 2A). In accordance with the reports
that this phosphorylation site promotes protein stability, SGI-1776
exposure also resulted in a decrease in total c-Myc protein expression
(Figure 2A). Expression profiling (Figure 2B) and qRT–PCR (Figures
2C and D) analyses of RNA isolated from SGI-1776-treated 786-O and
Caki-1 cells showed significant changes in the levels of c-Myc target
genes that were consistent with reduced c-Myc activity. c-Myc
behaves as both a transcriptional activator and repressor, inducing
transcription of genes (e.g., CDC25A, ODC, and SKP2) by binding to
CACGTG regions in a complex with Max, and blocking the
transcription of other genes (e.g., CDKN1A) while complexed with
Max and Miz1 or Sp1 (Nilsson and Cleveland, 2003; Gordan et al,
2007b). Collectively, our results suggest that inhibition of PIM kinase
activity with SGI-1776 decreases functional c-Myc protein levels and
corresponding transcriptional activity.

Inhibition of PIM-1 activity enhances the activity of
sunitinib in RCC

The multi-tyrosine kinase inhibitor sunitinib is given as first-line
therapy for the treatment of metastatic RCC. Although sunitinib
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has demonstrated clinical benefit in RCC, drug resistance
continues to be a major obstacle (Heng and Bukowski, 2008).
Sunitinib treatment stimulated a significant increase in PIM-1
expression levels, suggesting that PIM-1 activity may promote
resistance to sunitinib-induced apoptosis (Figure 3A). In order to
further investigate this possibility, we utilised siRNA to knock-
down PIM-1 levels (Figure 3B). This demonstrated that targeted
PIM-1 knockdown significantly sensitised RCC cells to sunitinib
(Figure 3C). Consistent with this result, addition of SGI-1776
to sunitinib markedly decreased cell viability in RCC cell
lines (Figure 3D). We next evaluated the effects of SGI-1776
and sunitinib on clonogenic survival and apoptosis. Importantly,
the combination significantly reduced clonogenic survival
(Figure 3E) and induced apoptosis (Figure 3F) in a panel of RCC
cell lines.

Treatment with SGI-1776 and sunitinib reduces c-Myc
levels

To further evaluate the enhanced efficacy of PIM kinase inhibition
in combination with sunitinib, we investigated the effects of this
drug combination on c-Myc expression. Treatment with sunitinib
alone did not significantly alter c-Myc phosphorylation. However,
further reductions in c-Myc phosphorylation and total c-Myc
levels were observed in combination-treated cells (Figure 4A). To
determine whether drug-induced inhibition of c-Myc expression/
activity is a critical determinant of the therapeutic efficacy of these
agents, c-Myc levels were silenced using siRNA (Figure 4B) and
treated with both single agents and the combination (Figure 4C).
The anticancer activity of SGI-1776, sunitinib, and the combina-
tion were all significantly enhanced by c-Myc silencing, which

suggests that modulation of c-Myc expression is a critical event
underlying the efficacy of this combination.

SGI-1776 augments the activity of sunitinib to reduce
tumour burden in RCC xenografts

To further investigate the potential benefit of the SGI-1776 and
sunitinib combination, their activity was evaluated in two RCC
xenograft models. 786-O and Caki-1 tumour-bearing animals were
randomised into treatment groups and given 200 mg kg – 1

SGI-1776, 40 mg kg – 1 sunitinib, or the combination for 3 weeks
on a QDx5 (every day for 5 days) schedule. Treatment with
SGI-1776 or sunitinib alone resulted in a significant decrease in
mean tumour volume in both xenograft models compared with the
vehicle-treated controls (Figures 5A and B). Sunitinib elicited a
more potent response in 786-O tumours compared with Caki-1,
which may be due to the absence of VHL expression in 786-O.
SGI-1776 dramatically enhanced the efficacy of sunitinib in both
RCC models regardless of VHL status (Figures 5A and B).
Importantly, all drug treatments were very well tolerated as no
significant animal weight loss was observed at study completion
(Figures 5C and D).

SGI-1776 reduces Bad phosphorylation (Ser112) and
induces apoptosis in RCC xenograft models

Since the phosphorylation of the pro-apoptotic protein Bad at
Ser112 is a common marker of PIM kinase inhibition, its
expression was evaluated in both tumours by immunohistochem-
istry. As expected, SGI-1776 induced a reduction in Bad
phosphorylation without altering total Bad protein levels
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(Figure 6A). The addition of sunitinib did not alter the ability of
SGI-1776 to decrease Bad phosphorylation. While SGI-1776
induced moderate levels of apoptosis, it significantly augmented
sunitinib-mediated apoptosis in both xenograft models
(Figure 6B). These data suggest that apoptosis induction adds to
the anticancer efficacy of the SGI-1776 and sunitinib combination.

Suppression of c-Myc levels is associated with a decrease in
tumour cell proliferation

Our in vitro studies demonstrated that modulation of c-Myc levels
contributes to the activity of the SGI-1776/sunitinib combination.
Immunohistochemistry was performed on the tumours to evaluate
the effects of the drugs on phosphorylated and total c-Myc levels
and tumour proliferation (PCNA). Consistent with our in vitro
data, SGI-1776 decreased phospho- (Ser62) and total c-Myc levels
in both tumour models (Figures 7A and B). The addition of
sunitinib to SGI-1776 resulted in a further reduction in c-Myc
levels, which was associated with decreased tumour cell prolifera-
tion (Figure 7C). Collectively, our data establish an important role

for c-Myc in controlling RCC proliferation, which can be
therapeutically targeted via PIM kinase inhibition to enhance the
efficacy of the standard of care agent sunitinib.

DISCUSSION

Increased PIM kinase expression has been reported in many
tumour types and is associated with tumourigenesis and drug
resistance (Adam et al, 2006; Cibull et al, 2006; Beier et al, 2007;
Popivanova et al, 2007; Hogan et al, 2008; Chen et al, 2009a).
Consistent with this observation, PIM-1 levels were also elevated in
RCC cell lines compared with RPTECs. Therefore, PIM-1 kinase
activity may be a promising target for RCC. PIM-1 kinase
phosphorylates the oncogene c-Myc, which strongly increases its
stability (Zhang et al, 2008). c-Myc modulates the expression of a
broad range of genes involved in cell-cycle progression, prolifera-
tion, metabolism, apoptosis, and angiogenesis (Pelengaris et al,
2002; Nilsson and Cleveland, 2003). While c-Myc overexpression
occurs in a large percentage of tumours, it may have an especially
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important role in RCC due to the intrinsic hypoxic microenviron-
ment that is characteristic of this tumour type (Tang et al, 2009).
Furthermore, hypoxia has been reported to induce PIM-1
expression (Chen et al, 2009a). Consistent with c-Myc being a
target for PIM-1, SGI-1776 treatment resulted in a reduction in
c-Myc phosphorylation and total c-Myc protein levels. Thus,
inhibition of PIM-1 kinase activity may be a novel approach to
disrupt c-Myc function by promoting its degradation.

HIFa subunits are continuously being transcribed, but are
targeted for proteasomal degradation under normoxic conditions
by the VHL E3 ubiquitin ligase (Iliopoulos et al, 1996; Ohh et al,
2000). von Hippel-Lindau-defective tumours have high levels of
HIFa and can be subdivided into two groups, tumours with both
HIF-1a and HIF-2a (H1H2) and those with only HIF-2a (H2)
(Gordan et al, 2008). HIF-1a and HIF-2a have opposing effects on
c-Myc, where HIF-1a antagonises its activity and HIF-2a increases
it. HIF-1a inhibits c-Myc activity by promoting its degradation via
the proteasome and by binding to and activating Mxi-1, which

represses c-Myc transcriptional activity (Zhang et al, 2007a). In
contrast, H2 tumours are associated with high c-Myc activity and
increased cellular proliferation compared with H1H2 tumours
(Gordan et al, 2008). As expected, the H2 786-O cell line exhibited
higher basal c-Myc levels than the VHLþ /þ Caki-1 cell line in this
study. However, c-Myc expression was detected in both cell lines,
suggesting that PIM kinase inhibition may be an effective
therapeutic strategy in both VHL�/� and VHLþ /þ tumours.

Recent studies demonstrate that PIM kinase expression results in
chemoresistance to a number of agents with diverse mechanisms of
action including cisplatin, taxane-based therapies, and rapamycin
(Zemskova et al, 2008; Beharry et al, 2009; Hu et al, 2009;
Mumenthaler et al, 2009; Chen et al, 2009a). In addition, it was
recently demonstrated that treatment with docetaxel and cytar-
abine induced significant increases in PIM kinase expression
(Zemskova et al, 2008; Kelly et al, 2011). Given this, PIM kinase
inhibitors may have broad-spectrum activity across many
malignancies and may be able to overcome resistance to multiple
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classes of anticancer agents with diverse mechanisms of action.
Sunitinib continues to be utilised in first-line therapy for RCC and
its activity has been mainly attributed to inhibition of tumour
angiogenesis (Mendel et al, 2003; Abrams et al, 2003a, b). However,
several studies have also reported that sunitinib has antiprolifera-
tive and pro-apoptotic effects on tumour cells (Seandel et al, 2006;
Xin et al, 2009). In our study, we demonstrated that sunitinib
induces PIM-1 expression and that inhibition of PIM kinase
activity with SGI-1776 significantly enhanced the efficacy of
sunitinib in both in vitro and in vivo models of RCC. Interestingly,
the SGI-1776/sunitinib combination led to a further reduction in
c-Myc levels, which was associated with decreased tumour
proliferation. A recent study showed that sunitinib downregulated
c-Myc levels in acute myelogenous leukaemia cells, which was
associated with monocytic differentiation (Nishioka et al, 2009).
While we did not observe a strong effect of sunitinib on c-Myc
levels in RCC cells, sunitinib was able to augment the ability of
SGI-1776 to reduce c-Myc expression. In addition to c-Myc, PIM
kinases have also been shown to phosphorylate the BH3-only
protein Bad at Ser112, which inhibits its pro-apoptotic activity
(Yan et al, 2003; Aho et al, 2004; Li et al, 2006). Recent studies in
chronic lymphocytic leukaemia and prostate cancer are in
agreement with our findings and demonstrate that SGI-1776
induces apoptosis (Mumenthaler et al, 2009; Chen et al, 2009b).

The combination of SGI-1776 and sunitinib dramatically
reduced tumour burden in two RCC xenograft models compared
with single-agent therapy and was very well tolerated. Sunitinib
produced a more potent reduction of tumour burden in the 786-O
cell line, which may be due to its VHL�/� status. However, the SGI-
1776/sunitinib combination was equally effective in both VHL�/�

and VHLþ /þ xenograft models. Consistent with our in vitro data,
analysis of the tumours revealed a decrease in c-Myc levels, which
was associated with reduced tumour cell proliferation.

Our results suggest that targeting PIM kinase is a promising
new strategy for the treatment of RCC. Its ability to reduce
c-Myc activity may have important clinical implications since
c-Myc overexpression is estimated to occur in 70% of human
tumours. In addition, PIM kinase inhibition strongly enhances
the activity of standard of care agents, such as sunitinib in the
current study and platinum- and taxane-based therapies as
reported by other investigators (Hu et al, 2009; Mumenthaler
et al, 2009). Collectively, our data establish PIM kinase as a novel
therapeutic target in RCC and provide the foundation for clinical
investigation of PIM kinase inhibitors in combination with
sunitinib.
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