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Abstract

We report a three generation family with Beckwith Wiedemann syndrome (BWS) in whom we have identified a 330 kb
deletion within the KCNQ1 locus, encompassing the 11p15.5 Imprinting Centre II (IC2). The deletion arose on the paternal
chromosome in the first generation and was only associated with BWS when transmitted maternally to subsequent
generations. The deletion on the maternal chromosome was associated with a lower median level of CDKN1C expression in
the peripheral blood of affected individuals when compared to a cohort of unaffected controls (p,0.05), however was not
significantly different to the expression levels in BWS cases with loss of methylation (LOM) within IC2 (p,0.78). Moreover
the individual with a deletion on the paternal chromosome did not show evidence of elevated CDKN1C expression or
features of Russell Silver syndrome. These observations support a model invoking the deletion of enhancer elements
required for CDKN1C expression lying within or close to the imprinting centre and importantly extend and validate a single
observation from an earlier study. Analysis of 94 cases with IC2 loss of methylation revealed that KCNQ1 deletion is a rare
cause of loss of maternal methylation, occurring in only 3% of cases, or in 1.5% of BWS overall.
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Introduction

Beckwith Wiedemann syndrome (BWS) is an overgrowth

disorder typically characterized by genomic imprinting defects

on chromosome 11. Children affected by BWS have a broad

spectrum of phenotypic features with varying degrees of severity

including, pre and post-natal overgrowth, macrosomia, macro-

glossia, exomphalos, hemihypertrophy, cardiac defects, character-

istic facial features and earlobe creases and pits. Children affected

by BWS are at increased risk for cancer in the first seven years of

life. Several distinct molecular sub-groups of BWS have been

described including gain of methylation within the 11p15.5

Imprinting Centre 1 (IC1) leading to loss of imprinting of foetal

IGF2 transcripts (5%), loss of methylation within the Imprinting

Centre 2 (IC2) leading to CDKN1C silencing and biallelic

expression of the antisense transcript, KCNQ1OT1 (50%),

paternal uniparental disomy (15%), trisomy 11 p with paternal

duplication and more rarely balanced translocations affecting

maternal IC2, internal tandem duplications affecting paternal IC1

and inactivating mutations affecting maternal CDKN1C (5%)

(reviewed in ([1])). Cancer risk is highest in patients with disruption

to the imprinting or expression of foetal IGF2 caused by paternal

uniparental disomy affecting both IC1 and IC2, structural

abnormalities within IC1 including duplications and deletions, or

gain of methylation on the maternal chromosome at IC1

[2,3,4,5,6,7,8,9,10].

Familial forms of BWS are rare and in all but one family

described in the literature, inherited forms of BWS have involved

the transmission of structural abnormalities affecting IC1 or

CDKN1C mutation. There has only been one previous report of

familial BWS with a deletion affecting IC2 [11]. In this family,

maternal inheritance of the deletion was associated with BWS.

The expression of CDKN1C examined in a single affected

individual was at the lower end of the normal range consistent with

a model of imprint regulation at IC2 involving cis-acting enhancer

activation of maternal CDKN1C.

Imprint regulation within IC2 has not been as extensively

studied as that within IC1. In mouse models, the paternal

inheritance of targeted deletions within Kcnqt1, encompassing

IC2, led to activation and biallelic expression of silenced alleles of

genes including Cdkn1c, normally exclusively maternally ex-

pressed, consistent with a model involving obstruction of a

silencing mechanism on the paternally inherited allele

[12,13,14]. More recently it has been shown that the paternally

expressed non coding RNA, kcnq1ot1, transcribed from a

promoter 59 with respect to kvdmr (the region of differential

methylation within IC2), is directly involved in the bidirectional

silencing in cis of paternal genes in the domain including Kcnq1,

Cdkn1c, Ascl2, Cd81, and Osbp15. This is achieved through

direct interaction between Kcnq1ot1 ncRNA, chromatin and the

H3K9 and H3K27 histone methyl transferases G9a and the PRC2

complex [15,16]. Additional complexity in imprint regulation
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within IC2 is suggested by observations of tissue specificity in

imprint maintenance specifically affecting the Cdkn1c locus, and

by the identification of insulator elements binding CTCF on the

unmethylated paternal allele at a distance downstream from the

Kcnq1ot1 promoter [17,18]. This repressor activity facilitated by

CTCF binding to the unmethylated paternal kvdmr is completely

separable from the Kcnq1ot1 promoter, is independent of

Kcnq1ot1 transcription, and suggests that the kvdmr may function

as a chromatin insulator in a similar manner to the H19DMR

within IC1. In the chromatin insulator model, differential

methylation at the insulator maintains the imprinted expression

of flanking genes by blocking the access of enhancer elements to

gene promoters. However this model invokes the location of

enhancer elements and gene promoters being on opposing sides of

the DMR or insulator. Support for this model is suggested by the

work of John et al [19] where it was shown that by inserting

Cdkn1c transgenes with associated Kcnq1 flanking sequence in

mice, the elements required for maternal specific Cdkn1c

expression were located at a distance from the Cdkn1c promoter

and indeed 39 and beyond the kvdmr. Moreover, evidence was

shown for separate enhancer elements regulating the expression of

Cdkn1c in different tissues and in placenta. The distant enhancer

model is consistent with the low level of CDKN1C expression

demonstrated in a single BWS patient with deletion of the entire

KCNQ1OT1 locus on the maternal chromosome, in which the

putative enhancer is also presumably deleted [11]. However more

data from human studies is required to validate this single

observation and consolidate support for an enhancer model.

Families with BWS provide unique opportunities to examine the

direct impact of imprinting centre deletions on phenotype and to

validate studies in animals where imprinting control models have

been tested [7,9].We describe here a three-generation family with a

deletion of the KCNQ1 and KCNQ1OT1/LIT1 locus (IC2) that

arose de novo on a paternally inherited chromosome and was

subsequently transmitted maternally through two generations. Two

offspring in the second generation, had maternally inherited

deletions, and were affected by BWS. One child in the third

generation inherited the deletion from her affected mother and was

more severely affected. CDKN1C expression studies on peripheral

blood showed that the individuals with a maternally inherited

deletion had, on average, lower levels of CDKN1C in their

peripheral blood mononuclear cells when compared with family

members without a deletion and normal controls. CDKN1C

expression levels in deletion cases were comparable to levels in BWS

cases with LOM affecting KvDMR within IC2. This study therefore

provides important further validation of an imprinting control

model for CDKN1C in humans involving distant enhancers.

Importantly the maternal grandmother, carrying a de novo paternal

IC2 deletion, did not have elevated levels of CDKN1C expression

in her blood and nor did she have evidence of growth restriction

consistent with Russell Silver syndrome suggesting that both

CDKN1C silencer and enhancer elements were removed by the

deletion. Her normal phenotype also supports findings in the

previous family described in the literature in which it was proposed

that the ncRNA KCNQ1OT1 may be redundant for normal

development [11]. This is only the second report of familial BWS

with disruption to IC2 described to date.

Results

Identification of an 11p15.5 IC2 deletion affecting three
generations

The family that is the subject of this article was identified

following routine diagnostic testing for BWS in the female

proband (III-1). The pedigree is shown in Figure 1. At birth she

presented with exomphalos, macroglossia and transient hypogy-

caemia. Her birth weight was 3.51 Kg placing her on the 75th

percentile. She also had a naevus flammeus on her forehead,

coarse facial appearance with an upturned nose and a right ear

lobe crease. Subsequent growth and development were normal

Figure 1. Pedigree of the three generation family showing individual 11p haplotypes. Affected individuals are indicated by full shading,
carriers by partial shading. Haplotypes are represented by the allele sizes for each marker in descending order (telomere to centromere), D11S576,
D11S922, TH, D11S4088, 244.14 and HBB. Inferred marker deletion is indicated by a dash.
doi:10.1371/journal.pone.0029034.g001

11p15 Imprinting Centre 2 Deletion
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and she showed no evidence of hemihypertrophy. Further clinical

investigation of the family revealed that her mother (II-2) and

maternal uncle (II-1) both had features of BWS. The proband’s

mother had macroglossia at birth, a naevus flammeus over her

forehead and an umbilical hernia. She did not develop

hemihypertrophy and her birthweight was 3.03 kg (25th percen-

tile). Her development was normal. The maternal uncle was born

prematurely and presented at birth with macroglossia, naevus

flammeus over his forehead, and had hypoglycaemia as a neonate.

His development was normal. The maternal grandmother,

maternal grandfather and the maternal great uncle were all

phenotypically normal, as was the proband’s father. There was no

history of malignancy in the individuals affected by BWS.

11p15.5 methylation analysis was performed on DNA isolated

from peripheral blood in the proband and then subsequently in all

family members using standard methylation sensitive southern

blotting at a Not1 site within the IC2 KvDMR [20,21]. This

analysis revealed a paternal only epigenotype in the proband and

in her mother and maternal uncle, with a 2.7 kb band present on

southern blotting (Figure 2). The maternal grandmother however

displayed a maternal-only epigenotype and a 4.2 kb band. Real

time karyotyping across the IGF2, KCNQ1 and CDKN1C loci

was performed as described in [11]. All the affected family

members and the maternal grandmother had reduced copy

number for amplicons representing intron 1C, KCNQ1OT1 and

exon 11 within the KCNQ1 locus, and maintained normal copy

number at CDKN1C and IGF2 (Table 1). This analysis was

subsequently followed by methylation sensitive multiplex ligation-

dependant probe amplification (MS-MLPA) in the 11p15.5 region

on both the affected and unaffected family members. MS-MLPA

confirmed both the copy number change within KCNQ1 and the

methylation change within KvDMR in the proband, her mother

and uncle, and in the maternal grandmother (Table 2). IC1

methylation and copy number were normal in both affected and

unaffected individuals. In all the individuals carrying the KCNQ1

deletion, exons 1 Alt and exon 16 were intact, suggesting it extends

from KCNQ1 intron 1 to KCNQ1 intron 15, a distance of

approximately 330 Kb. The methylation patterns observed on

Figure 2. Southern blotting examining methylation at a Not1
site within KvDMR. The methylated maternal allele is at 4.2 kb and
the unmethylated paternal allele is at 2.7 kb. Loss of the methylated
maternal allele is shown for the affected individuals, II-1, II-2 and III-1.
The methylated maternal allele is retained in I-2 and the unmethylated
paternal allele is lost. Control DNA is represented by N and a positive
control with loss of maternal allele methylation is in the adjacent lane.
doi:10.1371/journal.pone.0029034.g002

Table 1. Q-PCR determination of copy number.

Case CDKN1C
KCNQ1
intron 1C KCNQ1OT1

KCNQ1
exon 11 IGF2

III-3 0.98 0.53 0.50 0.45 0.94

II-2 1.02 0.54 0.52 0.46 1.08

II-1 0.96 0.50 0.43 0.40 0.99

I-2 0.96 0.51 0.46 0.54 0.93

I-1 0.89 1.01 0.90 1.28 1.09

Relative gene copy number analysis for amplicons across the KCNQ1 and
flanking loci determined by Q-PCR. The heading KCNQ1OT1 refers to DNA
within the KCNQ1OT1 region. The values shown are the ratio of the means of
triplicate copy number determinations relative to the mean of the CFTR
reference gene copy number. Deletion within the KCNQ1 locus is suggested by
reduced copy number in the DNA from I-2, II-1, II-2 and III-1. Normal copy
number is maintained in I-1.
doi:10.1371/journal.pone.0029034.t001

Table 2. Methylation sensitive MLPA.

Probe
Normal
range I-1 I-2 1-3 II-1 II-2 II-3 III-1

Copy No probe

H19 2219 0.87–1.09 0.98 0.98 0.90 0.86 0.96 0.99 0.91

H19 10585 0.79–1.19 0.92 1.05 0.97 0.99 1.03 0.98 0.91

H19 10586 0.87–1.09 0.92 0.86 1.01 0.83 0.87 0.96 0.98

H19 6268 (exon 3) 0.91–1.03 1.04 1.06 1.03 1.02 0.98 1.00 0.97

H19 10588 0.77–1.23 0.86 0.94 0.91 0.90 1.01 0.86 0.842

IGF2 6272 (exon 3) 0.88–1.08 0.99 1.00 0.95 0.98 0.92 1.00 0.95

KCNQ1 3537
(Alt exon 1)

0.97–1.07 0.94 0.96 0.92 1.09 1.03 0.93 0.92

KCNQ1 3539
(exon 3)

0.85–1.10 0.99 0.51 1.01 0.54 0.56 0.99 0.53

KCNQ1 3542
(exon 6)

0.87–1.16 0.96 0.55 0.95 0.54 0.55 0.95 0.54

KCNQ1 3543
(exon 7)

0.83–1.25 1.05 0.50 1.00 0.54 0.54 1.00 0.54

KCNQ1 3544
(exon 8)

0.93–1.13 1.02 0.51 0.98 0.56 0.52 0.99 0.55

KCNQ1 3550
(exon 12)

0.90–1.04 0.99 0.49 1.00 0.53 0.52 1.01 0.53

KCNQ1 3553
(exon 15)

0.88–1.14 1.01 0.53 0.99 0.52 0.55 0.98 0.58

KCNQ1 3555
(exon 16)

0.90–1.04 0.99 0.90 0.97 0.97 0.98 0.94 0.98

CDKN1C 6262
(exon 1)

0.93–1.05 1.02 0.92 0.97 0.97 0.97 0.99 0.99

CDKN1C 6263
(exon 1)

0.96–1.18 0.98 0.94 1.03 0.91 0.92 0.98 0.96

Methylation probe

H19 DMR 8743 0.52–0.62 0.55 0.50 0.53 0.57 0.57 0.51 0.62

H19 DMR 8744 0.53–0.63 0.61 0.56 0.60 0.57 0.58 0.61 0.52

H19 DMR 11080 0.41–0.63 0.53 0.56 0.54 0.49 0.55 0.54 0.48

H19 DMR 6266 0.40–0.54 0.49 0.51 0.50 0.52 0.50 0.50 0.51

KvDMR 7173 0.53–0.63 0.57 1.01 0.60 0.00 0.00 0.62 0.00

KvDMR 6267 0.48–0.57 0.52 0.88 0.60 0.00 0.00 0.55 0.00

KvDMR 7171 0.51–0.67 0.61 0.94 0.57 0.00 0.00 0.54 0.00

KvDMR 7172 0.48–0.61 0.53 0.96 0.54 0.00 0.00 0.53 0.00

MS-MLPA analysis of the pedigree showing deletion from exon 2 to exon 15
within KCNQ1 in I-2, II-1, II-2 and III-1 (bolded), and maintenance of normal copy
number in the remaining unaffected individuals. Normal methylation was
maintained at the H19DMR (IC1) in all individuals and KvDMR methylation is
abnormal in I-2, II-1, II-2 and III-1 (bolded). In I-2 the KvDMR methylation values
are indicative of retention of the methylated IC2 on the maternal KCNQ1 allele
and loss of the paternal unmethylated IC2, and in II-1, II-2 and III-3 these values
are consistent with loss of the methylated IC2 on maternal KCNQ1 and
retention of the paternal unmethylated IC2.
doi:10.1371/journal.pone.0029034.t002
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southern blotting and MS-MLPA are also consistent with a

deletion within KCNQ1 on the paternal chromosome in the

grandmother and subsequent transmission from the grandmother

to her affected son and daughter and from her daughter to her

grand-daughter.

Haplotype analysis suggests the IC2 deletion arose de
novo

Haplotype analysis at markers mapping to 11p15 was

performed on all family members using methods previously

described in Algar et al [2]. This revealed evidence of the

inheritance of a stable haplotype block within the family extending

from D11S576 located 0.245 Mb from the telomere (Chromo-

some 11 Build 37.1) to a region located distally with respect to the

HBB locus. The haplotype carrying the KCNQ1 deletion

identified in the grandmother is presumed on the basis of

methylation analysis to be derived from her father. However her

brother shares the same haplotype for the markers TH, D11S922

and D11S576, located telomeric with respect to KCNQ1, and he

does not carry a KCNQ1 deletion. This strongly suggests that the

KCNQ1 deletion has arisen de novo in the grandmother on her

paternal chromosome. The grandmother was phenotypically

normal, with no remarkable features, suggesting that the removal

of functional silencing elements within IC2, shown to be active on

the paternal chromosome in mouse models, and KCNQ1OT1

transcription on the paternal chromosome, may not be essential

for normal human development within the context of a deletion of

this size. Only individuals inheriting the deletion maternally are

affected by BWS.

CDKN1C expression is reduced in IC2 deletion and
KvDMR loss of methylation BWS cases

CDKN1C expression was measured in the peripheral blood

mononuclear cells of all family members depicted in Figure 1.

CDKN1C copy number was determined and expressed relative to

the GUSB copy number derived in cDNA samples from each

individual, from normal controls and for comparison, from BWS

cases with IC2 loss of methylation (LOM). Although the

distribution of GUSB copy number in the sample population

was broad, GUSB expression has been shown in previous

validation studies to reliably reflect cDNA quantity for normalized

gene copy number determinations for monitoring minimal

residual disease in leukaemia, and was selected on this basis

[22]. Furthermore in this previous study a similar population

distribution in GUSB copy number values was obtained (103–105

copies per 100 ng equivalent of RNA) similar to what is reported

here. Mean GUSB copy number values measured in samples

tested in this study are shown in Figure 3a. All three individuals in

the family affected by BWS, III-1, II-1 and II-2 individually had

mean CDKN1C/GUSB ratios of 0.05. This was calculated as the

mean of RQ-PCR duplicates, from two cDNA preparations from

each individual. The maternal grandmother (I-1), with a paternal

deletion, had a CDKN1C level of 0.07. The remaining unaffected

members of the family had relative CDKN1C levels ranging from

0.06 to 0.14. The range established in the normal population,

through an analysis of 11 unaffected individuals, extended from

0.015 to 0.54, and in five BWS patients examined with KvDMR

LOM, extended from 0.006 to 0.114. The Mann Whitney non-

parametric U test was used to examine the statistical significance of

the differences in CDKN1C expression between individuals with a

deletion and those in the unaffected population, including the

unaffected family members, and between individuals with

KvDMR LOM and the unaffected population. This analysis

measures the significance of the distribution of values in each

population and compares median values. Statistically significant p

values of ,0.05 were obtained for the deletion and loss of

methylation groups who had lower CDKN1C expression levels

when compared as a group to the unaffected controls (Figure 3b).

The difference in CDKN1C expression between KCNQ1 deletion

and KvDMR LOM cases was however not statistically significant

(p,0.78) suggesting that the distribution of CDKN1C expression

in these individuals is highly similar with both groups having lower

levels of CDKN1C expression in peripheral blood.

The proband in the family was heterozygous for a deletion

polymorphism within the CDKN1C exon 1 coding region

however all other individuals in the family, with a deletion, were

homozygous for the CDKN1C wild-type (non-polymorphic) ‘‘a’’

allele. Numerous attempts to examine the pattern of allelic

expression at CDKN1C in the proband, using gel-based product

identification, failed following RT-PCR due to the very low level

of CDKN1C expression and the low efficiency of the PCR across

the GC-rich repeat polymorphic region within CDKN1C exon 1

[23]. It was also not possible to redesign primers to generate a

shorter amplicon to examine allelic expression because of the

highly repetitive sequence within this part of exon 1.

KCNQ1 deletion is rare in BWS
All cases with BWS referred to the laboratory in whom isolated

LOM at KvDMR was originally ascertained by methylation

sensitive southern blotting (excluding cases with UPD and trisomy

11p15) were reexamined by either Q-PCR and MS-MLPA for

evidence of copy number change within IC2. Of a total of 94 cases

evaluated as having LOM within IC2, a deletion was not identified

in any. Thus KCNQ1 deletion is a rare cause of an apparent IC2

methylation defect in BWS, occurring at a frequency of 3% (3/97)

in IC2 LOM cases.

Discussion

In studying this BWS family we have made several important

observations that support and also extend the observations

previously reported in a BWS family with an 11p15.5 IC2

deletion [11]. Firstly, although IC2 deletion is rare, this case

highlights the importance of thoroughly evaluating family history

in BWS and testing relatives in cases where a deletion is identified.

The technique of MS-MLPA has made the identification of these

cases a relatively straightforward exercise, since the copy number

at eight probes within the KCNQ1 locus as well as the methylation

status of four probes within the KvDMR is evaluated simulta-

neously. Secondly, this family demonstrates that large paternal

KCNQ1 deletions may have no identifiable phenotype if they

delete both putative silencing and enhancer mechanisms involved

in the regulation of CDKN1C expression on the paternal

chromosome. KCNQ1 deletion causes BWS only when transmit-

ted maternally and causes the syndrome through its effect on

maternal CDKN1C expression. Thirdly the identification of this

family within the context of routine molecular testing for BWS has

enabled us to predict with accuracy the frequency with which IC2

deletions occur within the population of BWS patients affected by

loss of methylation.

The evidence we show of significantly reduced CDKN1C

expression in the peripheral blood of individuals with a maternal

deletion, is compatible with a model invoking the deletion of

enhancer elements within the KCNQ1 locus that are required for

maternal CDKN1C expression. The enhancer model must

however also be compatible with CDKN1C silencing observed

in BWS patients with epigenetic defects within the KvDMR

11p15 Imprinting Centre 2 Deletion
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including loss of maternal methylation (LOM) described here and

in Diaz-Meyer et al [24]. One possible explanation is that the

induction of the expression of the ncRNA, KCNQ1OT1, on the

maternal chromosome and its interactions with chromatin lead to

bidirectional silencing in cis throughout the domain and that these

changes also prevent maternal CDKN1C enhancer elements from

functioning as a result of the altered chromatin structure. On the

basis of our findings, putative enhancer elements required for

CDKN1C expression must be located between KCNQ1 exons 3

and 15. This location could place them downstream (39) of the

insulator at KvDMR, thereby also satisfying a model based on an

insulating DMR. Figure 4 presents a hypothetical model of how

the KCNQ1OT1 antisense transcript, chromatin insulators and

CDKN1C enhancers interact to maintain imprinted CDKN1C

expression.

Although a CDKN1C promoter mutation might explain

reduced CDKN1C expression in BWS cases with either loss of

methylation within KvDMR or a KCNQ1 deletion, this was not

considered to be a likely possibility given the rarity of CDKN1C

mutation and the extremely unlikely scenario that two distinct

constitutional mutations may have caused the syndrome in this

instance. Furthermore previous studies have not demonstrated any

evidence for co-occurrence of CDKN1C mutation with KvDMR

loss of methylation.

Mice with targeted deletion within paternal KvDMR are 20–

25% smaller than their wild-type littermates [12]. However the

Figure 3. GUSB copy number distribution in the BWS and control population. (a) GUSB expression values were obtained from a 50 ng
equivalent of total RNA. Quantitative analysis of CDKN1C expression. (b) CDKN1C expression in the blood from 12 unaffected individuals (diamonds),
five BWS cases with loss of methylation at IC2 and no deletion (squares), and individuals with deletion of the maternal IC2 (triangles). The Mann
Whitney non-parametric U test was used to derive the P values shown. Statistically significant P values were obtained for the population differences
in CDKN1C expression between unaffected controls and cases with loss of methylation and KCNQ1/IC2 deletion.
doi:10.1371/journal.pone.0029034.g003

11p15 Imprinting Centre 2 Deletion
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maternal grandmother in this family was not excessively short and

did not show CDKN1C expression above the normal range in her

blood. In fact her CDKN1C level was at the lower end of the

normal range. The location of the large 330 kb deletion on her

paternal chromosome may not lead to elevated CDKN1C

expression if it deletes both paternal silencing as well as more

distant enhancer elements that are required for CDKN1C

expression (Figure 4). CDKN1C is not normally expressed from

the paternal chromosome and silencing is thought to be

maintained in part by antisense transcription of KCNQ1OT1

and by insulating elements. The deletions engineered in mice and

in other cell models have generally been small and localized to the

KvDMR region rather than encompassing flanking regions within

the KCNQ1 locus, and therefore may not accurately predict the

impact of larger KCNQ1 deletions on CDKN1C expression or

phenotype. This is suggested by the observation that mice with

targeted deletion of maternal KvDMR have no phenotype when

the deletion is maternally transmitted [12]. Only paternal deletions

that expose CDKN1C enhancers by opening up chromatin and

that prevent KCNQ1OT1 transcription and disrupt formation of

chromatin insulators, may lead to paternal CDKN1C expression

and phenotypes linked to elevated CDKN1C.

This study is important for both clinicians involved in

counseling for BWS and for researchers interested in imprinting

control. Methylation within IC1 was unaltered by the presence of

the KCNQ1 deletion, consistent with previous reports [11,12,25],

however we were not able to examine allelic IGF2 expression

directly due to the lack of IGF2 transcripts in peripheral blood.

The cancer risk in KCNQ1 deletion cases of BWS is presently

unknown due to the low number of affected individuals however

Figure 4. Model of normal and disrupted imprinting regulation at the CDKN1C locus. Genomic distances were calculated from NCBI
reference sequence NG_008935.1. (a) CDKN1C imprinting is maintained on the paternal chromosome by KCNQ1OT1 transcription leading to
bidirectional gene silencing (indicated by spreading cloud) and formation of a chromatin insulator within the KVDMR (CTCF binding) that prevents a
dominant distant CDKN1C enhancer from activating paternal CDKN1C expression. On the maternal chromosome, methylation within the KVDMR
prevents chromatin insulator formation, KCNQ1OT1 is silent, and the distance enhancer can activate maternal CDKN1C expression. (b). In BWS cases
with LOM within KvDMR, bidirectional gene silencing on both paternal and maternal chromosomes occurs, chromatin insulators exist on the
maternal and paternal chromosomes and distant CDKN1C enhancers can no longer activate maternal CDKN1C expression. Mosaicism for the LOM
epimutation allows some CDKN1C expression to occur. (c). Maternal deletion of 330 kb within the KCNQ1 locus removes the KvDMR, and the distant
enhancer element, thereby reducing the maternal CDKN1C expression that is normally activated by distant enhancers. Enhancers located close to
CDKN1C, not affected by deletion, may still be active and allow CDKN1C expression in some tissues. (d). Paternal deletion of 330 kb has a minimal
effect on CDKN1C expression because even though the KvDMR is deleted on the paternal chromosome, the distant enhancer for CDKN1C is also
deleted, neutralizing any potential for activation of paternal CDKN1C. Proximal CDKN1C enhancers unaffected by deletion may be active in some
tissues. Maternal CDKN1C expression is unaffected.
doi:10.1371/journal.pone.0029034.g004
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BWS patients with isolated loss of methylation within IC2 are at

risk for hepatoblastoma and other tumours including rhabdomyo-

sarcoma, gonadoblastoma and thyroid carcinoma [6]. Whether

the aetiology of these cancers is primarily attributable to the loss of

CDKN1C expression in target tissues is currently uncertain, and it

would be wise to maintain the tumour screening protocols in IC2

deletion cases, currently performed for loss of methylation cases.

Materials and Methods

Subjects
The family was recruited into the study following the

identification of an IC2 deletion in the proband. Individuals gave

written informed consent for participation and the study was

performed with the approval of the Human Ethics Research

Committee of the Royal Children’s Hospital, approval EHRC

21121A. In the case of the infant proband, written informed

consent was granted by the parents. DNA was isolated from

peripheral blood using the Puregene Blood Core Kit B (Qiagen).

RNA was isolated from peripheral blood using the RNeasy Kit

(Qiagen) and 1.0 ug reverse transcribed to cDNA with random

primers (pd(N)6) (Amersham Pharmacia Biotech) and M-MLV

Reverse Transcriptase RNaseH minus (Promega Corporation).

Genotyping
DNA was genotyped using microsatellite markers mapping to

11p. These were the dinucleotide repeats at D11S576 (0.245 M)

and D11S922 (1 M) within 11p15.5, the tetranucleotide repeat

region of Tyrosine Hydroxylase (TH) (2.19 M) at 11p15.5, the

dinucleotide repeats D11S4088 (2.755 M) and 244.14 (2.68 M)

within the KCNQ1 locus at 11p15.5, and the dinucleotide repeat

of the HBB locus at 11p15.4 (5.22 M). Bracketed numbers

represent the approximate location of markers on Chromosome

Build 37.1. Primers were labelled with Fam, Hex or Tet and 15 ng

of DNA was subjected to 35 cycles of PCR using a PTC-225 DNA

Engine Tetrad (MJ Research). 1 uL PCR products from different

reactions were pooled and electrophoresed on 4.5% 0.2 mm

denaturing polyacrylamide gels on an ABI 377 DNA sequencer

employing TAMRA 500 (Red) size standard. Sample lanes were

tracked with Genescan software Version 3.1.2 and analysed using

Genotyper Version 2.1.

Southern blotting
Methylation at KvDMR (OMIM 604115) was examined by

southern blotting following digestion of 5 ug DNA overnight at

37uC with 40 units each of EcoRI and NotI. Digested DNA was

then electrophoresed on 1% gels overnight in 1XTAE buffer, and

transferred in 206 SSC buffer onto Zeta Probe R GT Genomic

tested blotting membrane (Biorad, Hercules CA 94547). Mem-

branes were fixed under UV light, prehybridized at 60uC in

ExpressHyb buffer (Clontech, Mountain View CA 94043) and

hybridized with a 32P-labelled DMRP probe, recognizing a 4.2 kb

methylated and 2.7 kb unmethylated band [21]Membranes were

washed at room temperature with 26 SSC/0.05% SDS for

40 mins and then with 0.16SSC/0.1% SDS for a further 40 mins

at 55uC and exposed to phosphoimager screens for 24 to 48 hours.

Bands were visualized with ImageQuant TL v2003.02 software

following digital capture on a scanning phosphoimager (Molecular

Dynamics). The methylation index was calculated as the peak

volume of the methylated band divided by the sum of the volumes

of the methylated and unmethylated bands after background

subtraction. Reference ranges for normal methylation in the

unaffected population were established from an analysis of 20

controls. These were determined as 0.52+/20.17 (mean+/22

SD). Pathological methylation was designated as methylation

outside two standard deviations from the mean.

Methylation sensitive multiplex ligation dependant
probe amplification

200 ng DNA was subjected to methylation sensitive multiplex

ligation dependant probe amplification (MS-MLPA) using the

BWS/RSS ME030 kit (MRC Holland). Copy number data was

analysed relative to a control DNA sample, comprising a mix of

DNA from four unaffected individuals, after internal control

normalization, and copy number was determined using Gene-

Marker software v 1.91 (Softgenetics). Methylation data was

analysed relative to paired copy number samples run in parallel

after internal control normalization, and methylation ratios

calculated using the genomic imprinting analysis option in

GeneMarker. Methylation ranges in the unaffected population,

for each probe targeting methylation sensitive Hha1 sites within

the 11p15.5 imprinting centres 1 and 2, were established by

analyzing the DNA from 20 unaffected individuals. Pathological

methylation was defined as methylation that was two standard

deviations (SD) outside the normal population range at each

probe, where the normal range was defined as the mean

methylation value +/2 (CVA+CVI+SD). For copy number,

normal ranges were similarly determined. Any sample with an

abnormal normalized copy number or methylation probe ratio

was repeated. Methylation within an imprinting centre was not

considered to be abnormal unless all methylation probes within

the imprinting centre were $2 SD outside the normal range.

Q-PCR karyotyping
Quantitative PCR across the IC2 was performed on DNA using

similar methods to those described in Niemitz et al [11].Copy

number within three regions of the KCNQ1 locus and at single

regions with the CDKN1C and IGF2 loci were examined and

normalized to the reference gene CFTR. Reaction mixes were

comprised of a total volume of 25 ul and contained 12.5 ul of Fast

Start Mastermix (Roche), 22.5 picomole of each primer, 3.1

picomoles of each hydrolysis probe and 5 ul of DNA. Standard

curves were prepared for each gene analysed using DNA standards

of 200 ng, 100 ng, 50 ng, 25 ng, 12.5 ng, 6.25 ng and 3.125 ng.

Individual patient DNA samples were analysed at 50 ng.

Reactions were run on a Rotorgene 3000 (Qiagen) for 50 cycles

(50uC 2 mins, 95uC 10 mins and 50 cycles of 95uC for 15 secs,

60uC for 60 secs). Reaction runs included DNA standards, water

non-template controls and individual DNA samples. Samples and

standards were run in triplicate and Ct values were within 0.3 Ct

units of each other. Standard curve gradients were within 3.32+/

20.30 when plotted against DNA concentration, and reaction

efficiencies were in the range from 90 to100%.

Primer and hydrolysis probe sequences and fluorophores, for

amplicons for copy number determination within the KCNQ1

locus (KCNQ1 intron 1C, KCNQ1OT1/KvDMR/LIT1,

KCNQ1 exon 11), IGF2 and CDKN1C were as described in

Niemitz et al [11]. Primers and probe to the reference sequence

CFTR were: CFTR24F 59 GAAGAGAACAAAGTGCGGCAG

39, CFTR24R 59 TTGCCGGAAGAGGCTCCT 39and

CFTRexon24 59(HEX) ACGATTCCATCCAGAAACTGCT-

GAACGA (BHQ) 39.

Relative copy number calculations were performed using the

relative quantitation analysis (two standard curves) option in the

Rotorgene software. The normal ranges (mean +/2 SD)

established in control samples for relative copy number for each

amplicon were 0.99+/20.03 (CDKN1C), 1.07+/20.08 (KCNQ1
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exon 11), 1.00+/20.06 (KCNQ1 intron1C), 1.05+/20.15

(KCNQ1OT1) and 1.01+/20.022 (IGF2).

CDKN1C expression
CDKN1C expression was examined by RQ-PCR on a

Rotorgene 3000 (Qiagen). Primers and probes were as described

in Niemitz et al [11]. Reaction mixes of 25 ul volume contained

12.5 ul of 26 Quantitect Probe master mix, 10picomole of each

primer and 2.5 picomole of hydrolysis probe. Linearized

CDKN1C plasmid standards were prepared by digestion of

plasmid CDKN1C pcMV6-XL4 (Origene Technologies, Rock-

ville, MD) with Kpn1. Linearized plasmid was diluted to generate

six standards containing from 105 to 1 plasmid copy number.

CDKN1C expression was normalized to the expression of the

GUSB reference gene. Cycling conditions for GUSB expression

were as described in Gabert et al [22]. GUSB standards for

quantitation were prepared by serial dilution of GUSB plasmid

linearized with Kpn1. Six standards in the range from 105 to 1

plasmid copy were used in RQ-PCR. GUSB plasmid was

prepared by cloning a 268 fragment encompassing exons 11 and

12 into PCR-Script Amp SK (+) cloning vector (Stratagene).

Primer sequences used to generate a GUSB product from K562

leukaemia cell line cDNA for cloning were ex11F_1739

59ctgatgttcactgaagagtacc 39and ex12R_2007 59 cattgtgacttggctact-

gagtg 39. Standard curve gradients were 3.30+/0.10 (CDKN1C)

and 3.34+/20.04 (GUSB). Reaction efficiencies were close

to100% for each reaction.
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