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Abstract
Experimental work using human cancer cell lines often does not translate to the clinic. We posit
this is because some cells undergo changes in vitro that no longer make them representative of
human tumors. Here we describe a novel alignment method named SRCCM (Spearman’s Rank
Correlation Classification Method) that measures similarity between cancer cell lines and human
tumors via gene expression profiles, for the purpose of selecting lines that are biologically
relevant. To demonstrate utility, we used SRCCM to assess similarity of 36 bladder cancer lines
with 10 epithelial human tumor types (N=1630 samples) and with bladder tumors of different
stages and grades (N=144 samples). While 34/36 lines aligned to bladder tumors rather than other
histologies, only 16/28 had SRCCM assigned grades identical to that of their original source
tumors. To evaluate the clinical relevance of this approach, we demonstrate that gene expression
profiles of aligned cell lines stratify survival in an independent cohort of 87 bladder patients (HR
= 3.41, logrank p = 0.0077), while unaligned cell lines using original tumor grades did not. We
repeated this process on 22 colorectal cell lines and found that gene expression profiles of 17 lines
aligning to colorectal tumors and selected based on their similarity with 55 human tumors
stratified survival in an independent cohort of 177 colorectal cancer patients (HR = 2.35, logrank p
= 0.0019). By selecting cell lines that reflect human tumors, our technique promises to improve
the clinical translation of laboratory investigations in cancer.
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INTRODUCTION
Cell lines derived from human tumors serve as model systems that have greatly increased
our understanding of cancer biology. These are routinely used to characterize molecular
mechanisms of disease (1–3) and therapeutic agents (4–6). High throughput cell line
screening programs have been used to characterize the efficacy of anti-cancer agents (7) and
to identify novel multi-agent therapies (8). Nevertheless, the validity of a cell line model
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depends on how representative it is of the tumor type under investigation. Notably, cell lines
can lose molecular features that drive clinically relevant characteristics as they adapt to
culture conditions (9). An analysis of NCI-60 cell lines found that the proportion of cell
lines most similar to their presumed tissue of origin could be as low as 57%, and that the
molecular profiles of patient tumors are more similar to normal tissues of the same type than
their derived cell lines (10). Cross-contamination of cell lines is well-documented and also
contributes to reduce the number of relevant cancer cell line models for research (11–13).

Stage and grade are cornerstone prognostic and predictive factors of tumor aggressiveness
and disease outcome. In the case of bladder cancer, high grade cancers are more likely to
metastasize than low grade ones and up to 30% of non-muscle invasive tumors progress to
muscle invasion (14). Metastatic risk correlates with stage, with up to 50% of patients
harboring muscle-invasive cancers developing metastatic disease during follow-up (15).
Furthermore, tumor sensitivity to anti-cancer agents depends on stage and grade, with
resistance more common in poorly differentiated tumors (16, 17). Lastly, the evaluation of
chemotherapy and radiation treatments often occurs in subsets of cancer patients having
tumors of a specific stage or grade (18–20). For all of these reasons, the choice of an
appropriate cell line model that aligns with the specific human tumor characteristics being
investigated is critical if results from cell line experiments are to have clinical relevance.

Here we develop a novel framework for classifying or aligning human cancer cell lines as a
function of their similarity to several important phenotypes of human tumors via gene
expression profiles. We then use the gene expression profiles of these aligned cancer cells as
biomarkers, to determine which cells predict clinical outcomes in human cancer patients (i.e.
are clinically relevant). As a proof of principle, we used bladder and colorectal cancer cell
line panels and patient tumor cohorts to demonstrate that gene expression signatures of
cancer cell lines selected on the basis of their alignments to human cancer phenotypes
predict patient survival outcomes while the signatures of unaligned cells do not. Our
practical approach can guide the selection of “clinically relevant” cell lines for use in
experimental studies which may enhance the likelihood of clinical translation of laboratory
investigations. Since this methodology is applicable to any cancer cell line and measurable
phenotype (e.g. grade, invasiveness and metastasis), it has broad applicability in cancer
research.

MATERIALS AND METHODS
The bladder and colorectal cell line panels

Gene expression profiles (CEL files) for 36 bladder cancer cell lines (BLA-36) are available
from the Gene Expression Omnibus (GEO) (21), accession #GSE5845, Ref #22. The
database contains expression profiles for 40 cell lines, including several cell lines of the
same lineage. In our analysis, we chose to analyze unique cell lines or related cell lines that
were derived in separate laboratories. As a result, we removed the cell lines FL3, SLT4,
T24T (all derived from T24) and 253J-BV (derived from 253J) prior to our analysis.
Information about the BLA-36 cell lines along with our alignments are provided in
Supplementary Table S1. Gene expression profiles (CEL files) for 22 colorectal cell lines
(CO-22) profiled in triplicate from GlaxoSmithKline are available through the National
Cancer Institute’s cancer Bioinformatics Grid™ (caBIG), Ref #23.

The Spearman’s Rank Correlation Classification Method (SRCCM)
The SRCCM algorithm classifies a test sample based on the Spearman’s rank correlation
between its gene expression profile and the gene expression profile of a set of training
samples with known phenotypes (Figure 1A). The gene expression profile is based on a gene
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signature that is unique to each phenotype (Figure 1B–C). The tissue of origin gene
signature consists of 12,402 “high fidelity” probes whose expression values are consistent
across formalin fixed, paraffin embedded and fresh frozen preservation methods (24). The
bladder stage and grade gene signatures have been previously published and independently
validated (25). The bladder disease-specific survival (DSS) gene signature consists of the
181 probes with univariate Cox proportional hazard model logrank p-values < 0.01 in the
training cohort from Memorial Sloan-Kettering Cancer Center (MSKCC, Ref # 26). The
colorectal DSS gene signature is a previously published and validated signature consisting
of 34 genes that correlate with recurrence and survival (27).

The test sample is aligned to (i.e., classified as or assigned) the phenotype with the highest
average correlation. Formally, let P = (P1, …, Pk) be the set of training phenotypes of
interest with known gene expression profiles. In Figure 1A, k = 2 and P = (low grade, high

grade). Let t be the gene expression profile of the test sample and  be the gene expression

profile of the ith training sample of phenotype p, i = 1, …, np. Let  be the

Spearman’s rank correlation between gene expression profiles t and , which is the
standard Pearson product moment correlation calculated using the ranks of the data. Finally,

let  be the average Spearman’s rank correlation between the test sample’s
gene expression profile and the gene expression profiles of phenotype p. Then the
classification of the test sample is the phenotype p ∈ P that maximizes r ̄(p). For purposes of
ranking the test samples when k = 2 phenotypes, we use a correlation score = r(P2) − r(P1),
where P = (non-muscle invasive, muscle invasive),(low grade, high grade), and (long-term
survivor, short-term survivor), for stage, grade, and DSS alignment, respectively. Software
for the SRCCM is available to the scientific community through the Comprehensive R
Archive Network (28) as part of the correlation classification method (CCM) contributed
package.

Bladder stage and grade alignments
The SRCCM algorithm was used along with separate published and validated stage and
grade gene signatures (25) to classify tumors as muscle invasive (stages T2–T4) or non-
muscle invasive (stages Ta-T1), and as high grade (G3–G4) or low grade (G1–G2). Each
gene signature consists of 100 genes, with 54 genes common to both signatures. For each
signature, we used the 84 genes common to the training (Lindgren) (25), validation
(MSKCC), and BLA-36 datasets, with 46 genes common to both signatures. The two
signatures were further validated using the Chungbuk National University Hospital (CNUH)
cohort (29) and the Stransky cohort of patients from the Henri Mondor Hospital in France
(30) using the genes common to all datasets (72 for stage and 70 for grade). For
visualization purposes, the correlation score (described above) was used to rank the cell
lines, with higher scores corresponding to muscle-invasive and high grade tumors,
respectfully.

Bladder and colorectal disease specific survival alignments
We use DSS in all of our analyses with survival time equal to the time from diagnoses to
time of death or last follow-up. All individuals not dead from disease are censored at the
time of last follow-up or time of death from another cause. For DSS alignment, the “median
cut” labeling method was used to identify long-term survivors (i.e., low risk individuals) and
short-term survivors (i.e., high risk individuals) (31). Patients without censored survival
times are assigned to the long-term survivor group if the survival time exceeds the median
survival time of all patients in the training cohort, and assigned to the short-term survivor
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group otherwise. For a patient with an unobserved survival time of T that is censored at C,
we calculate

where P(T > Median survival time) and P(T > C)are estimated using the Kaplan-Meier
survival curve for all patients (32). The patient is then assigned to the long-term survivor
group if P(long-term survivor) > 0.5, and assigned to the short-term survivor group
otherwise.

RESULTS
A new method that aligns cell lines to human tumors based on gene expression similarity

We developed a new classification method, herein referred to as the Spearman’s Rank
Correlation Classification Method (SRCCM) and first applied it to 36 bladder cancer cell
lines (BLA-36) (Supplementary Table S1). These lines were assigned to the following tumor
phenotypes: tissue of origin (from 10 epithelial cancers), bladder cancer stage (invasive vs.
non-muscle invasive), grade (low vs. high), and disease specific survival (DSS, long-term
vs. short-term survivors). SRCCM (Figure 1A) aligns cell lines to human tumor phenotypes
based on the gene expression similarity between cell lines and human tumors calculated
using gene signatures, described below and in Materials and Methods, that consists of a
subset of all genes profiled in both groups (cell lines and human tumors) (Figure 1B–C). The
SRCCM consists of three steps: 1) for each test sample, calculate the rank correlation
between its gene expression profile and the gene expression profiles of each training sample
with known phenotype (e.g., grade), 2) assign the phenotype with the highest mean
correlation to the test sample, producing the alignment, 3) repeat the procedure for all test
samples (Figure 1A). Therefore, each test sample (e.g., cell line in a set) is aligned to the
human tumor phenotype it is most similar to, based on the similarity between gene
expression profiles.

For each tumor phenotype, the SRCCM algorithm is validated on at least one independent
test dataset and then applied to the BLA-36 cell lines. For each test sample, the primary
output of the SRCCM is its molecular alignment (i.e., a qualitative phenotype) while the
secondary output is a quantification of the relative strength of one alignment (e.g., to high
grade) to another (e.g., to low grade) by subtracting the corresponding mean correlations,
producing a correlation score. For stage, grade, and disease specific survival alignments, a
higher correlation score indicates greater similarity with muscle invasive, high grade, and
short-term survivors, respectively (see Materials and Methods).

Our SRCCM algorithm is based on the classification method of Wang et al. (33) but is
modified in three important ways. The first modification is that we use Spearman's rank
correlation rather than Pearson product moment correlation to measure gene expression
similarity. Our choice of a rank-based classifier is motivated by the fact that the rank value
of a probe’s expression level within a sample is insensitive to standard within-sample
preprocessing methods and is not directly affected by other probes or samples on the array,
whereas the expression value is highly dependent on the pre-processing and normalization
methods used and can be affected by additional probes and samples (e.g., when robust
multichip average (RMA) normalization is used). The second modification is that instead of
measuring similarity based on a sample’s global gene expression profile (i.e., the expression
levels of all common microarray probes) as used previously (33), we measure similarity
based on gene signatures appropriate for the microarray data sets under study and the
phenotype of interest (Figure 1C). For tissue alignment, because bladder samples (N=350)
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were both formalin fixed, paraffin embedded (FFPE) and fresh frozen (FF) (Supplementary
Table S2), the gene signature used consists of 12,402 probes whose expression values were
preserved across FF and FFPE (24). For stage and grade alignment, two previously
published and independently validated gene signatures are used (25) (Supplementary Tables
S3–S4). For disease specific survival alignment, the gene signature consists of the 181
probes that significantly correlate with survival in the training dataset (MSKCC,
Supplementary Table S5) with univariate Cox proportional hazards model logrank p-values
< 0.01. The final modification is that for each phenotype, we ensure that the SRCCM
molecular alignment is accurate through validation on at least one independent dataset.
References for all datasets are provided in Supplementary Tables S1–S5 and datasets are
processed as described in Supplementary Materials. The SRCCM algorithm is comparable
with common classification methods, including support vector machines, nearest centroid
classification, and k-nearest neighbor but performs slightly better in terms of overall
accuracy and consistency across multiple datasets (described in Supplemental Information
and Supplementary Tables S6–S7).

Molecular alignment of human bladder cell lines as a function of tumor tissue of origin
We first determined whether the BLA-36 cell lines had gene expression profiles that were
more similar to bladder cancer or other common carcinomas of cervical, prostate, ovarian,
breast, thyroid, kidney, colorectal, and lung origin. These tumor types were selected based
on the following criteria 1) epithelial histology, 2) availability of at least one public
expression microarray dataset containing ≥ 30 tumor samples, and 3) profiled on an
Affymetrix platform, the platform used for BLA-36 profiling. Because distinct molecular
profiles for lung cancer subtypes have been well characterized (34), we considered lung
adenocarcinoma (adeno) and lung squamous cell carcinoma (scc) separately. A total of 3320
tumor samples were used in this analysis with 1630 used in training and 1690 in validation
of the SRCCM algorithm (Supplementary Table S2). When applied on the 1690 validation
samples from 10 tumor types, the SRCCM algorithm had a mean accuracy of 89%, with
tumor-specific accuracy ranging from 77% for cervical tumors to 99% for both colorectal
and prostate tumors (Figure 2A). The overall accuracy for bladder cancer was 91% (Figure
2A). Interestingly, the majority of misaligned samples are aligned with lung (adeno),
including 12% of all ovary samples and 11% of all lung (scc) samples (Figure 2B). The
majority of misaligned cervical samples are aligned with bladder, which comprise 15% of
all cervical samples. Importantly, when we applied the SRCCM to the BLA-36 panel, 34 of
36 (94%) cells align with tumors of bladder origin. Of the two not predicted to be of bladder
tumor origin, one (CubIII) is predicted to be colorectal and the other (SW1710) ovarian
(Figure 2C).

Molecular alignment of human bladder cell lines as a function of tumor stage and grade
We next used the SRCCM to align the 36 bladder cancer cell lines as a function of human
bladder tumor stage and grade, using previously published and validated stage and grade
gene signatures (25) (Figure 1C). Stage alignment is to non-muscle or muscle invasive (Ta-
T1 or T2–T4) tumors and grade alignment is to high or low grade (G3–G4 or G1–G2)
tumors. For both stage and grade alignments, we use the Lindgren cohort (25) for training
and leave-one-out cross-validation (LOOCV), and use three additional datasets for
independent validation: patient profiles from the Memorial Sloan-Kettering Cancer Center
(MSKCC) (26), the Chungbuk National University Hospital (CNUH) (29), and the Stransky
cohort of patients from the Henri Mondor Hospital in France (30) (Tables S3–S4). The
SRCCM performs well in LOOCV and independent validation for stage and grade (Table 1).
The high area under the curve (AUC) in LOOCV (0.93~0.94) and independent validation
(0.81~0.92) indicates the SRCCM algorithm accurately separates stage and grade subgroups
in tumor samples. When the SRCCM was applied to the 36 cell lines, 20 aligned with
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muscle-invasive and 16 with non-muscle-invasive tumors (Figure 3A). For grade, 22 and 14
aligned with high-grade and low-grade tumors, respectively (Figure 3B). The rankings of the
cell lines in stage and grade alignment are highly correlated (Spearman r = 0.89, p <
0.0001), with 32/36 cell lines resembling the muscle-invasive high-grade and non-muscle-
invasive low-grade tumor types (Figure 3C) commonly seen in patients (25, 35, 36).

To determine the value of the stage and grade realignment, we evaluated the correlation
between SRCCM assigned stages and grades and the status of several common gene
mutations (see Supplementary Materials) known to be associated with biological phenotypes
in human bladder cancer (Figure 3A,B). For assigned cell line stages, we observed positive
correlations with TP53 (r = 0.671), RB1 (r = 0.408), PTEN (r = 0.354), and KRAS (r =
0.277) mutants, and negative correlations with CDKN2A (r = −0.408) and FGFR3 (r =
−0.181) mutants, consistent with the role of the first three in aggressive disease and the
association of the latter two with a non-muscle invasive phenotype (37–39). Notably, the
correlation with TP53 reaches a marginal significance (Fisher’s exact p = 0.06), despite the
fact that TP53 mutation status is known for just 11 cell lines. For assigned cell line grades,
we observe positive correlations with TP53 (r = 0.810, Fisher’s exact p = 0.024), RB1 (r =
0.667, Fisher’s exact p = 0.076), PTEN (r = 0.304), and KRAS (r = 0.207) mutants, and
negative correlations with CDKN2A (r = −0.310) and FGFR3 (r = −0.305) mutants.

Cell lines assigned their original tumor grades do not correlate with survival but
correlation is restored using molecularly aligned cell line grades

We collected stage and grade information for the tumor samples used to derive the BLA-36
lines (Supplementary Table S1) and compared the original tumor information with the
SRCCM assigned grades described above. Only 8 cell lines had stage information from their
original tumors, while 28 cell lines had grade information so only the latter was used in the
analysis below. Of the 9 cell lines originating from low grade tumors, 4 (44%) aligned with
low grade tumors in the Lindgren bladder tumor set (N=144, Table S4) and 12 (63%) of the
19 cell lines from high grade tumors are aligned with high grade lesions. Strikingly, 43%
(12/28) of the cell lines don’t resemble their tumor origins with respect to grade gene
signatures.

Because of the disagreement between BLA-36 original tumor grade and SRCCM assigned
grade, and because grade is a strong indicator of patient survival (40), we next investigated
the clinical relevance of this alignment (Figure 4A). Specifically, we asked whether the
grades of the original tumors from which the cell lines were derived or the grades assigned
via SRCCM were more predictive of DSS. To evaluate this, we aligned 87 tumor samples
from an independent patient cohort (MSKCC, Supplementary Table S4) to either a patient
dataset (Lindgren, Supplementary Table S4) or the BLA-36 cell lines, using their original or
reassigned grades, and then generated Kaplan-Meier (KM) DSS curves for the assigned low
and high grade samples. In the MSKCC cohort, patient grade is a very strong predictor of
survival, producing KM survival curves with a hazard ratio (HR) of 11.29 and a logrank p-
value of 0.0026 (Figure 4B). Use of the Lindgren cohort establishes the efficacy of the
SRCCM algorithm to predict MSKCC grade and then generate KM survival curves since
this resulted in excellent stratification (HR = 5.62, logrank p = 0.0013, Figure 4C). Using the
grades of the original tumors from where BLA-36 were derived, the relationship between
grade and survival is lost (HR = 0.91, logrank p = 0.79, Figure 4D). In contrast, when the
MSKCC samples are aligned with SRCCM assigned cell line grades, the relationship
between grade and survival is restored (HR = 3.41, logrank p = 0.0077, Figure 4E).
Together, these results indicate that cell lines no longer resemble the tumors they were
derived from and cell lines selected by their original grades no longer correlate with
survival. In contrast, the SRCCM is effective in identifying lines that correlate with clinical
outcome.
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The clinical impact of selecting human bladder cancer cell lines based on their similarity
with human tumors

The overarching objective of this work is to identify the most clinically relevant cancer cell
lines, those most strongly correlated with disease outcome. Above, we noted that the aligned
grades were more clinically significant than the actual grades of the original tumors from
which the cell lines were derived. To define the most clinically relevant cell lines, here we
first align the BLA-36 cell lines directly with DSS, using the MSKCC cohort as the training
dataset. The MSKCC cohort contains 87 tumor samples and has a median survival time of
26.0 months and a 5-year DSS rate of 56.3% (Supplementary Table S5). Patients were
assigned to risk groups (i.e., long- and short-term survivors) using the “median cut” labeling
method (31) as described in Materials and Methods. For SRCCM analysis, we use a gene
signature consisting of all probes correlated with DSS in MSKCC (univariate Cox
proportional hazards model, logrank p-value < 0.01), and applied the SRCCM algorithm to
align the BLA-36 cell lines to long- and short-term survivors in the MSKCC cohort. In a
LOOCV on MSKCC, the long- and short-term survivors produce survival curves with a
hazard ratio of 3.75 and a logrank p-value = 0.00011 (Figure 5A). We then used the SRCCM
to align the BLA-36 cell lines with long- and short-term survivors in MSKCC and ranked
the cell lines according to their correlation score (Figure 5B).

Next we compared this ranking to the tumor of origin alignment (Figure 2C) and to the
grade ranking (Figure 3B) that was found clinically relevant (Figure 4E) and selected only
cells aligning with bladder tumors that were either in high-grade/short-term survivors or
low-grade/long-term survivor groups. This provides us with 15 and 4 cell lines in each group
respectively (Figure 6A). We then evaluated the clinical relevance of this selection by using
it to align an independent cohort of patients from CNUH (N=129, 5-year DSS rate = 80.5%,
Ref #29, Supplementary Table S5). Patients aligned to these high-grade/short-term and low-
grade/long-term survivors produced survival curves with a hazard ratio of 4.16 and a
logrank p-value = 0.0040 (Figure 6B) indicating the selection of cell lines based on their
tissue of origin, grade, and DSS alignments has biological significance.

Selecting human colorectal cancer cell lines based on their similarity to human tumors
leads to the identification of clinically relevant lines

To evaluate the generalizability of our SRCCM algorithm and cell line selection concept, we
analyzed a panel of 22 colorectal cell lines (CO-22) profiled by GlaxoSmithKline. The
CO-22 cell lines were first aligned to tissue of origin, where the SRCCM alignment
accuracy for colorectal tumors in the independent test datasets was 99% (Figure 2A). All
CO-22 cell line samples aligned with colorectum with the exception of COLO-320HSR,
whose samples all aligned with uterus, and RKO-E6, where one sample aligned with bladder
(Supplementary Figure S1A).

We next aligned the CO-22 cell lines directly to DSS, using a set of 55 patients with
colorectal cancer from the Vanderbilt Medical Center as the training dataset (VMC cohort,
Ref #27). The VMC cohort has a median survival time of 38.0 and a 5-year DSS rate of
73.4% (Supplementary Table S5). Patients were assigned to risk groups using the “median
cut” labeling method as was done for the BLA-36 cell lines (see Materials and Methods).
For SRCCM analysis, we used a previously published and validated gene signature
consisting of 34 genes that correlates with recurrence and survival (27). In a LOOCV on
VMC, the long- and short-term survivors produce survival curves with a hazard ratio of 8.00
and a logrank p-value = 0.0225 (Figure 5C). We then used the SRCCM to align the CO-22
cell lines with long- and short-term survivors in VMC, ranked the cell lines according to
their correlation score, and used the median correlation score to separate long- and short-
term survivors (Figure 5D).
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For cell line selection, a cell line was deemed clinically relevant if all of its replicates
aligned with colorectum and all replicates had the same DSS alignment (Figure 6C). Cell
lines were removed if they had ambiguous DSS alignments defined as alignments with one
or more replicates aligned with short-term survivors and at least one aligned with long-term
survivors. Our selection resulted in the removal of the following lines: COLO-320HSR,
which aligned with uterus; LS1034, SW1463, and SW948, which had ambiguous DSS
alignments, and RKO-E6, which had an ambiguous DSS alignment and also had one
replicate aligning with bladder.

The clinical relevance of the remaining 17 cell lines was then evaluated in an independent
cohort of patients from the Moffitt Cancer Center (MCC, N = 177, 5 year DSS rate = 67.0%,
Ref #27, Supplementary Table S5). Alignment of the MCC patients to the selected
colorectal cell lines produces survival curves with a hazard ratio of 2.35 and a logrank p-
value of 0.0019, establishing their clinical relevance (Figure 6D). Importantly, when all 22
colorectal cell lines were used in this analysis (i.e., without the selection step), the hazard
ratio falls to 1.69 and the separation of survival curves is no longer statistically significant
(logrank p-value = 0.054, Supplementary Figure S1B).

DISCUSSION
For a cell line model to have clinical utility it must be representative of the human tumor of
interest. Importantly, cell line models selected based on the characteristics of the tumors
from which they are derived, their xenograft behavior, or their technical convenience may
not be clinically relevant and therefore lack clinical translatability. In this paper we describe
a novel framework for the selection of the most clinically relevant cell lines. At the heart of
this approach is the SRCCM alignment algorithm, with software we have made available to
the scientific community, and which is applicable to any cancer cell line. Although we have
selected clinically relevant cell lines for bladder and colorectal cancers, we caution that
because gene expression profiles vary across culture conditions (42, 43) and with cell
passage number, the cell lines selected here as most clinically relevant may not be so in
another lab with the same lines. Instead, we recommend SRCCM alignment and cell line
selection using gene expression profiles obtained in the specific lab. In time, we will
determine whether this possible variation in the repertoire of the “most clinically relevant”
lines does indeed occur.

In developing SRCCM, a variety of classification methods for aligning cell lines with
clinical phenotypes could have been implemented, including standard machine learning
algorithms such as nearest neighbor and support vector machines (44, 45). However, the
SRCCM algorithm was developed after carefully considering its ease of interpretation and
its applicability. Correlation is an intuitive measure of similarity, while the specific use of
Spearman’s correlation ensures broad applicability to additional datasets and cell lines, as
the choice of data normalization and processing methods will have relatively little impact on
the output of the algorithm.

Independent validation of SRCCM was a critical feature of our work. Because classifiers
developed from high dimensional microarray datasets are prone to over-fitting (46), and
technical batch effects can correlate with biological outcomes of interest (47), independent
validation is essential if reported classification accuracies are expected to be representative
of performance in additional datasets. We validated the tissue of origin, stage, and grade
SRCCM alignments on multiple independent datasets, and achieved excellent overall
accuracies.. We validated the DSS SRCCM alignments on an independent dataset by first
aligning the BLA-36 cell lines to long- and short-term survivors in the MSKCC training
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cohort and then aligning 129 patients in an independent cohort (CNUH) to the 19 clinically
relevant cell lines to produce KM survival curves with clear stratification.

The SRCCM tissue alignment finds that 34/36 (94%) of the bladder cell lines and 20/22
(91%) of the colorectal cell lines resemble their tissue of origin more closely than the 9
additional carcinomas we considered. This is reassuring, as a previous tissue classification
of the NCI-60 cell line panel suggested that as few as 57% of cell lines most closely
resembled their presumed tissue of origin (10). In general, the BLA-36 cell lines correlate
more strongly with tissue types where squamous cell histologies are common (e.g., cervix
and ovary) than with tissues where squamous cell histologies are rare (e.g., breast, thyroid,
prostate, and kidney) (Figure 2C), suggesting that it may be relatively difficult to distinguish
between tissue types if their histologies are similar. In the independent validation on over
300 bladder samples, 9% were misaligned, and the fact that 2/36 (6%) of the cell lines are
misaligned in the BLA-36 panel is within the expected margin of error. Further analysis of
these two lines, CubIII and SW1710, is required to determine whether these are of bladder
origin.

Most striking is our finding that the grade alignment of the BLA-36 cell lines is consistent
with only 44% of the low grade tumors and 63% of the high grade tumors that the cell lines
were derived from. One possible explanation for these results is that the alignment is
inaccurate. However, our findings support the validity of the alignment and loss of relevance
of the original tumor grade. For example, we found that TP53 and RB1 mutations are
associated with aligned high grade muscle-invasive tumors while FGFR3 mutations are
associated with aligned low grade, non-muscle invasive tumors, which is consistent with the
prevalence of TP53, RB1, and FGFR3 mutations in patients (37–39). Since tumor grade is
an important clinical parameter that correlates with both stage and survival in patients (40,
48), for a cell line model to have clinical relevance, it should properly represent these
clinical phenotypes. Importantly, we have found that selection of cell line models based on
clinical information from their original tumors will fail to properly represent these
phenotypes for the cell lines we analyzed. In contrast, once aligned using SRCCM the new
cell line grades relate to clinical outcomes (Figure 4D,E).

Cell line models have also been selected based on their xenograft behavior. However,
animal models do not always recapitulate human physiology and behavior (49, 50). In a
meta-analysis looking at 39 pharmacological agents with both xenograft data and results
from Phase II clinical trials, Johnson et al. found that out of six xenograft histologies, only
lung xenografts had the ability to predict clinical activity in the same human cancer
histology, though interestingly several were predictive of clinical activity in other
histologies (51). In contrast, xenografts derived from aligned cell lines validated for their
ability to reflect human tumor biology, using alignment and selection process shown here
(Figure 6), may provide a readout of drug activity in xenografts that parallel that seen in
human tumors.

In conclusion, we describe a framework for aligning cell lines with the clinicopathologic
phenotypes of human tumors such as tissue of origin, stage, grade, and DSS, that can be
used to select the most clinically relevant cell line models. Our technique has the potential to
reduce the discrepancy often encountered between in vitro and in vivo laboratory data and
patient interventions. Although the approach is demonstrated in bladder and colorectal
cancer cells, SRCCM provides a general framework that is applicable to all cancer types and
is freely available to the scientific community.

Dancik et al. Page 9

Cancer Res. Author manuscript; available in PMC 2012 December 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Abbreviations

adeno adenocarcinoma

scc squamous cell carcinoma

NMI non-muscle invasive

MI muscle invasive

SRCCM Spearman’s rank correlation classification method

KM Kaplan-Meier

HR hazard ratio

DSS disease specific survival
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Figure 1.
Overview and use of the Spearman’s Rank Correlation Classification Method (SRCCM). A,
overview of the SRCCM algorithm for cell line / test sample alignment. A test sample is
aligned to the phenotype with the highest mean correlation between test and training gene
expression profiles using a relevant gene signature. B, alignment of a test sample with a
clinical phenotype using SRCCM is based on the gene expression profiles of the training
and test samples and a relevant gene signature for the desired phenotype. C, published and
derived gene signatures and phenotypes used by SRCCM for tissue of origin, and bladder
cancer stage, grade, and disease specific survival (DSS) alignment. ^ signatures from Ref
#24; * stage and grade signatures from Ref #25 are different, despite the same number of
genes; ** univariate Cox proportional hazards model, logrank p-value < 0.01 in training
cohort from Ref #26, see Materials and Methods for details.
Abbreviations: FF, fresh frozen; FFPE, formalin fixed and paraffin embedded.
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Figure 2.
Independent validation and BLA-36 cell line alignment to tissue of origin using the SRCCM
algorithm. Test samples and BLA-36 cell lines are aligned to 10 epithelial cancers from a
training dataset including bladder, breast, cervix, colorectum, kidney, lung adenocarcinoma
(adeno), lung squamous cell carcinoma (scc), ovary, prostate, and thyroid samples (N =
1630). A, tissue specific accuracy of SRCCM alignment algorithm on independent datasets
(N= 1690). B, confusion matrix for independent validation presented as a heatmap, with
green indicating correct alignment and red indicating incorrect alignment. For each tissue
type (i.e., row of the matrix), the proportion of samples aligned with each tissue type is
reported. C, BLA-36 tissue of origin alignment heatmap. For each cell line, the color
represents the average correlation with each tissue type, with red indicating strong positive
correlation and green indicating weak positive correlation. All cell lines are most strongly
correlated (i.e., aligned) with bladder, with the exception of CubIII and SW1710 (arrows)
which are aligned with colorectum and ovary, respectively.
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Figure 3.
A, Stage and B, grade alignment heatmaps. Cell lines are ranked by their correlation scores
(see Materials and Methods) from high (red) to low (green) and classified as either muscle
invasive (MI, T2–T4) or non-muscle invasive (NMI, Ta-T1) for stage and high (G3–G4) or
low (G1–G2) grade, separated by a blue horizontal line. The heatmap also contains the
documented gene mutations according to the COSMIC database (53), with purple, yellow,
and black indicating known mutation, wild-type, and unknown mutation status, respectively.
The histograms below the heatmaps show correlations of mutations with each alignment. P-
values of Fisher exact tests: *, 0.05≤p<0.1; **, p<0.05. C, Plot of correlation scores for
SRCCM assigned stage and grade. Red points denote cell lines aligned with high grade MI
tumors, green points denote cell lines aligned with low grade NMI tumors, and all other cell
lines are plotted in black.
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Figure 4.
Original cell line grades no longer correlate with disease specific survival but correlation is
restored via SRCCM alignment to patient tumors. A, Overview of the methodology used.
MSKCC tumors are aligned to the grades of Lindgren tumors or BLA-36 cell lines using the
grades of the tumors they were derived from (original grades) or the assigned grades from
alignment with the Lindgren patients (aligned grades). We report the accuracy of MSKCC
grade assignment. We then generate KM survival curves based on B, the original patient
grades in MSKCC (positive control), C, MSKCC grades based on alignment to Lindgren
patient tumors (second positive control), D, MSKCC grades based on alignment to BLA-36
(original grades), and E, MSKCC grades based on alignment to BLA-36 (aligned grades).
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Figure 5.
Disease specific survival (DSS) in BLA-36 and CO-22 as a function of long- and short-term
survivors determined by “median cut” labeling (see Materials and Methods). A, KM
survival curves for bladder cancer patients in the training MSKCC dataset obtained through
SRCCM alignment and LOOCV. B, DSS alignment heatmap for BLA-36 cell lines. Cell
lines are ranked from high (red) to low (green) by their correlation scores (see Materials and
Methods) and classified as either long-term or short-term survivors, separated by a
horizontal blue line, based on their alignment to long- and short-term survivors in MSKCC.
C, KM survival curves for colorectal cancer patients in the training VMC dataset obtained
through SRCCM alignment and LOOCV. D, DSS alignment heatmap for CO-22 cell lines.
Cell lines are ranked from high (red) to low (green) by their correlation scores (see Materials
and Methods) and classified as either long-term or short-term survivors, separated by a
horizontal blue line, based on their alignment to long- and short-term survivors in VMC.
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Figure 6.
Selection and validation of clinically relevant BLA-36 and CO-22 cell lines. A, SRCCM
alignment of BLA-36 cell lines to tissue of origin, grade, and DSS. Heatmap of the clinically
relevant BLA-36 cell lines aligning with bladder, high grade, and short term-survivors or
bladder, low grade, and long-term survivors. The cell lines are ranked by their DSS
alignment score. B, validation of the clinical relevance of the selected cell lines in an
independent dataset. KM survival curves are generated for patients in CNUH following
alignment to the clinically relevant cell lines in (A). C, SRCCM alignment of CO-22 cell
lines to tissue of origin and DSS. Heatmap of the clinically relevant CO-22 cell lines having
all replicates aligning with colorectum and no ambiguous DSS alignments. The cell lines are
ranked by their average DSS alignment score. D, validation of the clinical relevance of the
selected cell lines in an independent dataset. KM survival curves are generated for patients
in MCC following alignment to the clinically relevant cell lines in (C).
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Table 1

Performance of stage and grade classification using the SRCCM alignment algorithm

Stage
Accuracy

AUC
Ta-T1 T2–T4 Overall

LOOCV in Lindgren* 0.722 0.933 0.789 0.930

Independent Validation in MSKCC† 0.880 0.818 0.835 0.895

Independent Validation in CNUH‡ 0.702 0.721 0.709 0.813

Independent Validation in Stransky§ 0.919 0.750 0.817 0.920

Grade
Accuracy

AUC
Low grade High grade Overall

LOOCV in Lindgren* 0.861 0.875 0.868 0.942

Independent Validation in MSKCC† 0.722 0.836 0.813 0.814

Independent Validation in CNUH‡ 0.724 0.867 0.776 0.871

Independent Validation in Stransky§ 0.790 0.849 0.824 0.877

Abbreviation: LOOCV, leave-one-out cross validation; AUC, area under curve.

*
Profiled on two specialized platforms, Swegene Human 27K RAP UniGene 188 and SWEGENE H_v3.0.1. 35K arrays; available from the Gene

Expression Omnibus (21)

†
Profiled on the HG-U133A microarray platform, available as supplementary material to publication (24).

‡
Profiled on the Illumina human-6 v2.0 microarray platform, available from Gene Expression Omnibus at Accession #GSE13507

§
Profiled on the HG-U195 and HG-U195Av2 microarray platforms, available from Array Express (52) at Accession #E-TABM-147
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