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Abstract
Flexible loop regions play a critical role in the biological function of many proteins and have been
shown to be involved in ligand binding. In the context of structure-based drug design, using or
predicting an incorrect loop configuration can be detrimental to the study if the loop is capable of
interacting with the ligand. Three protein systems, each with at least one flexible loop region in
close proximity to the known binding site, were selected for loop prediction using the CorLps
program; a six residue loop region from phosphoribosylglycinamide formyltransferase (GART),
two nine residue loop regions from cytochrome P450 (CYP) 119, and an eleven residue loop
region from enolase were selected for loop prediction. The results of this study indicate that the
statistically-based DFIRE scoring function implemented in the CorLps program did not accurately
rank native-like predicted loop configurations in any protein system. In an attempt to improve the
ranking of the native-like predicted loop configurations, the MM/GBSA and the Optimized MM/
GBSA-dsr scoring functions were used to re-rank the predicted loops with and without bound
ligand. In general, single snapshot MM/GBSA scoring provided the best ranking of native-like
loop configurations. Based on the scoring function analyses presented, the optimal ranking of
native-like loop configurations is still a difficult challenge and the choice of the “best” scoring
function appears to be system dependent.
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Introduction
In order to analyze and exploit the structure-function relationship of proteins a three
dimensional protein structure is needed. Despite advances in nuclear magnetic resonance
(NMR) and protein crystallographic techniques, the number of structurally characterized
proteins is low compared to the number of known protein sequences. Currently, the
Brookhaven Protein Database (PDB)1 contains approximately 30,000 (95% sequence
identity filter applied to approximately 70,000 total structures deposited) unique structurally
characterized proteins compared to approximately 14 million protein sequences contained in
the UniProtKB/TrEMBL database2. To reduce the “structural knowledge gap”, homology or
comparative modeling is often used to predict three dimensional protein structures. When
sequence identity is relatively high (> 50%) between the target and template sequences,
homology models are capable of accurately predicting the protein structure (<3 Å root mean
square deviation (RMSD) of Cα atoms).3 Whereas the overall protein structure may be well
predicted, sequence and structural variability between the target and template sequences is
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often found in loop regions. This variability often causes homology models of such regions
to be less accurate compared to the core of the structure. In order to accurately model loop
regions, additional loop prediction may be needed to refine the homology model.

Although the configuration of loop regions is frequently incorrect in homology models,
these structural elements are often critical to the biological function of many proteins.4–25

Loop regions have been shown to be involved in processes ranging from protein-protein
interactions to ligand binding. Despite their biological significance, loop regions are often
missing from experimentally solved protein structures due to their inherent flexibility. In
addition, flexible loop regions can adapt alternative configurations upon ligand binding
(Figure 1).

In the context of structure-based drug design, using or predicting an incorrect loop
configuration can be detrimental to the study if the loop is capable of interacting with the
ligand. To overcome such problems in structure-based drug design, several concepts have
been developed that model loop-ligand interactions that range from a mean field approach
that represents the average physico-chemical profile of a loop26 to attempts that use an
ensemble of low energy loop conformations in docking4. The latter method aims to mimic
conformational changes that occur in the protein or loop region upon ligand binding based
on the conformational selection mechanism of ligand binding27.

The conformational selection model assumes that the apo form of the protein samples higher
energy conformations and the ligand selectively binds to a holo-like conformation and
stabilizes this state of the protein. Extending the conformational selection model, the
encoding hypothesis28–32 assumes that the potential function of the ligand-free form of the
protein encodes the direction of the protein fluctuations necessary to sample holo-like
protein conformations that are critical for ligand binding to occur. Cavasotto and
coworkers33 used this hypothesis to derive collective variables, based on normal mode
analysis of the apo form of cAMP-dependent kinase, to simulate loop flexibility coupled to
ligand binding.

In this study, it is also assumed that holo-like protein conformations can be generated from
the apo form of the protein with the ligand selectively binding to such a conformation.
However, further local relaxation of the protein that is induced by ligand binding is
allowed.34 Assuming that the conformational selection model is valid, determining how
much energy is required to transition the protein from an apo to holo conformation is critical
in the context of loop regions that are known to undergo conformational changes upon
ligand binding. This issue is important as the free energy associated with the protein
conformational change upon ligand binding must be considered in the overall prediction of
the free energy of binding ΔGbinding:

(1)

where ΔEP-L represents the direct interaction between protein and ligand (including
solvation effects) and ΔGconformation-P is the free energy difference between the apo and
holo protein conformations when the ligand is not bound. In the context of loop prediction, a
related question is whether we can predict the lowest energy protein conformation under the
influence of ligand binding,

(2)
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where k numerates the different loop conformations, and ΔEconformation-P,k is the energy of
loop conformation k without protein-ligand interactions. It should be noted that any
vibrational entropy is neglected in this consideration. This article aims to address if
ΔEconformation-P can be reliably predicted with existing scoring procedures.

Loop prediction was carried out using the CorLps program35 for each protein system shown
in Figure 1. In an attempt to estimate ΔEconformation-P, three different scoring concepts were
tested: the statistically-based DFIRE scoring function36, 37 originally used in protein
structural prediction, the all-atom physics-based MM/GBSA scoring function38 frequently
used to predict protein-ligand binding affinities, and the optimized all-atom physics-based
MM/GBSA scoring function39 designed to refine protein decoy structures (referred to as
Optimized MM/GBSA-dsr, dsr being short for decoy structure refinement, throughout the
remainder of this publication). The ability of the three scoring functions to select holo-like
loop configurations from an ensemble of predicted loop regions was explored. In addition,
the effect of the ligand on re-ranking native-like loop configurations was also evaluated.

Materials and Methods
Protein systems

Three protein systems, each with at least one flexible loop region in close proximity to the
known binding site, were selected for loop prediction. A six residue loop region from
phosphoribosylglycinamide formyltransferase (GART), two nine residue loop regions from
CYP119, and an eleven residue loop region from enolase were selected for loop prediction.
Summarized in Table 1, the X-ray structure of each protein system was obtained from the
PDB database. All co-factors, water molecules, and co-crystallized ligands were removed
prior to loop prediction. Only protein subunit A was present during the loop prediction
process of CYP119 and GART.

Loop prediction
Loop prediction of all systems was performed using the CorLps program. CorLps employs
the ab initio loop prediction grogram loopyMod40 to generate an initial ensemble of
energetically favorable loop conformations of each predicted loop region. Single loop
prediction in GART and enolase was performed with 10,000 loop conformations initialized
in loopyMod (with the CHARMM force field used to assign the van der Waal parameters)
and the top-500 energetically favorable loop conformations were outputted. The ensemble of
predicted loop conformations was then reduced using quality threshold (QT) clustering41 to
remove conformations with low RMSD among each other. The maximum diameter of the
clusters was set at 2 Å for enolase and 1 Å for GART to produce 300 unique predicted loop
conformations. Following QT clustering, the side chains of residues within a 6 Å zone
around the predicted loop region were optimized using SCAP42 and the top-100 predicted
loop configurations were identified and ranked according to the DFIRE scoring function.
The top-100 predicted loop configurations ranked by DFIRE is referred to as the DFIRE
ensemble throughout the remainder of this publication.

Simultaneous prediction of two loop regions was performed in CYP119. Initially, each
individual loop region was treated independently with the other loop temporarily removed
from the protein structure. For each independent loop region, an ensemble of 500
energetically favorable loop conformations was generated using loopyMod. Described in the
previous paragraph, identical loopyMod settings were used during simultaneous loop
prediction. A 2 Å threshold was used to cluster each independent loop ensemble to produce
a unique ensemble of 300 loop configurations for each loop region. To limit the
computational time required to generate and optimize 300 * 300 possible combinations of
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the unique loop regions, a maximum number of 5,000 combined loop configurations were
generated by initially combining the top-75 ranked single loop conformations of each
clustered loop region. This number was increased in steps of 25 additional unique loop
conformations until 5,000 possible loop configurations were generated that passed a steric
clash filter. The steric clash filter removed any combined loop configuration with a
predicted backbone or Cβ atom within 0.8 times the sum of their van der Waals radii. After
passing the steric clash filter, the side chains of residues within a 6 A zone around the
predicted loop regions were re-packed to allow the combined protein structure to adopt a
lower energy configuration. The top-100 predicted loop configurations (DFIRE ensemble)
were then selected according to the DFIRE scoring function.

RMSD analysis
To analyze the loop prediction quality of CorLps, the RMSD to the experimental X-ray
protein structure was determined for each member of the DFIRE ensemble. An in-house C-
program that uses the super function implemented in PyMOL43 was used to align all
predicted protein structures onto the X-ray structure. All backbone atoms, excluding those in
the predicted loop region, were used in the alignment step. The RMSD value of each
member of the DFIRE ensemble was determined using the PyMOL plug-in script
rms_current.

Minimization of the predicted loop configurations
For each member of the DFIRE ensemble, the hydrogen bond network of the protein was
optimized using the program Reduce44 to assign histidine protonation and tautomer states
and flip asparagine and glutamine side chains if needed. The tleap module of AMBER
945, 46 was used to add missing hydrogens and to generate a topology and structure file for
minimization using the AMBER ff03 force field. 50 steps of minimization with a 12 Å
nonbonded cutoff and a distance-dependent dielectric solvation model was used to eliminate
any close contacts between protein residues. Subsequently, 500 steps of steepest decent
minimization with a 12 Å nonbonded cutoff and the Mongan, Simmerling, McCammon,
Case, and Onufriev implicit solvation model47 (igb=7) was performed to further minimize
the system.

Re-scoring the predicted loop configurations
The ability of three scoring functions to optimally rank low RMSD predicted loop
configurations was explored. Optimum ranking is defined as the ability to select the lowest
RMSD predicted loop configuration (most native-like) as the top-predicted loop
configuration. In the CorLps program, the statistically-based scoring function DFIRE is used
to score and rank the predicted loop configurations and select the DFIRE ensemble. Two all-
atom physics-based scoring functions, MM/GBSA and the Optimized MM/GBSA-dsr, were
subsequently used to re-score the DFIRE ensemble to determine their ability to optimally
rank low RMSD loop configurations within the DFIRE ensemble. The ability of the MM/
GBSA and the Optimized MM/GBSA-dsr scoring functions to optimally rank low RMSD
configurations was studied with and without the ligand present in each protein system.

Single snapshot MM/GBSA re-scoring
Rastelli and coworkers showed that MM/GBSA scoring of a single protein-ligand
minimized structure produced results similar to averaging over multiple protein-ligand
snapshots obtained from a molecular dynamics (MD) simulation when estimating ligand
binding affinities in dihydrofolate reductase.48 Although that study focused on the prediction
of binding free energies and thus differs from our effort to rank predicted loop
conformations, it provided motivation to utilize a similar approach in our problem of
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interest. Each member of the DFIRE ensemble was minimized using the protocol described
in “Minimization of the predicted loop configurations” and the MM/GBSA protein energy
was calculated using the mmpbsa.pl scripts included in AMBER9. This value was then used
to re-rank the DFIRE ensemble of each protein system. Due to the high computational cost
and variability associated with calculating the vibrational entropy of different loop
conformation, only the force field energy, including implicit solvation effects, was
computed for each predicted loop conformation.49, 50

Trajectory MM/GBSA re-scoring
To determine if MM/GBSA scoring with an ensemble of snapshots obtained from an MD
simulation optimally re-ranks the predicted loop configurations, each member of the DFIRE
ensemble from GART, CYP119, and enolase was prepared for a MD simulation using the
AMBER9 package. The tleap module was used to add missing hydrogen atoms to each
protein structure and it was solvated in a 30 Å explicit water cap centered on the position of
the co-crystallized ligand (ligand not present during MD simulations). To eliminate any
close contacts present in the predicted protein structure, 800 steps of steepest decent
followed by 200 steps of conjugate gradient minimization was performed. After
minimization, the water molecules were allowed to equilibrate during 250 ps of MD
simulation with the protein restrained by a force constant of 5 kcal/mol per Å2 and all water
molecules were contained within the initial 30 Å cap region by a 5 kcal/mol per Å2 cap
restraint. 5 ns of subsequent production MD was performed with all protein residues beyond
25 Å from the center of the water cap and all residues of the predicted loop regions
restrained by a force constant of 1 kcal/mol per Å2. The simulations were performed with a
2 fs time step using the SHAKE51 algorithm to constrain bonds between any heavy and
hydrogen atoms and a temperature of 300 K.

Upon completion of the production MD, the trajectory was stripped of explicit water
molecules using the ptraj module. The mmpbsa.pl scripts were subsequently used to extract
20 snapshots from the trajectory and perform MM/GBSA calculations. The average MM/
GBSA protein energy was then used to re-rank the DFIRE ensemble of each system.

Optimized MM/GBSA-dsr re-scoring
The Optimized MM/GBSA-dsr all-atom potential derived by Skolnick and coworkers was
designed to refine protein decoy structures to a more native-like protein conformation
(reduce the RMSD between the experimentally known protein structure and the protein
decoy). To accomplish this task, each component of the Optimized MM/GBSA-dsr scoring
function was optimally weighted to create a scoring function that ranked the native protein
structure as the global minimum. The individual weights of the Optimized MM/GBSA-dsr
scoring function used in this study are shown in Table 2. To determine if the Optimized
MM/GBSA-dsr scoring function optimally re-ranks predicted loop configurations, the
DFIRE ensemble from each protein system was scored and re-ranked following
minimization with implicit solvation (protocol described in “Minimization of the predicted
loop configurations”).

The effect of the ligand: re-scoring loop configurations with the co-crystallized ligand
Co-crystallized ligand coordinates—To determine if loop-ligand interactions are
necessary to stabilize native-like loop configurations, and thus critical to the loop ranking
process, the co-crystallized ligand was added to each member of the DFIRE ensemble, using
the experimentally determined position and conformation of the ligand.

Side chain optimization—In order to eliminate steric clashes between the predicted loop
configuration and the added co-crystallized ligand, each member of the DFIRE ensemble
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was subjected to a side chain optimization step. To incorporate the interaction of the side
chains with the bound ligand, the side chains of all residues within the predicted loop
regions were optimized using an in-house algorithm similar to the published SCAP side
chain prediction program. For each predicted loop configuration in the DFIRE ensemble,
eight alternative low energy protein structures with optimized side chains were outputted
and prepared for energy minimization. To refine each side chain optimized structure, a 25 Å
explicit water cap was constructed around the center of the ligand and 800 steps of steepest
decent followed by 200 steps of conjugate gradient minimization were performed with the
ligand and all protein residues beyond 20 Å from the center of the water cap restrained by a
force constant of 5 kcal/mol per Å2. Minimizations that produced unrealistic protein
structures, e.g. structures with broken bonds, were removed from subsequent MM/GBSA
and Optimized MM/GBSA-dsr scoring calculations. In the case that all protein structures,
generated by optimization of the side chains, possessed steric overlap with the ligand, the
initial predicted loop configuration was used in the subsequent minimization.

Single snapshot MM/GBSA re-scoring—For each protein system, all structures with
optimized side chains produced from each member of the DFIRE ensemble were minimized
in implicit solvent with identical parameters as described in “Minimization of the predicted
loop configurations”. This additional minimization step was needed to compare MM/GBSA
scores of the predicted loop configurations with and without the ligand present. MM/GBSA
calculations were carried out using the same procedure described in “Single snapshot MM/
GBSA re-scoring without ligand”. The side chain optimized structure with the lowest (most
favorable) MM/GBSA value was chosen as the energetically favorable protein conformation
and subsequently used in Optimized MM/GBSA-dsr and trajectory MM/GBSA re-scoring.

Trajectory MM/GBSA re-scoring—Each predicted loop configuration in the DFIRE
ensemble (following side chain optimization) of GART, CYP119, and enolase was prepared
for a MD simulation and MM/GBSA re-scored using the same procedure described in
“Trajectory MM/GBSA re-scoring without ligand”. The only change to this protocol was
that the ligand was present during the MD simulation and MM/GBSA calculation.

Optimized MM/GBSA-dsr re-scoring—For all three protein systems, all DFIRE
ensemble structures (following side chain optimization) were rescored with the Optimized
MM/GBSA-dsr scoring function. The protocol described in “Optimized MM/GBSA-dsr re-
scoring without ligand” was followed with the exception that the ligand was included during
the implicit minimization and energy evaluation.

Results
Re-scoring the predicted loop configurations

Initial CorLps DFIRE scoring—To test the ability of CorLps to generate native-like loop
configurations of loop regions with differing lengths, loop prediction was performed for
each protein system shown in Table 1. Loop prediction accuracy was measured by
comparing the RMSD of each member of the DFIRE ensemble to the experimentally known
X-ray loop configuration. Listed in the “Backbone RMSD” column of Table 3, low RMSD
(< 2 Å) loop configurations were produced for all protein systems, thereby suggesting that
CorLps adequately sampled the conformational space accessible to the loop regions. The
lowest backbone RMSD between a predicted loop configuration and the experimentally
known X-ray loop configuration for GART (6-residue loop region), CYP119 (9-residue loop
regions), and enolase (11-residue loop region) was 0.57 Å, 1.61 Å, and 1.43 Å. Similar
RMSD values have been previously reported for loop regions of these lenghts in different
protein systems.35, 40 It should be noted that recent novel loop prediction methods52, 53 were
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devised that demonstrate an ability to predict <1 Å loop conformations for many protein
systems. These studies, however, did not focus on loop regions that interact with or are
potentially stabilized by bound ligands.

Although low RMSD (< 2 Å) loop configurations were produced for all protein systems
used in this study, optimally ranking such loop configurations was a challenge. Listed in the
column “Without ligand::DFIRE” in Table 3 and evident in Figure 2, the DFIRE scoring
function implemented in CorLps did not rank the three lowest RMSD (most native-like)
predicted loop configurations within the top-10 positions in any protein system. While the
statistically-based scoring function was previously shown to identify the native loop
conformation among the energetically lowest conformations within a set of decoy loop
structures40, DFIRE did not accurately rank low RMSD predicted loop configurations as the
top-predicted loop configuration. A similar finding was reported in a previous publication.35

Single snapshot MM/GBSA re-scoring—In an attempt to improve the ranking of low
RMSD predicted loop configurations, the DFIRE ensemble of each protein system was re-
ranked using the all-atom physics-based MM/GBSA scoring function. Shown in Figure 2,
re-scoring with single snapshot MM/GBSA improved the ranking of low RMSD predicted
loop configurations in all three systems compared to the initial DFIRE ranking.
Furthermore, the column “Without co-crystallized ligand::Snapshot MM/GBSA” in Table 3
shows that re-scoring with single snapshot MM/GBSA improved the ranking of the most
native-like loop configurations in GART, CYP119, and enolase. Of the three most native-
like predicted loop configurations, one, two, and two were identified within the top-10
positions in the GART, CYP119, and enolase systems compared to none being identified by
the DFIRE scoring function. In the GART system, the lowest RMSD predicted loop
configuration was ranked in the top-3 positions using single snapshot MM/GBSA re-scoring
without the ligand.

Trajectory MM/GBSA re-scoring—To determine if calculating the MM/GBSA score
using an ensemble of snapshots from an MD simulation produced a more accurate ranking
of native-like loop configurations, each member of the DFIRE ensemble from GART,
CYP119, and enolase was subjected to a molecular dynamics simulation. An ensemble of 20
snapshots from the MD simulation was used to calculate the MM/GBSA energy of each
predicted loop configuration. Shown in Figure 2, re-scoring using a trajectory calculated
MM/GBSA value improved the identification of low RMSD predicted loop configurations
compared to the initial DFIRE ranking in all three protein systems. However, summarized in
the column “Without co-crystallized ligand::Traj MM/GBSA” of Table 3, the ranking of the
most native-like predicted loop configurations did not improve compared to single snapshot
MM/GBSA re-scoring. The ranking deteriorated in all protein systems as the lowest RMSD
predicted loop configuration was no longer ranked within the top-10 positions.

Considering the ten lowest predicted RMSD loop configurations, there was not a clear
indication that trajectory MM/GBSA re-scoring without the ligand produced a more accurate
ranking. In the GART protein system, the ranking of low RMSD predicted loop
configuration improved. Single snapshot MM/GBSA re-scoring identified one of the ten
lowest RMSD predicted loop configurations within the top-10 positions and trajectory MM/
GBSA re-scoring without the ligand identified two within the top-10 positions (Table S1).
However, no improvement in the ranking was seen in the CYP119 system when using
trajectory MM/GBSA re-scoring. Both single snapshot and trajectory MM/GBSA re-scoring
identified two of the ten lowest RMSD predicted loop configurations within the top-10
positions (Table S1). Furthermore, the ranking deteriorated in the enolase protein system as
trajectory MM/GBSA rescoring without the ligand identified one of the ten lowest RMSD
predicted loop configurations within the top-10 positions while single snapshot MM/GBSA
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re-scoring without the ligand identified four (Table S1). Based on the above information, it
is suggested that single snapshot MM/GBSA scoring re-ranks the predicted loop
configurations with similar and even slightly improved quality compared to using a
trajectory calculated MM/GBSA value.

Optimized MM/GBSA-dsr re-scoring—In the context of protein structure refinement,
Skolnick and coworkers optimized an all-atom physics-based scoring function that uses the
AMBER ff03 force field with a GBSA solvation model to rank native-like protein
conformations with most favorable energy among an ensemble of decoy structures
(Optimized MM/GBSA-dsr scoring function). To determine if the Optimized MM/GBSA-
dsr scoring function outperforms MM/GBSA ranking of predicted loop regions, each
member of the DFIRE ensemble was minimized with an implicit solvation model and
subsequently re-ranked using this scoring function.

Shown in Figure 2, re-scoring using the Optimized MM/GBSA-dsr scoring function
moderately improved the ranking of low RMSD predicted loop configurations compared to
the initial DFIRE ranking in all three protein systems. However, evident from the column
“Without ligand::Optimized MM/GBSA-dsr” in Table 3, the Optimized MM/GBSA-dsr
scoring function did not re-rank the most native-like predicted loop configurations within
the top-10 positions for any protein system. Furthermore, none of the ten lowest RMSD
predicted loop configurations from each system were ranked in the top-10 positions using
this scoring function (Table S1). In addition, Figure 2 illustrates that the Optimized MM/
GBSA-dsr scoring function performs worse than single snapshot MM/GBSA re-scoring
without the ligand. While shown to accurately score native-like protein conformations in a
pool of decoy structures, the Optimized MM/GBSA-dsr scoring function did not accurately
rank low RMSD predicted loop configurations.

The effect of the ligand: re-scoring loop configurations with the co-
crystallized ligand—During the loop prediction process, the co-crystallized ligand is not
present and therefore is assumed to be a non-integral part of the protein system. While this
assumption may hold for some protein loop regions, it may be invalid in cases where the
loop region interacts with a ligand. The three protein systems selected in this study each
contain at least one loop region that is in close proximity to the binding site of the protein
and potentially interacts with known ligands. Disregarding the ligand during the ranking of a
predicted loop configuration neglects any interaction between it and the loop region that
could stabilize a native-like or destabilize a non-native-like predicted loop configuration.
Thus, including ligand-loop interactions may improve the ranking of native-like loop
configurations. To begin to account for the effect of the ligand on the loop prediction
process, the co-crystallized ligand was added to each member of the DFIRE ensemble of
each protein system and the loop configurations were re-ranked using the single snapshot
MM/GBSA, MM/GBSA trajectory, and the Optimized MM/GBSA-dsr scoring functions.

Single snapshot MM/GBSA re-scoring—For loop configurations lacking steric
overlap with the added co-crystallized ligand, single snapshot MM/GBSA scoring and re-
ranking was applied to the DFIRE ensemble of each protein system. Shown in Figure 3, re-
scoring with single snapshot MM/GBSA with the ligand improved the ranking of low
RMSD predicted loop configurations in all three protein systems compared to the initial
DFIRE ranking. In the GART system, the ranking of the most native-like predicted loop
configurations was more accurate than using the DFIRE scoring function (Table 4, column
“With co-crystallized ligand::Snapshot MM/GBSA”). Similar to the results of single
snapshot MM/GBSA re-scoring without the ligand, the lowest RMSD predicted loop was
identified within the top-10 positions (Figure 4A).
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Evident from Figure 3A, a low-RMSD predicted loop configurations (RMSD < 2 Å) was
identified in the top-ranked position, however, the lowest RMSD predicted loop
configuration was ranked better in single snapshot MM/GBSA re-scoring without the ligand
compared to MM/GBSA re-scoring with the ligand (Top-3 versus Top-5, Figure 4A).
Although the ranking of the most native-like loop configurations slightly deteriorated, if the
ten lowest RMSD predicted loop configurations are considered the ranking improves
compared to using single snapshot MM/GBSA re-scoring without the ligand. Three of the
ten lowest RMSD predicted loop configurations are ranked within the top-10 positions using
this method compared to only one with single snapshot MM/GBSA re-scoring without the
ligand (Table S1, Figure 5A1 and Figure 5A2).

Shown in the column “With co-crystallized ligand::Snapshot MM/GBSA” of Table 4, single
snapshot MM/GBSA re-scoring with the ligand improved the ranking of the most native-like
predicted loop configurations in CYP119. Similar to the results of single snapshot MM/
GBSA scoring without the ligand, the two lowest RMSD predicted loop configurations were
ranked within the top-10 positions. Using this scoring method, the lowest RMSD predicted
loop configuration was ranked in the top-2 positions compared to being ranked within the
top-6 in single snapshot MM/GBSA re-scoring without the ligand (Figure 4B). Although
adding the co-crystallized ligand positively affected the ranking of the most native-like
predicted loop configurations, no improvement occurred if the ten lowest RMSD predicted
loop configurations are considered. Single snapshot MM/GBSA re-scoring with and without
the ligand identified two of the ten lowest RMSD predicted loop configurations within the
top-10 positions (Table S1, Figure 5B2 and Figure 5B1).

As in the GART and CYP119 systems, Figure 3C shows that the ranking of low RMSD
predicted loop configurations improved compared to using the DFIRE scoring function in
the enolase system. However, the ranking of the most native-like configurations deteriorated
compared to single snapshot MM/GBSA re-scoring without the ligand. Single snapshot
MM/GBSA scoring with the ligand did not identify any of the three most native-like loop
configurations within the top-10 positions compared to two correctly identified when re-
ranking using single snapshot MM/GBSA re-scoring without the ligand (Table 4, column
“With co-crystallized ligand::Snapshot MM/GBSA”). Although single snapshot MM/GBSA
rescoring with the ligand did not improve the ranking of the most native-like predicted loop
configurations, if the ten lowest RMSD predict loop configurations are considered the
ranking is similar between single snapshot MM/GBSA with and without the ligand. Both
scoring methods identified three of the ten lowest RMSD predicted loop configurations
within the top-10 positions (Table S1, Figure 5C1 and Figure 5C2).

Trajectory MM/GBSA re-scoring—To determine if trajectory MM/GBSA re-scoring
with the ligand improved upon the ability of single snapshot MM/GBSA re-scoring to rank
native-like loop configurations, each member of the DFIRE ensemble from GART,
CYP119, and enolase was subjected to a MD simulation. An ensemble of 20 snapshots from
the MD simulations was used to calculate the trajectory MM/GBSA energy of each
predicted loop configurations. Using a trajectory calculated MM/GBSA value improved
upon the initial DFIRE ranking in each protein system (Figure 3).. Following the same trend
as seen in trajectory MM/GBSA re-scoring without the ligand, the column “With co-
crystallized ligand::Traj MM/GBSA” of Table 4 shows that the ranking of the most native-
like predicted loop configurations did not improve compared using single snapshot MM/
GBSA re-scoring with the ligand. In the GART system, the lowest predicted RMSD loop
configuration was identified within the top-10 positions, but this was not an improvement in
the ranking compared to using single snapshot MM/GBSA re-scoring where the same loop
configuration was ranked within the top-5 positions (Table 4). No improvement was found
when considering the ten lowest RMSD predicted loop configurations, one was identified
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using trajectory MM/GBSA re-scoring versus three identified using single snapshot MM/
GBSA re-scoring with the ligand present.

In CYP119, trajectory MM/GBSA re-scoring with the ligand identified none of the three
most native-like predicted loop configurations in the top-10 positions compared to two
correctly identified using a single snapshot MM/GBSA with the ligand (Table 4).
Considering the ten lowest RMSD predicted loop structures, none were ranked within the
top-10 ranked positions compared to two identified using single snapshot MM/GBSA re-
scoring with and without the ligand (Table S1).

Similar to the results found for GART and CYP119 trajectory MM/GBSA re-scoring with
the ligand present, no improvement in ranking the most native-like predicted loop
configurations (Table 4). None of the ten lowest RMSD predicted loop configurations were
identified within the top-10 positions compared to two correctly identified in single snapshot
MM/GBSA re-scoring. Based on these results, trajectory MM/GBSA re-ranking with the
bound ligand incorporated did not improve the identification of native-like loop
configurations compared to single snapshot MM/GBSA.

Optimized MM/GBSA-dsr re-scoring—The DFIRE ensemble of each protein system
was also re-scored using the Optimized MM/GBSA-dsr scoring function with the ligand
included to determine if it outperforms standard MM/GBSA ranking of the predicted loop
regions. Shown in Figure 3A and 3B, re-scoring with the Optimized MM/GBSA-dsr scoring
function did not significantly improve upon the initial DFIRE ranking in GART and
CYP119. Furthermore, the column “with ligand::Optimized MM/GBSA-dsr” in Table 4
shows that the Optimized MM/GBSA-dsr scoring function did not rank the most native-like
predicted loop configurations (or any of the ten lowest RMSD predicted loop configurations,
Table S1) within the top-10 positions in GART or CYP119. In addition, Figure 3A and 3B
illustrates that the Optimized MM/GBSA-dsr scoring function with the ligand did not
outperform single snapshot MM/GBSA re-scoring with the ligand.

While unsuccessful in the GART and CYP119 systems, Figure 3C illustrates that re-scoring
the enolase DFIRE ensemble with the Optimized MM/GBSA-dsr scoring function improved
upon the initial DFIRE ranking. The column “With ligand::Optimized MM/GBSA-dsr” in
Table 4 shows that this method was able to identify one of the most native-like predicted
loop configurations within the top-10 ranked positions. Furthermore, if the ten lowest
RMSD predicted loop configurations are considered, Optimized MM/GBSA-dsr re-scoring
with the ligand identified the same number of low RMSD predicted loop configurations
when using single snapshot MM/GBSA re-scoring with and without the ligand. Each scoring
function identified three of the ten lowest RMSD predicted loop configurations within the
top-10 ranked positions (Table S1).

Comparison with experimental loop-ligand interactions—The use of backbone
only RMSD as a measure of predictive accuracy is a common criterion in protein loop
prediction in the context of homology modeling or structure prediction studies. However,
when modeling protein-ligand complexes the side chains often interact with the bound
ligand and should be considered as well.. In Tables 3 and 4, the all heavy atom RMSD
values are reported in addition to the backbone only RMSD values for the three lowest
RMSD predicted loop conformations in GART, CYP119, and enolase. As expected, the all
heavy atom RMSD values display an increase in RMSD compared to the backbone only
values in all protein systems. The question that needs to be investigated is whether the
observed deviation from the experimentally known loop conformation prevents the
formation of important protein-ligand contacts in the predicted loop configuration. As
shown in Figure 6, important loop-ligand contacts are formed in all three systems that are
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similar to contacts seen in the experimental X-ray structure, also some differences in the
steric interactions between CYP119 and the bound ligand was observed.

Protein-ligand interaction energies (ΔGP-L)—In general, no significant improvement
in ranking native-like loop configurations upon inclusion of the bound ligand was observed.
This finding was not surprising considering that the variation in the predicted energies of the
different loop configurations, ΔEconformation-P, varied more than the differences in the
protein-ligand interaction energies (Figure 5, columns 2 minus the energy of the apo form
compared to column 3). Using single snapshot MM/GBSA values to estimate ΔEk and
ΔEP-L,k, the total variation within the DFIRE ensembles without the ligand bound was
approximately 150 kcal/mol, 300 kcal/mol, and 130 kcal/mol for ΔEconformation-P compared
to the variation in the predicted protein-ligand interaction energy ΔEP-L,k (approximately 30
kcal/mole, 20 kcal/mol, and 80 kcal/mol) for GART, CYP119, and enolase. Thus, ΔEP-L,k
had as smaller contribution to the overall variation in the predicted energy of the protein-
ligand complex (ΔEk) and did not significantly alter the ranking. The variation in ΔEP-L,k
and ΔEconformation-P is likely overestimated by inherent errors in the scoring function. Such
errors contribute more to the variation in ΔEconformation-P,k as the calculation of this quantity
involves a larger number of atom-atom interactions compared to the direct protein-ligand
interaction, ΔEP-L,k.54 A weak correlation was identified between the ΔEk and the RMSD of
the loop configuration (raw data not shown). The Pearson correlation coefficient (r) for
GART, CYP119, and enolase was 0.4, 0.3, and −0.1. The difference in correlation was
consistent with the difficulty of identifying high-ranked low RMSD loop configurations in
enolase and the generation of low RMSD loop conformations for GART (RMSD < 1Å).

We finally addressed the question if focusing on ΔEP-L,k provides a more accurate measure
to separate low RMSD loop conformation that have stronger interactions with the bound
ligand from high RMSD loop conformations that lack important protein-ligand interactions.
However, extracting the ΔEP-L,k using single snapshot MM/GBSA did not display a strong
correlation between the RMSD of the loop configuration and the predicted protein-ligand
interactions (raw data not shown). The Pearson correlation coeeficient (r) for GART,
CYP119, and enolase was 0.4, 0.2, and 0.0.

Discussion and Conclusions
Loop prediction for three protein systems, each with a differing length flexible loop region
in close proximity to the known active site, was performed with the CorLps program. For
each protein system, the DFIRE scoring function implemented in CorLps was used to
determine the top-100 predicted loop configurations (DFIRE ensemble). The DFIRE scoring
function was able to identify native-like predicted loop configurations (RMSD < 2 Å) for all
protein systems, but such configurations were not accurately ranked.

In an attempt to accurately rank native-like loop configurations, each member of the DFIRE
ensemble was re-ranked using three different methods: single snapshot MM/GBSA re-
scoring, trajectory MM/GBSA re-scoring, and Optimized MM/GBSA-dsr re-scoring. In
general, MM/GBSA re-scoring (with and without the ligand) improved upon the initial
DFIRE ranking in all protein systems. Re-ranking the DFIRE ensemble of CYP119 with
trajectory MM/GBSA scoring (with and without the ligand) did not provide an improvement
in ranking native-like predicted loop configurations in comparison to using single snapshot
MM/GBSA re-scoring. This suggests that the computational time required to score loop
configurations using a trajectory MM/GBSA scheme is not beneficial to accurately rank
native-like loop configurations.
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The result that native-like loop configurations were ranked within the top-10 positions
seems to be consistent with the conformational selection model of protein flexibility coupled
to ligand binding. According to this model, incorporating ligand-loop interactions should
stabilize and thus rank the most native-like predicted loop configuration in the top position.
However, this study shows that existing scoring schemes are insufficient and no significant
improvement in ranking the predicted loop configurations was observed when the protein-
ligand interaction energy was included. The difference in predicted free energies between
the loop configurations (ΔEconformation-P,k) outweighed the ligand-loop interaction (ΔEP-L,k).

One could argue that the predicted loop conformations deviate too much from the
experimentally known loop conformation and that sampling of lower RMSD loop structures
is necessary to utilize the strength of force-field based scoring methods such as MM/GBSA.
Evaluation of the X-ray loop conformations using MM/GBSA revealed that for the CYP and
enolase system the X-ray conformation of the loop is higher ranked (more favorable score)
than any predicted loop conformation. For GART the X-ray conformation is ranked at 72nd

position with many loop conformations with RMSD > 2 Å ranked higher than the X-ray
conformations.. Thus, sampling of low RMSD conformations (< 1 Å) may be necessary in
all protein systems to accurately rank native-like loop conformations using methods such as
MM/GBSA.

In summary, the ability of four different scoring schemes to accurately rank native-like
predicted loop configurations was explored. The statistically-based DFIRE scoring function
used in the loop prediction program CorLps did not accurately rank native-like
configurations. Re-scoring using the physics-based single snapshot MM/GBSA method
improved the initial DFIRE ranking in all protein systems. While unsuccessful in two
protein systems, the Optimized MM/GBSA-dsr scoring function identified native-like loop
configurations in the enolase system. Based on the scoring function analyses presented, the
optimal ranking of native-like loop configurations is still a difficult challenge and the choice
of the “best” scoring function appears to be system dependent. Novel scoring functions, or
optimized versions of previously described scoring functions, are still needed to routinely
rank native-like loop regions as the top-predicted loop configuration in diverse protein
systems. Furthermore, although the effect of the ligand on the loop prediction process should
not be neglected in theory, this study did not reveal if including the ligand during the re-
scoring process aided in ranking native-like predicted loop configurations.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Acknowledgments
The authors would like to thank Laura Kingsley for assistance in preparing gures for the manuscript. M.A.L.
gratefully acknowledges funding from the National Institutes of Health (GM085604 and GM092855), the Purdue
Research Foundation, and Eli Lilly and Company.

Reference List
1. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE.

The Protein Data Bank. Nucleic Acids Res. 2000; 28:235–242. [PubMed: 10592235]
2. The Universal Protein Resource (UniProt) in 2010. Nucleic Acids Res. 2010; 38:D142–D148.

[PubMed: 19843607]
3. Marti-Renom MA, Stuart AC, Fiser A, Sanchez R, Melo F, Sali A. Comparative protein structure

modeling of genes and genomes. Annu Rev Biophys Biomol Struct. 2000; 29:291–325. [PubMed:
10940251]

Danielson and Lill Page 12

Proteins. Author manuscript; available in PMC 2013 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



4. Wong S, Jacobson MP. Conformational selection in silico: loop latching motions and ligand binding
in enzymes. Proteins. 2008; 71:153–164. [PubMed: 17932934]

5. Audoly L, Breyer RM. The second extracellular loop of the prostaglandin EP3 receptor is an
essential determinant of ligand selectivity. J Biol Chem. 1997; 272:13475–13478. [PubMed:
9153190]

6. Ahn KH, Bertalovitz AC, Mierke DF, Kendall DA. Dual role of the second extracellular loop of the
cannabinoid receptor 1: ligand binding and receptor localization. Mol Pharmacol. 2009; 76:833–
842. [PubMed: 19643997]

7. Dittus J, Cooper S, Obermair G, Pulakat L. Role of the third intracellular loop of the angiotensin II
receptor subtype AT2 in ligand-receptor interaction. FEBS Lett. 1999; 445:23–26. [PubMed:
10069367]

8. Han KH, Green SR, Tangirala RK, Tanaka S, Quehenberger O. Role of the first extracellular loop in
the functional activation of CCR2. The first extracellular loop contains distinct domains necessary
for both agonist binding and transmembrane signaling. J Biol Chem. 1999; 274:32055–32062.
[PubMed: 10542238]

9. Hauser M, Kauffman S, Lee BK, Naider F, Becker JM. The first extracellular loop of the
Saccharomyces cerevisiae G protein-coupled receptor Ste2p undergoes a conformational change
upon ligand binding. J Biol Chem. 2007; 282:10387–10397. [PubMed: 17293349]

10. Hellal-Levy C, Fagart J, Souque A, Wurtz JM, Moras D, Rafestin-Oblin ME. Crucial role of the
H11–H12 loop in stabilizing the active conformation of the human mineralocorticoid receptor.
Mol Endocrinol. 2000; 14:1210–1221. [PubMed: 10935545]

11. Mailfait S, Thoreau E, Belaiche D, Formstecher BS. Critical role of the H6–H7 loop in the
conformational adaptation of all-trans retinoic acid and synthetic retinoids within the ligand-
binding site of RARalpha. J Mol Endocrinol. 2000; 24:353–364. [PubMed: 10828828]

12. Naganathan S, Beckett D. Nucleation of an allosteric response via ligand-induced loop folding. J
Mol Biol. 2007; 373:96–111. [PubMed: 17765263]

13. Pless SA, Lynch JW. Magnitude of a conformational change in the glycine receptor beta1–beta2
loop is correlated with agonist efficacy. J Biol Chem. 2009; 284:27370–27376. [PubMed:
19643731]

14. Shi J, Radic’ Z, Taylor P. Inhibitors of different structure induce distinguishing conformations in
the omega loop, Cys69–Cys96, of mouse acetylcholinesterase. J Biol Chem. 2002; 277:43301–
43308. [PubMed: 12196517]

15. Shi L, Javitch JA. The binding site of aminergic G protein-coupled receptors: the transmembrane
segments and second extracellular loop. Annu Rev Pharmacol Toxicol. 2002; 42:437–467.
[PubMed: 11807179]

16. Shi L, Javitch JA. The second extracellular loop of the dopamine D2 receptor lines the binding-site
crevice. Proc Natl Acad Sci U S A. 2004; 101:440–445. [PubMed: 14704269]

17. Miura T, Nishinaka T, Terada T. Importance of the substrate-binding loop region of human
monomeric carbonyl reductases in catalysis and coenzyme binding. Life Sci. 2009; 85:303–308.
[PubMed: 19555696]

18. Wang Y, Berlow RB, Loria JP. Role of loop-loop interactions in coordinating motions and
enzymatic function in triosephosphate isomerase. Biochemistry. 2009; 48:4548–4556. [PubMed:
19348462]

19. Fukamizo T, Miyake R, Tamura A, Ohnuma T, Skriver K, Pursiainen NV, Juffer AH. A flexible
loop controlling the enzymatic activity and specificity in a glycosyl hydrolase family 19
endochitinase from barley seeds (Hordeum vulgare L. ) Biochim Biophys Acta. 2009; 1794:1159–
1167. [PubMed: 19332152]

20. Gunasekaran K, Nussinov R. Modulating functional loop movements: the role of highly conserved
residues in the correlated loop motions. ChemBioChem. 2004; 5:224–230. [PubMed: 14760744]

21. Oka T, Hakoshima T, Itakura M, Yamamori S, Takahashi M, Hashimoto Y, Shiosaka S, Kato K.
Role of loop structures of neuropsin in the activity of serine protease and regulated secretion. J
Biol Chem. 2002; 277:14724–14730. [PubMed: 11854276]

Danielson and Lill Page 13

Proteins. Author manuscript; available in PMC 2013 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



22. Funhoff EG, Klaassen CH, Samyn B, Van BJ, Averill BA. The highly exposed loop region in
mammalian purple acid phosphatase controls the catalytic activity. ChemBioChem. 2001; 2:355–
363. [PubMed: 11828464]

23. Gautam JK, Ashish, Comeau LD, Krueger JK, Smith MF Jr. Structural and functional evidence for
the role of the TLR2 DD loop in TLR1/TLR2 heterodimerization and signaling. J Biol Chem.
2006; 281:30132–30142. [PubMed: 16893894]

24. Bastard K, Prevost C, Zacharias M. Accounting for loop flexibility during protein-protein docking.
Proteins. 2006; 62:956–969. [PubMed: 16372349]

25. Kojima S, Furukubo S, Kumagai I, Miura K. Effects of deletion in the flexible loop of the protease
inhibitor SSI (Streptomyces subtilisin inhibitor) on interactions with proteases. Protein Eng. 1993;
6:297–303. [PubMed: 8506264]

26. Kufareva I, Abagyan R. Type-II kinase inhibitor docking, screening, and profiling using modified
structures of active kinase states. J Med Chem. 2008; 51:7921–7932. [PubMed: 19053777]

27. Ma B, Kumar S, Tsai CJ, Nussinov R. Folding funnels and binding mechanisms. Protein Eng.
1999; 12:713–720. [PubMed: 10506280]

28. Lou H, Cukier RI. Molecular dynamics of apo-adenylate kinase: a principal component analysis. J
Phys Chem B. 2006; 110:12796–12808. [PubMed: 16800615]

29. Lou H, Cukier RI. Molecular dynamics of apo-adenylate kinase: a distance replica exchange
method for the free energy of conformational fluctuations. J Phys Chem B. 2006; 110:24121–
24137. [PubMed: 17125384]

30. Cukier RI. Apo adenylate kinase encodes its holo form: a principal component and varimax
analysis. J Phys Chem B. 2009; 113:1662–1672. [PubMed: 19159290]

31. Lill MA. Efficient incorporation of protein flexibility and dynamics into molecular docking
simulations. Biochemistry. 2011; 50:6157–6169. [PubMed: 21678954]

32. Carlson HA, McCammon JA. Accommodating protein flexibility in computational drug design.
Mol Pharmacol. 2000; 57:213–218. [PubMed: 10648630]

33. Cavasotto CN, Kovacs JA, Abagyan RA. Representing receptor flexibility in ligand docking
through relevant normal modes. J Am Chem Soc. 2005; 127:9632–9640. [PubMed: 15984891]

34. Koshland DE. Application of A Theory of Enzyme Specificity to Protein Synthesis. Proc Natl
Acad Sci U S A. 1958; 44:98–104. [PubMed: 16590179]

35. Danielson ML, Lill MA. New computational method for prediction of interacting protein loop
regions. Proteins. 2010; 78:1748–1759. [PubMed: 20186974]

36. Zhang C, Liu S, Zhou Y. Accurate and efficient loop selections by the DFIRE-based all-atom
statistical potential. Protein Sci. 2004; 13:391–399. [PubMed: 14739324]

37. Zhou H, Zhou Y. Distance-scaled, finite ideal-gas reference state improves structure-derived
potentials of mean force for structure selection and stability prediction. Protein Sci. 2002;
11:2714–2726. [PubMed: 12381853]

38. Massova I, Kollman PA. Combined molecular mechanical and continuum solvent approach (MM-
PBSA/GBSA) to predict ligand binding. Perspect Drug Discov. 2000; 18:113–135.

39. Wroblewska L, Jagielska A, Skolnick J. Development of a physics-based force field for the scoring
and refinement of protein models. Biophys J. 2008; 94:3227–3240. [PubMed: 18178653]

40. Soto CS, Fasnacht M, Zhu J, Forrest L, Honig B. Loop modeling: Sampling, filtering, and scoring.
Proteins. 2008; 70:834–843. [PubMed: 17729286]

41. Heyer LJ, Kruglyak S, Yooseph S. Exploring expression data: identification and analysis of
coexpressed genes. Genome Res. 1999; 9:1106–1115. [PubMed: 10568750]

42. Xiang ZX, Honig B. Extending the accuracy limits of prediction for side-chain conformations. J
Mol Biol. 2001; 311:421–430. [PubMed: 11478870]

43. DeLano, WL. The PyMOL Molecular Graphics System. Palo Alto, CA: DeLano Scientific; 2002.
44. Word JM, Lovell SC, Richardson JS, Richardson DC. Asparagine and glutamine: using hydrogen

atom contacts in the choice of side-chain amide orientation. J Mol Biol. 1999; 285:1735–1747.
[PubMed: 9917408]

Danielson and Lill Page 14

Proteins. Author manuscript; available in PMC 2013 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



45. Case DA, Cheatham TE III, Darden T, Gohlke H, Luo R, Merz KM Jr, Onufriev A, Simmerling C,
Wang B, Woods RJ. The Amber biomolecular simulation programs. J Comput Chem. 2005;
26:1668–1688. [PubMed: 16200636]

46. Pearlman DA, Case DA, Caldwell JW, Ross WS, Cheatham TE, Debolt S, Ferguson D, Seibel G,
Kollman P. Amber, A Package of Computer-Programs for Applying Molecular Mechanics,
Normal-Mode Analysis, Molecular-Dynamics and Free-Energy Calculations to Simulate the
Structural and Energetic Properties of Molecules. Comput Phys Commun. 1995; 91:1–41.

47. Mongan J, Simmerling C, McCammon JA, Case DA, Onufriev A. Generalized Born model with a
simple, robust molecular volume correction. J Chem Theory Comput. 2007; 3:156–169. [PubMed:
21072141]

48. Rastelli G, Del RA, Degliesposti G, Sgobba M. Fast and accurate predictions of binding free
energies using MM-PBSA and MM-GBSA. J Comput Chem. 2010; 31:797–810. [PubMed:
19569205]

49. Weis A, Katebzadeh K, Soderhjelm P, Nilsson I, Ryde U. Ligand affinities predicted with the MM/
PBSA method: dependence on the simulation method and the force field. J Med Chem. 2006;
49:6596–6606. [PubMed: 17064078]

50. Singh N, Warshel A. Absolute binding free energy calculations: on the accuracy of computational
scoring of protein-ligand interactions. Proteins. 2010; 78:1705–1723. [PubMed: 20186976]

51. Ryckaert JP, Ciccotti G, Berendsen HJC. Numerical integration of the cartesian equations of
motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys. 1977;
23:327–341.

52. Mandell DJ, Coutsias EA, Kortemme T. Sub-angstrom accuracy in protein loop reconstruction by
robotics-inspired conformational sampling. Nat Methods. 2009; 6:551–552. [PubMed: 19644455]

53. Arnautova YA, Abagyan RA, Totrov M. Development of a new physics-based internal coordinate
mechanics force field and its application to protein loop modeling. Proteins. 2011; 79:477–498.
[PubMed: 21069716]

54. Merz KM. Limits of Free Energy Computation for Protein-Ligand Interactions. J Chem Theory
Comput. 2010; 6:1018–1027. [PubMed: 20467461]

55. Chen P, Schulze-Gahmen U, Stura EA, Inglese J, Johnson DL, Marolewski A, Benkovic SJ,
Wilson IA. Crystal structure of glycinamide ribonucleotide transformylase from Escherichia coli at
3.0 A resolution. A target enzyme for chemotherapy. J Mol Biol. 1992; 227:283–292. [PubMed:
1522592]

56. Almassy RJ, Janson CA, Kan CC, Hostomska Z. Structures of apo and complexed Escherichia coli
glycinamide ribonucleotide transformylase. Proc Natl Acad Sci U S A. 1992; 89:6114–6118.
[PubMed: 1631098]

57. Park SY, Yamane K, Adachi S, Shiro Y, Weiss KE, Maves SA, Sligar SG. Thermophilic
cytochrome P450 (CYP119) from Sulfolobus solfataricus: high resolution structure and functional
properties. J Inorg Biochem. 2002; 91:491–501. [PubMed: 12237217]

58. Yano JK, Koo LS, Schuller DJ, Li H, Ortiz de Montellano PR, Poulos TL. Crystal structure of a
thermophilic cytochrome P450 from the archaeon Sulfolobus solfataricus. J Biol Chem. 2000;
275:31086–31092. [PubMed: 10859321]

59. Wedekind JE, Reed GH, Rayment I. Octahedral coordination at the high-affinity metal site in
enolase: crystallographic analysis of the MgII--enzyme complex from yeast at 1. 9 A resolution.
Biochemistry. 1995; 34:4325–4330. [PubMed: 7703246]

60. Wedekind JE, Poyner RR, Reed GH, Rayment I. Chelation of serine 39 to Mg2+ latches a gate at
the active site of enolase: structure of the bis(Mg2+) complex of yeast enolase and the
intermediate analog phosphonoacetohydroxamate at 2. 1-A resolution. Biochemistry. 1994;
33:9333–9342. [PubMed: 8049235]

Danielson and Lill Page 15

Proteins. Author manuscript; available in PMC 2013 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Examples of flexible loop regions in close proximity to the known binding site. (A) GART’s
6 residue loop region (apo: PDB-code 1GRC55, blue cartoon; holo: PDB-code 1CDE56,
orange cartoon) near the ligand 5-deazafolic acid (shown in pink sticks). (B) CYP119’s 9-
residue loop regions (apo: PDB-code 1IO757, blue cartoon; holo: PDB-code 1F4T58, orange
cartoon) near the ligand 4-phenylimidazole (shown in pink sticks along with porphyrin ring
of the heme group). (C) Enolase’s 11-residue loop region (apo: PDB-code 1EBH59, blue
cartoon; holo: PDB-code 1EBG60, orange cartoon) near the ligand
phosphonoacetohydroxamic acid (shown in pink sticks).
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Figure 2.
Lowest predicted RMSD identified within the top-100 ranked positions. DFIRE, MM/
GBSA, and Optimized MM/GBSA-dsr scoring is shown for (A) GART, (B) CYP119, and
(C) enolase.
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Figure 3.
Lowest predicted RMSD identified within the top-100 ranked positions after the addition of
the co-crystallized ligand. DFIRE, MM/GBSA, and Optimized MM/GBSA-dsr scoring is
shown for (A) GART, (B) CYP119, and (C) enolase.
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Figure 4.
Comparison of single snapshot MM/GBSA scoring with and without the ligand. The Lowest
predicted RMSD identified within the top-100 ranked positions is shown for (A) GART, (B)
CYP119, and (C) enolase.
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Figure 5.
RMSD versus MM/GBSA graphs of the top-100 predicted loop configurations (shown as
grey dots) from GART (row A), CYP119 (row B), and enolase (row C). The single snapshot
MM/GBSA score of the protein without bound ligand, the single snapshot MM/GBSA score
of the protein with bound ligand, and the direct interaction between the protein and ligand
(ΔGP-L) is shown in column 1, 2, and 3. The top-10 ranked predicted loop configurations are
shown as black dots. The horizontal dashed line indicates the cutoff for the ten lowest
RMSD predicted loop configurations. This figure caption will be rotated by 90 degrees to
correspond to the above figure in order for the figure to fit on a single page.
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Figure 6.
Comparison of loop-ligand interactions between the X-ray structure (top row, shown in
orange) and the lowest RMSD predicted structure (bottom row, shown in cyan). The co-
crystallized ligand is shown in pink sticks in all panels. (A2) In the predicted loop structure
of GART, the ligand forms the same two hydrogen bonds (Thr 140 and Asp 144) with the
backbone of the loop as seen in the X-ray structure (A2). In CYP119, hydrophobic contacts
dominate the interaction with the ligand. The contacts to Val 353 and Pro 158 are well
conserved between the X-ray (B1) and predicted structure (B2). The hydrophobic contact
with Leu 155, although present, has sterically changed in the predicted structure compared
to the X-ray structure. (C) In the enolase system, the phosphate atom of the ligand interacts
with two backbone amides (Ala 38 and Ser 39), but loses a hydrogen bond contact to the
side chain of Ser 39 in the predicted structure.
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