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Abstract

Monoclonal antibodies represent some of the most promising molecular targeted immunotherapies. However,
understanding mechanisms by which tumors evade elimination by the immune system of the host presents a
significant challenge for developing effective cancer immunotherapies. The interaction of cancer cells with the host
is a complex process that is distributed across a variety of time and length scales. The time scales range from the
dynamics of protein refolding (i.e., microseconds) to the dynamics of disease progression (i.e,, years). The length
scales span the farthest reaches of the human body (i.e, meters) down to the range of molecular interactions (i.e,
nanometers). Limited ranges of time and length scales are used experimentally to observe and quantify changes in
physiology due to cancer. Translating knowledge obtained from the limited scales observed experimentally to pre-
dict patient response is an essential prerequisite for the rational design of cancer immunotherapies that improve
clinical outcomes. In studying multiscale systems, engineers use systems analysis and design to identify important
components in a complex system and to test conceptual understanding of the integrated system behavior using
simulation. The objective of this review is to summarize interactions between the tumor and cell-mediated immu-
nity from a multiscale perspective. Interleukin-12 and its role in coordinating antibody-dependent cell-mediated
cytotoxicity is used illustrate the different time and length scale that underpin cancer immunoediting. An underly-

ing theme in this review is the potential role that simulation can play in translating knowledge across scales.

Introduction

Therapies targeting particular molecules relevant in the
pathogenesis of cancer promise efficacy in stratified
patient groups with minimal side effects. Breast cancer is a
prime example where a molecular therapy - trastuzumab -
has been shown to have remarkable efficacy in patients
with tumors that overexpress one of the epidermal growth
factor (EGF) receptors, ErbB2 [1,2]. In 25-30% of breast
cancer patients, the ErbB2 receptor is overexpressed and is
correlated with a poor prognosis [3]. Trastuzumab is a
monoclonal antibody that specifically targets the ErbB2
receptor and blocks the interaction of ErbB2 with other
members of the EGF receptor family [4,5]. Trastuzumab
halts abnormal cell proliferation by decreasing ErbB2
expression through sequestering it in endocytic vesicles,
resulting in receptor degradation [6]. Yet, one of the per-
sistent challenges in cancer research is understanding why
patients who overexpress these targeted proteins either do
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not respond at all or ultimately become resistant to the
therapy. For instance, only 12-34% of patients that overex-
press ErbB2 respond to trastuzumab by itself, and then
only for a mean period of 9 months [1,7]. The fact that all
patients eventually develop resistance to trastuzumab
represents an important, and poorly understood, clinical
problem (e.g. [8,9]). Moreover, monoclonal antibodies
form one of the largest classes of molecular targeted thera-
pies for cancer [10]. While molecular targeted drugs attack
a single target, it is increasingly evident that a multitude of
factors (e.g., immunological bias, genetic predisposition,
and oncogenic changes) contributes to cancer etiology.
Using the immune system as a source of patient-generated
antibodies to provide a similarly selective but also adaptive
therapy has intrigued immunologists and cancer biologists
for decades [11]. In the recent decade, the concept of can-
cer immunoediting holds renewed promise following
numerous studies on human immunodeficiencies that pro-
vide support for the role of lymphocytes (e.g., T, NK, and
NKT cells) and cytokines in regulating primary tumor
development [12]. Adjuvants, such as Interleukin-12, also
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hold promise for augmenting antitumor immunotherapy
[13].

Interleukin-12 (IL-12) is an important immune regu-
latory cytokine that exerts potent antitumor activity
and a member of a small family of heterodimeric cyto-
kines [14,15]. In the literature, IL12 implicitly refers to
a 75-kDa heterodimer that is formed by the disulfide-
linkage of two independently regulated gene products:
a 40 kDa (p40) subunit and a 35 kDa (p35) subunit
[16]. The p40 subunit, as a homodimer (IL12(p40),) or
monomer (IL12p40), can also bind to the IL-12 recep-
tor resulting in interactions that antagonize IL12p70
binding both in mice [17,18] and humans [19]. The
bioactivity of IL-12 is due to the competitive binding
of all isoforms with the IL-12 receptor [20]. In the per-
ipheral tissues, IL-12, originally called Natural Killer
Cell Stimulating Factor, enhances the ability of NK
cells to lyse target cells, a mechanism exploited for
tumor immunotherapy [21]. As an adjuvant, IL-12 pro-
motes NK-cell mediated killing of HER2-positive
tumor cells in patients treated with trastuzumab
[22-24]. Yet despite the sincere efforts of many to
understand the complicated relationship between can-
cer and the immune system, translating the therapeutic
potential of immunotherapies observed in vitro and in
animal models to the clinic has been difficult [25].

One of potential sources for this difficulty has been
how we have predominantly approached this problem.
“Divide and conquer” has been used to describe the pre-
dominant mode of scientific inquiry in the medical
sciences [26]. The underlying assumption is that under-
standing the behavior of a complicated system can be
achieved by deconstructing the system into more funda-
mental components and characterizing the behavior of
the components. In studying the fundamental compo-
nents in isolation, we may miss collective interactions
that are important for understanding how the integrated
system works. In addition, this reductionist approach
towards scientific inquiry also spawned subdisciplines
that focus on specific aspects of biological systems. For
instance, the study of protein structure and folding typi-
cally falls under the purview of biophysics, the study of
metabolic and signaling pathways falls under the purview
of biochemistry, and the study of emergent behavior of
populations of immune cells to biochemical cues falls
under the purview of immunology. The engineering dis-
ciplines have taken a different approach towards under-
standing natural and synthetic systems. For instance,
chemical engineering has a rich history where theory and
mathematics provide a framework for analyzing, design-
ing, and controlling reacting systems [27,28]. One of the
unifying concepts in the discipline is that theory and
mathematics can be extended using simulation. Using
simulation, engineers predict the behavior of complicated
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systems using knowledge of system components and the-
ories (e.g., transport phenomena and chemical kinetics)
that describe how we expect the components to interact.
These predictions are then tested experimentally to ask
the question: is our incomplete knowledge of the system
components sufficient to reconstruct the behavior of the
system? In the process, a more fundamental question is
asked: is this system complicated (i.e., components inter-
act via defined rules that we can characterize in isolation)
or is it complex (i.e., the behavior of components is an
emergent behavior that can only be characterized by
studying the integrated system)? Collectively, this process
is a knowledge generating activity [29]. This process also
helps manage uncertainty: do we understand the system
sufficiently to make a decision or do we need to gather
more data. From this perspective, research activities asso-
ciated with the disciplines of engineering and basic medi-
cal sciences represent contrasting modes for acquiring
knowledge about systems (i.e., reconstruction versus
deconstruction). The objective of this review is to
describe methods used in engineering to study systems
and to analyze cancer immunotherapy from an engineer-
ing perspective, using IL-12 as an illustrative example.

Systems Analysis and Identifying Scales

When presented with a complex problem, such as devel-
oping a novel immunotherapy, a common problem-
solving approach is to first identify the important
components whose interactions define system behavior.
Advances in molecular biology during the twentieth
century provided experimental tools to identify the indi-
vidual components of complex biological systems [30].
Once identified, the function of these components and
their interactions can be characterized. In engineering,
this process is called systems analysis [31].

Knowledge obtained by systems analysis is coupled to
the experimental techniques that scientists use to probe
systems and the computational tools that are used to
interpret those experimental observations. One of the
particular techniques used in systems analysis is to iden-
tify the different time scales that underpin the response
of a dynamic system (i.e., a time scale analysis) to an
abrupt change in environmental conditions. A time
scale analysis aids in simplifying the response of a
system by parsing system components and their corre-
sponding dynamics into different kinetic manifolds (e.g.,
[32]). The evolution in the system is constrained by the
slow variables (i.e., the slow kinetic manifold) while the
fast variables (i.e., the fast kinetic manifold) exist at a
pseudo-equilibrium. Moreover, variables that exhibit
time scales significantly longer than the time scale over
which the system has been observed can be considered
stationary (i.e., a stationary manifold). This phenomenon
related to separating time scales has been termed the
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slaving principle [33]. From observed differences in time
scales, we can infer that the important components that
regulate the system dynamics correspond to the slow
kinetic manifold. Components that correspond to a sta-
tionary manifold do not need to be represented expli-
citly as their contributions can be lumped into
appropriate rate parameters. Components that corre-
spond to a fast kinetic manifold can be described using
equilibrium relationships (i.e., experimentally measurable
equilibrium dissociation constants rather than kinetic
rate parameters). Time scale analysis is a classical tech-
nique used to identify key enzymes that control flux
within [34] and quantify hierarchical relationships
among elements of a complex metabolic network [35].

Similarly, the distance over which components interact
(i.e., a characteristic length scale) can also be identified.
In systems where components move (i.e., diffuse) and
can be transformed (e.g., degradation of a protein ligand
upon binding to a cell), a characteristic length scale can
be defined as a ratio between the rate parameters for
diffusion and reaction [36]. This approach has been
used to explain the inverse relationship between pene-
tration of therapeutic antibodies into tumor spheroids
and the affinity of the antibody to the tumor antigen,
called the “binding site barrier” [37]. The effective depth
of penetration, 4, is defined as:

- [ D{Ab], 1)
ke 1Aglo

where D is the effective diffusion coefficient for antibody
penetration into tumor spheroids, [Ab], is the concentra-
tion of antibody in the tissue, k, is the rate constant for
the catabolism of antibody upon binding to the corre-
sponding tumor antigen, as represented by the average
concentration of the tumor antigen within the tumor ([Ag]
o) [38]. Note that the length scale in this example, 4, is a
function of the rate parameter, k,. The rate parameters are
also used to estimate time scales. This highlights the direct
relationship between time and length scales.

Cancer is a complex multiscale system that spans mul-
tiple time (e.g., milliseconds to years) and length scales
(e.g., nanometers to meters) [39]. In studying cancer, we
implicitly focus on a narrower range of scales to ask
more focused questions: how do immune cells process
information at the molecular level, how does the immune
system shape tumor cell populations, or are there genetic
differences associated with clinical response to a cancer
immunotherapy. This implicit partitioning of a multiscale
system into a series of subsystems that are constrained to
a narrower range of time and length scales aids in redu-
cing the complexity of the problem. A set of subsystems
that are relevant to cancer immunotherapy include the
peptide, protein, cell, organ, and patient levels, as
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depicted in Figure 1. Given the direct relationship
between time and length scales, the subsystems are
placed along the diagonal in this diagram. The labels cor-
respond to the basic component unit within each of sub-
system. Within each of these subsystems, knowledge
regarding the behavior of components within a particular
subsystem is inferred from observed data and prior infor-
mation. Following from the “slaving principle,” informa-
tion passes from subsystems that exhibit shorter time
and length scales to subsystems that exhibit longer time
and length scales. This can be represented as the traffick-
ing of information from the bottom upwards, as high-
lighted by the blue arrows in Figure 1. For instance, the
dynamic distribution in conformational states at the pep-
tide level is summarized in terms of a protein-protein
interaction energy (i.e., protein activity). The activity of a
protein provides prior information for higher time and
length scales. Absent any alterations in protein structure
(e.g., SNPs or mutations), the energetics of protein-pro-
tein interactions that contribute to the existence of edges
within a canonical signaling network are typically
assumed to be conserved across systems. How a cell pro-
cesses information via a signaling network is then deter-
mined from observed measurements in changes in
expression or activity of an intermediate signaling pro-
tein, given known protein-protein interactions. In model-
ing cell level behavior, it may not be necessary to
incorporate details regarding the dynamics of a signaling
network nor to incorporate protein-folding dynamics. It
may be sufficient to represent signaling networks as a
collection of rules that relate extracellular signal to cellu-
lar response (i.e., an integrated cellular response surface).
These rules may represent simple input - simple output
relationships (i.e., how a change in a single cytokine influ-
ences cellular proliferation) or they may represent multi-
ple input - multiple output relationships to account for
context-dependent behavior (i.e., how changes in multi-
ple cytokines collectively influence cellular survival and
cytokine production). In the following sections, we
will expand on this multiscale concept by focusing on
Interleukin-12 and its role in coordinating antibody-
dependent cell-mediated cytotoxicity.

The Peptide Level

Cellular response to extracellular stimuli is governed
by protein-protein interactions that allow the transfer
of information from the cell membrane to the nucleus
and back [40]. Proteins interact through functional
motifs that characterize the affinity and specificity for
a particular motif-motif interaction [41]. Within this
multiscale hierarchy, the peptide level focuses on iden-
tifying changes in the protein structure that redistri-
bute the energetic states of a system to prefer
different conformations [42]. When two proteins
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interact via motifs, the distribution in energetic states
of the protein complex reaches an equilibrium distri-
bution within seconds and may propagate beyond the
motif-motif interaction region. The equilibrium distri-
bution in states characterizes the affinity for a particu-
lar protein-protein interaction. Somatic mutations or
germline single-nucleotide polymorphisms in the cod-
ing region of genes alter the primary protein structure,
resulting in a different affinity for protein-protein
interactions that contain the mutated protein (e.g.,
[43]). Experimentally, the binding affinity for motif-
motif interactions can be measured using high-
throughput in vitro methods [44,45]. The energetics
for motif-motif interactions measured in vitro may not
correspond to the actual binding affinities of two

proteins within a cell that interact through a particular
motif pair. Macromolecular crowding or other struc-
tural aspects of the proteins may influence the abso-
lute value of the binding affinity. However, the relative
differences among the different motif-motif interac-
tions do predict which proteins become activated
upon direct interaction with receptor tyrosine kinases
[46]. Alternatively, the distribution in energetic states
of a protein can be obtained using simulation, as sum-
marized by [47]. Simulation or high-throughput
experimental methods can both be used to identify
how alterations in the amino acid sequence alter the
structure of a protein. Thus, the objective of this level
would be to infer protein-protein interaction strength
based upon data that describes changes in genotype.
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A series of genome association analyses have identified
polymorphisms associated with proteins involved in the
IL-12 signaling axis. These polymorphisms are typically
identified as they correlate with different phenotypes
within a clinical population. The phenotypes may be
directly (e.g., oncogenic) or indirectly (e.g., alter tumor
immunosurveillance) related to cancer. In particular,
genetic mutations in IL-12p40 and one component of the
IL-12 receptor, IL-12RP1, have been observed in patients
with recurrent mycobacterial disease [48,49]. Heterozygous
mutations in the other component of the IL-12 receptor,
IL-12Rf32, have been reported in atopic patients that corre-
late with a reduction in STAT4 phosphorylation, the cen-
tral transcription factor in the IL-12 pathway, and IFN-y
production in response to IL-12 stimulation [50,51]. A sin-
gle point mutation (Val617Phe) in the JAK2, a Janus
Kinase that forms a complex with IL-12Rf2, associates
with myeloproliferative disorders [52], promotes the con-
stitutive activation of the kinase, and enables the enzyme
to escape negative regulation by SOCS3 [53]. In contrast,
mutations that impair kinase activity in TYK2, a member
of the Janus Kinase family that interacts with IL-12Rf1,
have been associated with reduced IL-12 responsiveness
[54]. Association of coding single nucleotide polymorph-
isms (SNPs) within the Tyk2 gene with disease in humans
has also been identified [55,56]. A reduced response to
IL-12, similar to an increase in atopy and susceptibility to
mycobacterial disease, is an indication for reduced cell-
mediated cytotoxicity, an important effector mechanism
for tumor immunosurveillance. In principle, an under-
standing of how genotype influences protein-protein inter-
action strength provides prior information for the next
level: the Protein level. However, the structural implica-
tions of many of these mutations remain unclear. Identify-
ing the physiological implications of SNPs is also difficult
due to the overlapping roles that the intracellular signaling
proteins play in other signaling pathways. For instance,
TYK2 plays a role in IFN-o [57] and IL-23 [58] signaling,
in addition to IL-12 signaling. Longer time and length
scales provide additional perspectives for addressing these
questions.

The Protein Level

The next larger time and length scale focuses on interac-
tions between proteins that occur within the cell. The
collective protein-protein interactions form networks,
such as metabolic and signaling networks. The structure
(i-e., topology) of these networks is described by a series
of nodes and edges. The nodes are the individual proteins
and the edges, in the case of signaling networks, corre-
spond to the velocity of information flow due to protein-
protein interactions. The topology of signaling networks
may be inferred from in vitro assays that measure
changes in the intracellular state of signaling proteins in
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response to a suite of stimuli using Bayesian computa-
tional methods [59]. Alternatively, canonical pathways
are proposed that summarize the collective scientific
evidence in support of the topology of a particular signal-
ing network (e.g., [60] and the KEGG PATHWAY data-
base: http://www.genome.jp/kegg/pathway.html). In the
literature, these networks are frequently represented as
qualitative cartoons that illustrate simple linear “bucket
brigades,” where information is passed from one protein
to another [61]. However, cellular signaling networks
have evolved to have complex characteristics, including
redundancy (whereby signals are dispersed among multi-
ple pathways) and complex feedback loops (whereby
signals are amplified or dampened as they pass through a
particular pathway) [62]. As an illustrative example of
this complexity, consider the IL-12 signaling network.
Cellular response to IL-12 occurs via one member of
the canonical Janus kinase (JAK) and signal transducer
and activator of transcription (STAT) family of signaling
pathways [63]. Signal transduction originates with the
IL-12 receptor, a member of the type 1 cytokine recep-
tor family and comprised of two subunits: IL-12Rf1 and
IL-12RB32. These receptor subunits lack intrinsic enzy-
matic activity and require association with specific Janus
kinases, JAK2 and TYK2, to transmit cellular signals.
Binding of a natural ligand to an IL-12 receptor precipi-
tates a series of biochemical events: the receptor
changes conformation, the tyrosine residues on the
receptor become phosphorylated by receptor-associated
Janus kinases, signaling proteins associate with the acti-
vated receptor (e.g., STAT4), and the signaling proteins
in turn become phosphorylated. In the IL-12 signaling
network, phosphorylated STAT4 translocates to the
nucleus to promote the transcription of various response
genes. A subset of these signaling pathways that lead to
different cellular behaviors is depicted in Figure 2.
While the canonical JAK-STAT pathway seems rela-
tively straightforward, various positive and negative regu-
latory pathways modulate the strength and duration of
signaling. As effective signaling via the IL-12 pathway
requires the expression of IL-12Rf2, phosphorylated
STAT4 promotes the upregulation of the IL-12Rf32 subu-
nit [64-66] creating a positive feedback loop. A predomi-
nant pathway for negative feedback regulation of IL-12
signaling is via the family of Suppressor of Cytokine
Signaling (SOCS). Specifically, SOCS1 inhibits IL-12
signaling [67,68] and SOCS3 negatively regulates IL-12
signaling by blocking the binding of STAT4 to the
IL-12Rf32 subunit [69]. Message for both SOCS1 and
SOCS3 increases in IL-12-stimulated peripheral blood
T cells [70]. However, the mechanism by which SOCS
proteins regulate cytokine-receptor signaling remains
unresolved [63]. The current model for SOCS regulation
of the JAK/STAT signaling is that the E3 activity of the
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SOCS protein targets the substrate for ubiquitination and
subsequent proteosomal degradation [71]. In contrast,
genetic studies suggest that the SH2 domain of the SOCS
protein blocks cytokine-receptor signaling by itself [69].
In addition, the protein inhibitors of activated STATs
(PIAS) (a.k.a., SUMO) are also negative regulators of
cytokine signaling [72,73]. In particular, PIAS inhibits IL-
12 signaling by sequestering STAT4 and thereby inhibit-
ing STAT4-dependent gene transcription [74].

As illustrated by the IL-12 signaling example, many of
the molecular players in the various signaling pathways
are known. However, the regulatory roles that individual
proteins play at specific points in time and in particular
systems are largely unknown [75]. It is precisely in this

situation that mathematical models are most helpful [39].
These models are typically based upon theories that are
used to describe how proteins interact. For example, the
transfer of information within intracellular signaling net-
works has been described in terms of a cascade of activat-
ing (e.g., kinase action) and deactivating (e.g., phosphatase
action) events that modify intermediate signaling proteins
[76] (see Figure 3). Within a level of this cascade, the
steady state activation of a signaling protein (A) is
described by:

S§2-RS1

kd-D +RSlI
ka

A
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an intracellular signaling network. Biochemical cues initiate a
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modify intermediate signaling proteins via a cascade of activating
and deactivating events. Changes in activity of these intermediate
signaling proteins ultimately regulate cellular response. In this two
level cascade, an activated receptor (R) interacts with signaling
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rates are related to the abundance of the RS1 and deactivating
protein (D), respectively. Cellular response is proportional to the
activity of signaling protein 2.

where S2 is the total concentration of signaling pro-
tein in both active (A) and inactive (I ) conformations,
RS1 is the concentration of activating protein complex,
D is the concentration of deactivating protein, and ka
and kd are the rate constants associated with activating
and deactivating proteins, respectively [77].

Cellular response is proportional to the abundance of
A. While changes in peptide structure alter the rate con-
stants, changes in abundance of any of the participating
proteins (e.g., RS1, S2, and D in Equation 2) can also
influence cellular response to a particular biochemical
cue. These changes in protein expression within a cell
are assumed to occur quicker than changes in cell popu-
lations and therefore limit the range of relevant time-
scales. Research questions at the protein level focus on
two aspects: 1) how genetic variation influences the flow
of information within a signaling pathway and 2) how
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proteins are dynamically regulated to shape cellular
response. In the following paragraphs, each of these
aspects will be discussed separately.

As suggested by the theory encoded in equation 2,
changes in the expression of proteins involved in the
IL-12 signaling network will alter the cellular response
to IL-12. Similar to coding polymorphisms described in
the Peptide section, polymorphisms in untranslated
regions of proteins involved in the IL-12 signaling axis
have been identified in genome association studies.
Alterations in the genome in untranslated regions can
affect the expression of genes and their corresponding
proteins. For instance, a recently discovered mechanism
for posttranscriptional regulation of gene expression is
via miRNAs [78].

Untranslated regions (UTR) of mRNA provide binding
sites for regulatory miRNAs. Shortened 3'UTRs are asso-
ciated with oncogenic transformation in cancer cell lines,
a loss of miRNA target sites, and an increase in expres-
sion of the corresponding proteins [79]. While no poly-
morphisms have been identified yet, miRNA have been
associated with the IL-12 signaling network including
miR-21 that regulates mIL-12p35 expression [80], miR-
135a that regulates JAK2 expression [81], and miR-155
that regulates SOCS1 expression [82]. These miRNA may
represent regulatory components of a signaling-depen-
dent translational control structure that influences the
flow of information within the IL-12 pathway. While not
specifically associated with miRNAs, a polymorphism in
the 3'UTR of the IL-12p40 gene has been associated with
a reduction in plasma IL-12p40 [83,84] and an increase
risk for carcinoma [85,86], lymphoma [83], and glioma
[84]. In the 5’ regions, single nucleotide polymorphisms
in the 5’ flanking region of the IL-12Rf32 gene is asso-
ciated with aggressive periodontitis [87]. In addition,
SNPs in the non-coding regions of the STAT4 [88] and
IL-12RB2 [89] genes have been associated with an
increased risk for autoimmunity. SNPs in the non-coding
regions of Tyk2 associate with increased risk for inflam-
matory bowel disease [90].

Besides single-nucleotide polymorphisms, other
genetic and epigenetic changes modulate protein expres-
sion. Chromosomal translocations may switch the corre-
sponding promoter to a more active one or change the
regulation of gene expression [91]. Structural genomic
variation, with the majority smaller than 10 kb, is a
major contributor to phenotypic variation within the
normal human genome [92,93]. The highest proportion
of genes affected by the identified variants modulates
cellular response to extracellular signals (e.g., receptor
signaling networks). One of the functional effects of
structural genomic variants is a change in the level of
expression of gene products for a given transcription
signal. Alterations in DNA copy number variants have
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also been observed in solid tumors [94]. Epigenetic
mechanisms also regulate gene expression and promote
oncogenesis [95]. Epigenetic silencing of the IL-12Rf2
gene via DNA methylation has been observed in chronic
B-cell malignancies compared to normal B-cells [96]
and primary lung adenocarcinomas [97].

The theory encoded in equation 2 can be extended
using mathematical models. To create a mathematical
model, one must first specify the causal relationships
among the interacting proteins involved in a signaling
network (i.e., the network topology). Similar to Bayesian
networks, ordinary differential equation (ODE)-based
mathematical models provide a computational frame-
work for expressing the current knowledge regarding the
topology of a signaling network. Historically, the topol-
ogy of a reaction network has been assembled manually
through the judicious use of simplifying assumptions
(e.g., [98-100]). These manually assembled networks have
provided insight into many signaling pathways [62].
However, the implicit assumptions required for manual
assembly of reaction networks impose bias and limit
wider application [101]. One of the advances in the field
of reaction pathway analysis has been the creation of
algorithms that automatically generate reaction networks
using formalized descriptions of molecular transforma-
tions [102,103]. Algorithms that automate model con-
struction allow the researcher to focus on interpreting
the biochemistry described by the model rather than on
its tedious assembly.

Graph theory is a useful mathematical framework that
facilitates constructing a reaction network among react-
ing species [104] and provides the fundamental basis for
these algorithms. The generality of the approach lends
itself to representing different reacting systems with
minimal modification to the algorithm. Examples of
applications include reaction networks that contain
hydrocarbons [105], immobilized binding sites [106],
and multi-state proteins [107-111]. Representing multi-
state proteins as a collection of functional motifs [41] is
a key concept that enables applying this computational
approach to signaling networks. Reaction networks, like
cell signaling networks, can be constructed based upon
the systematic application of “rules” that provide con-
straints on the formation and destruction of motif-motif
“bonds.”

Application of the rules to reacting species can create
reaction networks that exhibit combinatorial complexity
[112], leading to a combinatorial explosion in the number
of unique species represented in the model [111]. How-
ever, computational tools have been developed to prune
the reaction network based upon specific criteria and to
facilitate intuitive interpretation of model behavior
[105,113]. Once the network topology has been specified,
ODE-based models provide quantitative predictions
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following the specification of initial conditions for the
model variables and of values for the reaction parameters.
Initial conditions can be estimated from protein expres-
sion measurements and reaction parameters can be esti-
mated using protein-protein affinity data, dynamic
calibration data, and thermodynamic constraints (see
[114] as an example).

Unlike Bayesian networks, ODE-based models can be
used to infer how proteins dynamically regulate the flow
of information down different branches with a signaling
network from observed data [115]. However, the ability
of a particular mathematical model to describe a system
of interest, analogous to experimental studies, must
include a statement of belief. Belief derived from a
mathematical model is expressed commonly in terms of
a single point estimate for the predictions, obtained
from the set of parameters that minimizes the variance
between model and data [116]. Given that a model con-
strains the set of possible states of the system, it is
essential to provide an estimate of the uncertainty asso-
ciated with the model predictions given the available
data. The use of single point estimates is a frequent
point of contention in the use of mathematical models,
as the values for many of the parameters are not pre-
cisely known. The logical argument is that if the uncer-
tainty in values of the model parameters is high, then
the uncertainty in the model predictions should also be
high. However, recent developments in methods for
Bayesian model-based inference address this concern.

A Bayesian view of statistics is a mathematical expres-
sion of our beliefs [117]. Beliefs are established based
upon the observation of data and the interpretation of
that data within the context of our prior knowledge
[118]. Mathematical models provide a quantitative frame-
work for representing prior knowledge of the detailed
biochemical interactions that comprise a signaling net-
work. The unknown parameters of the model are cali-
brated against the observed network dynamics. Given the
calibration data and the postulated model, the uncer-
tainty in the model predictions can be obtained using an
empirical Bayesian approach for model-based inference
[115,119]. In essence, these methods are computationally
intensive methods that randomly walk within parameter
space (i.e., a Monte Carlo approach). New steps in para-
meter space extend the walk. A potential new step is
evaluated by comparing the model predictions obtained
using the parameter values of the new step against the
available data. The model predictions for the new step
are only compared against the current step in the ran-
dom walk (i.e., it is a Markov Chain). The similarity
between the model predictions and the available data
correspond to the likelihood for including the potential
new step in the on-going walk. High agreement between
model predictions and the available data has a high
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likelihood for inclusion in the on-going walk while low
agreement has a low likelihood for inclusion. When the
random walk has sufficiently traversed the parameter
space as to provide consistent model predictions, the
Markov chain is considered to be converged. The collec-
tion of model predictions contained within the converged
segment of the Markov chain provide an estimate of the
uncertainty in the model predictions that reflects both
the specific data at hand and the uncertainty in the values
of model parameters. This approach has been used to
infer the strength of different positive- and negative-feed-
back mechanisms within the IL-12 signaling network in
naive CD4+ T cells obtained from Balb/c mice [120].
One of the conclusions of this work is that not all of the
parameters need to be precisely defined for the model to
provide narrowly distributed predictions. In other words,
we can be highly confident in our ability to discriminate
among competing hypothesis regarding the flow of cellu-
lar information, as encoded in a mathematical model,
despite the underlying uncertainty in the model para-
meters. Ultimately, understanding the dynamic regulation
of signaling networks will enable one to map biochemical
cues onto cellular response in the form of deterministic
cellular rules. This mapping of biochemical cues to cellu-
lar response provides prior information for the next level:
the Cell level.

The Cell Level

At the cell level, IL-12 is a paracrine cytokine that pro-
vides a critical interface between innate and adaptive
immunity [15]. The time associated with an evolving
cell population within a particular organ (e.g., antigen-
induced expansion and polarization of naive CD4+
T cells) and the spatial range of paracrine action pro-
vide the time and length scale context for this level. As
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summarized by Figure 4, IL-12 plays a critical role
within secondary lymphoid organs in promoting anti-
tumor immunity. Sufficient and sustained signaling
[70] by IL12p70 through the IL-12 signaling network
leads to polarization of naive CD4+ T cells into a Thl
phenotype [121]. Polarization into a Thl phenotype
promotes anti-tumor immunity via cytokine help for
CD8+ T cell expansion and switching B cell antibody
production to isotypes, such as IgG2a in the mouse,
that enhance antibody-dependent NK cell-mediated
cytotoxicity [122].

Mature dendritic cells (DCs) are some of the most
prolific producers of IL-12 and play a critical role in
regulating the immune response [123,124]. Another
member of the IL-12 family, IL-23 has been associated
with promoting polarization towards and expansion of a
Th17 subset [125,126] and is produced by DCs
[127,128]. However, the role of Th17 cells in shaping
anti-tumor immunity is still unclear [129]. Another reg-
ulatory cytokine, IL-4, promotes polarization towards a
Th2 phenotype [130]. In general, it is thought that a
Th2 bias correlates with tumor tolerance (e.g., [131]).
The association of different regulatory cytokines with
different T helper cell subsets, as illustrated in Figure 4,
summarizes cell level events that regulate T helper cell
polarization in the secondary lymphoid organs. How-
ever, biochemical cues play different roles in different
organs due to direct action of biochemical cues on the
cells that traffic to specific organs. In contrast to its role
as a regulatory cytokine in T helper cell polarization,
IL-12 enhances the ability of NK cells to lyse antibody-
coated target cells in the peripheral tissues [24]. This
dual role, as activator of NK cells and as promoter of
Thl polarization, motivates using IL-12 as an adjuvant
for antibody-based tumor immunotherapy [23].
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“Educated”
Dendritic Cells

ot L2

Figure 4 An overview of the cytokines involved CD4+ T helper cell expansion and polarization. Naive CD4+ T cells can differentiate into
one of three lineages of effector T helper (Th) cells - Th1, Th2, and Th17 - following signaling via the T cell receptor and co-stimulatory
receptors. The effector Th cell populations are defined based upon their cytokine production profile and perform distinct immunoregulatory
functions. Th1 cells assist in regulating antigen presentation and cell-mediated immunity. Anti-parasite and humoral immunity is regulated by
the cytokines produced by Th2 effector cells. The cytokines produced by the Th17 subset regulate an inflammatory response.
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In addition to understanding the paracrine action of
biochemical cues, the cell level also focuses on under-
standing how organ-specific system behavior (e.g., a pri-
mary immune response within a secondary lymphoid
organ) emerges from the collective action of cell popula-
tions that exhibit slight variation in phenotype. In addi-
tion to the regulatory cytokines, T cell responses are
also regulated by antigen recognition. Collectively, the
frequency of T cells that recognize specific epitopes
influences the quality of immune response [132,133]. In
addition, heterogeneity in T cell commitment may be
responsible for the observed plasticity in the immune
polarization to the recognized epitopes [134]. On the
tumor side, cellular heterogeneity within cells of a
tumor has been recognized for several decades [135].
More recently, genomic techniques have provided
insight into the early genetic heterogeneity in dissemi-
nated tumor cells compared to cells of the primary
tumor [136]. However, measuring the evolution in cellu-
lar heterogeneity in clinical samples has been a particu-
lar challenge [137].

In cell populations that carry the same genes, cellular
heterogeneity can be attributed to two primary sources.
First, variability in cellular response can be attributed to
heterogeneity in expression and activity of proteins
involved in the signaling pathways that facilitate cellular
decision-making. This heterogeneity is observed in simi-
lar cell populations using polychromatic flow cytometry
[138]. In addition, the regulatory proteins that facilitate
this transfer of information may be expressed in low
abundance [139]. As the concentration of interacting
regulatory proteins decreases, the discrete nature of pro-
tein-protein interactions becomes more apparent and
gives rise to random fluctuations in the information
transfer process. Thus, even in cells that exhibit the
same number of regulatory proteins, cellular responses
to the same stimulus may be phenotypically different
[140]. These internal sources of cellular variability are
defined as “intrinsic” sources.

Second, variation in the local microenvironment that
surrounds each cell within a population may contribute
to variations in collective cellular response. The sources
of cellular heterogeneity that are external to the cell are
defined as “extrinsic” sources. Experimental approaches,
such as 3-D cell culture, provide methods to explore how
these extrinsic sources influence cellular response [141].
While the study of intrinsic sources of heterogeneity has
been studied by several groups (e.g., [142,143]), extrinsic
sources may have greater impact on cellular variability
than intrinsic sources, due to the simultaneous influence
of external cues on many signaling pathways within a cell
[144]. Collectively, these external cues reflect the compo-
sition of stromal and immune cells within the tumor
microenvironment. The composition of immune cells the
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tumor microenvironment correlate with clinical response
to tumor immunotherapy. For instance, overall survival
in Head and Neck Squaemous Cell Carcinoma patients
treated with IL-12 correlate with an increased presence
of CD56" NK cells within the primary tumor, irrespective
of IL-12 treatment [145]. In addition, impressive infiltra-
tion of CD20™ B cells around the tumor was observed in
some IL-12 treated patients. Understanding how an
immune response is coordinated leads to the next levels:
the organ and patient levels.

The Organ Level

Anti-tumor immunity is a dynamic process coordinated
via cellular interactions distributed in time and space.
The organ level represents the time and length scales
associated with an adaptive immune response. The time
associated with developing and maintaining immunolo-
gical memory is the primary focus of this timescale and
spans days to years. Control of an immune response is
distributed among different organs of the body, whereby
specific cells perform different functions in each organ
and the migration of cells between organs enables the
transfer of information. As an example of a cell type
that conveys information among organs, consider the
dendritic cell.

As the sentinels of the immune system, dendritic cells
(DCs) play an important role in initiating and maintain-
ing T cell responses, such as T-helper cell polarization
[146,147]. The precise role played by DC in de novo acti-
vation of T cells is the culmination of a series of steps
distributed across both space and time. These sequential
steps, as shown graphically in Figure 5, include the
recruitment into the peripheral tissue, capture of antigen
and “education” in a peripheral tissue, and trafficking to a
draining lymph node. In the process of migrating from
the peripheral tissue to a draining lymph node, DCs
undergo a series of phenotypic changes in cell surface
marker expression that are collectively called DC matura-
tion. Proteins expressed on the cell surface enable a cell
to sense and respond to its environment. These dynamic
changes in DC proteins indicate that the particular cellu-
lar response of a DC to the environmental context is
highly dependent on the DC’s particular maturational
age. Upon arrival to the draining lymph node, mature DC
initiate an appropriate T cell response by presenting anti-
gen, upregulating costimulatory ligands, and releasing
mediators, such as IL-12.

As recently summarized [148,149], the production of
IL12p70, IL12p40, and IL12(p40), by mature DC in the
draining lymphoid organ is highly dependent on the
cells’ cumulative exposure to inflammatory mediators
during differentiation and maturation [150] and thus
provide a link between the peripheral tissues and lym-
phoid organs. These studies highlight the difficulty in
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Figure 5 A schematic diagram of the multi-organ process involved in immunosurveillance that becomes dysregulated in cancer. (A)
Immature dendritic cells are recruited into peripheral tissues from the circulation. While in the peripheral tissues, biochemical cues within the
tissue microenvironment educate immature DC. “Educated” mature DC downregulate tissue homing and upregulate chemokine receptors that
promote DC emigration to the draining lymph node. Within the draining lymph node, mature DC present antigen, express costimulatory
molecules, and secrete cytokines that influence T cell activation and polarization. The particular profile of cytokines secreted by mature DC is
imprinted on immature DC while being educated in the peripheral tissues. (B) The presence of an epithelial tumor alters the profile of
biochemical cues used to educate immature DC within the tissue microenvironment. In addition, the presence of metastatic tumor cells within
the draining lymph nodes may interfere with the role that mature DC play in orchestrating an immune response. Therapeutic antibodies
promote antibody-dependent cell-mediated cytotoxicity. Increased cell death by the carcinoma provides an additional source of tumor-
associated antigens for immature DC to present in the draining lymph node.

ascribing biological roles to biochemical cues based
upon in vitro studies alone. The simulations suggest
that the combination of both IL-4 and IFN-v in the per-
ipheral tissues significantly increases the polarization of
naive CD4+ T cells towards a Thl phenotype. As was
suggested by Hochrein et al. [151], the impact of IL-4
on DC education suggests an indirect promotion of Thl
polarization. In contrast, it is stated frequently that IL-4
promotes the Th2 polarization of naive CD4+ T cells
[130]. However, the Th2 polarization potential of IL-4 is
based primarily upon the direct action of IL-4 and
IEN-y on naive CD4 + T cells observed in vitro. This
result highlights the pleotropic nature of IL-4, whereby
the spatial restriction in IL-4 expression may differen-
tially influence CD4+ T cell polarization.

Under normal conditions, cells of the immune system
inhibit tumor growth and progression through the recog-
nition and rejection of malignant cells, a process called
immunosurveillance. However, the immune system
sculpts tumor development by selecting for malignant
variants that create an immunosuppressive microenvir-
onment, thereby blocking productive antitumor immu-
nity. This collective process is referred to as cancer
immunoediting [12]. This shift in immune behavior from
immunosurveillance to immunotolerance to a tumor is
shown schematically in Figure 5B. Tumors promote

tolerance by producing biochemical cues that suppress
immune function, including TGF-f, IL-6, IL-10, and
prostaglandin E2 [152,153]. Upon metastasis, the bio-
chemical cues secreted by tumor cells can directly inter-
fere with the cellular communication necessary for
eliciting an appropriate immune response. For instance,
TGF-f inhibits the biological activities induced by IL-12
[154] through an undefined mechanism [155]. In addi-
tion, IL-6 has been shown to downregulate IL-12Rf32
expression in primary polyclonal plasmablastic and
multiple myeloma cells [156].

While still localized to the primary site, biochemical
cues secreted by the tumor can indirectly bias T cell
response through their influence on DC education. For
instance, many tumors express elevated levels of cycloox-
ygenase-2, which is essential for the synthesis of prosta-
glandin E2 (PGE2) [157-159]. PGE2 exhibits cross talk
with IL-4 and IFN-y during DC differentiation and
maturation such that PGE2 may promote Th2 polariza-
tion even in the presence of IL-4 and IFN-vy [149]. In
vitro, PGE2 has also been shown to modulate characteris-
tics of DC maturation including upregulation of the che-
mokine receptor CCR7 [160], essential for homing to
secondary lymphoid organs, and inhibition of DC differ-
entiation [161]. However, the in vivo significance of these
effects of PGE2 on differentiation and maturation has not



Klinke Molecular Cancer 2010, 9:242
http://www.molecular-cancer.com/content/9/1/242

been demonstrated. The expansion in the diversity of
antibodies against tumor-associated antigens highlights
the functional role that an integrated immune system can
play in cancer remission [162-164]. Cancer immu-
notherapies can be viewed as a mechanism to induce an
adaptive response against tumor antigens [165]. There
are multiple points where tumors may interrupt this inte-
grated process. In vitro study may identify protein-level
and cell-level mechanisms by which tumors manipulate
immunity. However, inferring how these protein-level
and cell-level mechanisms combine to influence system
behavior from observations obtained at the organ and
patient levels is a particular challenge and is one of the
most pervasive problems in the analysis of physiological
systems [166].

In engineering, this problem is called an identification
problem where causal relationships between system
components are inferred from a set of input and output
measurements [166]. In this context, an input may be
antibodies against tumor-specific epitopes and an output
may be tumor regression. Many approaches exist for the
identification of simple single-input-single-output
(SISO) systems. In addition, many experimental studies
characterize how isolated components of physiological
systems respond to inputs.

However, approaches for identifying causal relation-
ships among components of more complex closed-loop
systems, like the immune system, are less well devel-
oped. Typically, a closed-loop system is defined as a
multi-component system where the output (i.e.,
response) of one component provides the input (i.e.,
stimulus) to another component. A schematic diagram
of a closed-loop system comprised of two components
is shown in Figure 6. Closed-loop systems are particu-
larly challenging, as it is impossible to identify the rela-
tionships among components of a system based upon
overall input (e.g. peptide-pulsed DC vaccines) and out-
put (e.g. tumor regression) measurements. One of the
reasons for this is that changes in the internal state of
the system may alter the response of the system to a
defined input, such that there is not a direct relationship
between overall system input and output. Historically,
the causal mechanisms underlying the behavior of
closed-loop systems in physiology have been identified
via ingenious methods for isolating components within
the integrated system (i.e., “opening the loop”). A classic
example of this is the discovery of insulin and its role in
connecting food intake to substrate metabolism. As
insulin is only produced by the endocrine pancreas, the
measurement of plasma insulin provides a direct mea-
surement of the communication between food intake
and substrate metabolism in the peripheral tissues. The
pancreas can then be approximated as a SISO system
where the glucose concentration in the portal vein is the
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Figure 6 A schematic diagram of a two-component closed-
loop system. The behavior of a closed-loop system, enclosed
within the blue dotted box, is characterized by measurements of
variables that provide input to and that reflect the output of the
overall system. These variables are depicted as lines that cross the
system boundary, depicted by the dotted blue box. The internal
variables that are not observed facilitate communication among the
system components. Output variables for one component may
provide input variables for another component. This internal
communication may alter system behavior such that the same
system input may result in different system output depending on
the internal state of the system. Measurement of internal variables
enables characterizing the causal relationships between input
variables and output variables for a specific component within an
intact system. Ideally, measuring these internal variables reduces
complex closed-loop system to a series of connected open-loop
systems, as depicted by the red dot-dashed boxes. In an open-loop
system, changes in input variables result in a defined response of
the system.

input and insulin release into the plasma is the output,
as depicted in the Minimal Model for the regulation of
blood glucose [167]. Measuring insulin changes
in response to changes in glucose provide the basis for
partitioning alterations in system response (i.e., diabetes)
into deficiencies in insulin production (i.e., type 1 dia-
betes) and insulin action (i.e., type 2 diabetes). Treat-
ment for diabetes is tailored to the deficiency in
component function that exists in the patient.

By opening the loop, a closed-loop system is reduced
to a series of connected SISO components. Opening the
loop in the context of tumor immunity may refer to the
dynamic measurement of internal states of the DC sub-
system in vivo including: blood precursor populations,
biochemical cues produced in the tumor microenviron-
ment, and characteristics of DC that traffic to the drain-
ing lymph node. In conjunction with knowledge of the
T cell repertoire, this would enable one to develop a
more quantitative view of tumor escape mechanisms
(i.e., how differences in central repertoire selection, local
lymph node cytokine production, and DC education
collectively influence the quality and magnitude of anti-
tumor adaptive immunity). In vivo imaging techniques
are starting to provide some of these details [168]. In



Klinke Molecular Cancer 2010, 9:242
http://www.molecular-cancer.com/content/9/1/242

addition, peptide-, protein-, and cell-level knowledge can
be encoded using computational tools, in the form of
multiscale models, to aid in interpreting higher level
observations, such as iz vivo measurements.

Translating Knowledge into the Clinic

In summary, cancer is a complex disease manifested by
multiple changes in physiology distributed across a vari-
ety of time and length scales. In the previous sections,
details associated with the role of IL-12 in tumor immu-
nology have been described across these time and length
scales. Variations within each of these levels propagate
upward to reflect the variability in etiology of cancer and
in clinical response to treatment at the patient level. Rea-
lization of individually tailored therapies requires identi-
fying the underlying mechanistic basis for the clinical
phenotype. A high degree of uncertainty is associated
with determining such a mechanistic basis due to the
limitations of experimental observation. Prior informa-
tion obtained from preclinical studies, encoded in mathe-
matical models, can be used to help interpret the limited
information that can be obtained from the patients, as
encouraged by the Food and Drug Administration [169].

In engineering parlance, this process is analogous to
systems design, a complement to systems analysis. In
systems design, our knowledge of the putative important
components is used to assess how well mechanistic
descriptions of these components recapitulate real
system behavior. In immunology, a major hurdle for
develop immunotherapies is integrating the knowledge
obtained about individual molecules and cells to predict
immune response [170]. In engineering, mathematics is
used represent our knowledge of the components and
simulation is used to create an expectation for how we
expect the system to behave. An underlying theme in
this review is the use of theory and simulation to build
computational bridges across scales.

Recently, multiscale mathematical models have been
used to help understand immunity to infectious patho-
gens [171], tumor invasion [172], receptor tyrosine
kinase signaling [173], type 1 diabetes [174], and type
2 diabetes [175]. Integration of biological information
across scales using multiscale models to predict clinical
outcomes is an emerging field, described as systems
medicine [176]. Despite these examples, one might
suggest that building multiscale models is a futile exer-
cise, given the uncertainty in the biological details
associated with many of the time and length scales
described here.

Yet, models play a central role in science [177]. One
frequently creates a mental model of how one thinks a
system behaves (i.e., a hypothesis) and creates a test
(i.e., an experiment) to see whether the mental model
is a valid representation of the system. The causal
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relationships implicitly encoded within a mental model
are frequently depicted using a diagram or cartoon.
Given the complexity of biological systems, mathemati-
cal models that incorporate mechanistic information
provide value as they require an explicit statement of
underlying assumptions and establish formal relation-
ships between cause and effect. Creating a mechanistic
model can also be useful in systems for which our
knowledge is limited. Ultimately, mechanism-based
mathematical models make predictions: what do we
expect to happen in a particular system under particu-
lar conditions, given our current understanding of how
the components of the system operate? If there is
agreement between the observed data and the model
predictions, the mechanistic model provides a causal
explanation for the observed behavior. Conversely, dif-
ferences between the expected behaviors and observed
data identify areas where our understanding of the sys-
tem is inadequate and reveal novel aspects of biology
[118]. Thus, mathematical models extend our reason-
ing abilities by predicting the consequence of assump-
tions that may not be interpreted or understood
through human intuition alone. This is analogous to
experimental equipment, such as a flow cytometer, that
extend human senses to observe phenomena [178].

Conclusions

In closing, molecular targeted therapies have revolutio-
nized the treatment of cancer. However, developing
these drugs is challenging due to the frequent lack of
clinical efficacy and emergent resistance. Shortcomings
in the development of these compounds may be attribu-
ted to an inability to translate information among scales
(e.g., how an in vitro assay correlates with clinical
response). Understanding the relevance of scales is a
central theme in science that transcends disciplinary
boundaries [177]. This review was intended help educate
readers to the diversity of time and length scales that
underpin cancer pathophysiology. Interleukin-12 was
used as an illustrative example to guide the reader
through these concepts as it bridges innate to adaptive
immunity and exerts potent antitumor activity. Thus,
drawing attention to the diversity of time and length
scales at work in a patient may improve our understand-
ing of cancer and lead to the design of immunotherapies
that are more effective.
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