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Abstract
Treacher Collins syndrome is the prototypical mandibulofacial dysostosis syndrome, but other
mandibulofacial dysostosis syndromes have been described. We report an infant with
mandibulofacial dysostosis and an apparently balanced de novo 2;17 translocation. She presented
with severe lower eyelid colobomas requiring skin grafting, malar and mandibular hypoplasia,
bilateral microtia with external auditory canal atreasia, dysplastic ossicles, hearing loss, bilateral
choanal stenosis, cleft palate without cleft lip, several oral frenula of the upper lip/gum, and
micrognathia requiring tracheostomy. Her limbs were normal. Chromosome analysis at the 600-
band level showed a 46,XX,t(2;17)(q24.3;q23) karyotype. Sequencing of the entire TCOF1 coding
region did not show evidence of a sequence variation. High-resolution genomic microarray
analysis did not identify a cryptic imbalance. FISH mapping refined the breakpoints to 2q31.1 and
17q24.3–25.1 and showed the 2q31.1 breakpoint likely affects the HOXD gene cluster.

Several atypical findings and lack of an identifiable TCOF1 mutation suggest that this child has a
provisionally unique mandibulofacial dysostosis syndrome. The apparently balanced de novo
translocation provides candidate loci for atypical and TCOF1 mutation negative cases of Treacher
Collins syndrome. Based on the agreement of our findings with one previous case of
mandibulofacial dysostosis with a 2q31.1 transocation, we hypothesize that misexpression of
genes in the HOXD gene cluster produced the described phenotype in this patient.
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INTRODUCTION
Treacher Collins syndrome (TCS) is the prototypical mandibulofacial dysostosis syndrome.
The key features of TCS include malformed ears, malar and mandibular hypoplasia, lower
lid coloboma, cleft palate, and conductive hearing loss. Individuals with mutations in
TCOF1, located in chromosome band 5q32 encoding for the protein treacle, have been
shown to have TCS [The Treacher Collins Collaborative Group, 1996]. Although the
majority of individuals with TCS will have an identifiable mutation in TCOF1, this is not
universal, suggesting genetic heterogeneity. One study reported 8/36 (22%) of patients with
the clinical diagnosis of Treacher Collins syndrome did not have an identifiable mutation
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[Teber et al., 2004]. Another study reported that 2/28 (7%) did not have an identifiable
mutation [Splendore et al., 2000]. In addition, TCS is thought to be inherited in an
autosomal dominant pattern, but autosomal recessive inheritance has been reported [Lowry
et al., 1985; Richieri-Costa et al., 1993] adding support to the possibility of genetic
heterogeneity.

Although mandibulofacial dysostosis is a key feature in TCS, other syndromes including
Nager syndrome, Miller syndrome, and Reynolds syndrome include mandibulofacial
dysostosis as a primary finding. There have also been several reports documenting other
unique mandibulofacial dysostoses syndromes separate from TCS [Verloes and Lesenfants,
1997; Delb et al., 2001; Hedera et al., 2002; Hing et al., 2006]. We report on a child with a
provisionally unique mandibulofacial dysostosis and an apparently balanced de novo
translocation involving chromosomes 2q and 17q.

MATERIALS AND METHODS
Chromosome, FISH, and Array CGH analysis

High-resolution karyotype analysis was performed on PHA-stimulated peripheral blood
using standard procedures. Bacterial artificial chromosomes (BACs) used to generate home-
brewed fluorescence in situ hybridization (FISH) probes were identified using the March
2006 assembly of the UCSC Genome Browser (http://www.genome.ucsc.edu/). The
methods used to generate and hybridize these FISH probes have been described [South et
al., 2006]. Array comparative genomic hybridization (CGH) analysis was performed using
the Spectral Chip 2600 from Spectral Genomics (Houston, TX) and following the
manufacturer’s protocol with the exception that the Cy3-dCTP and Cy5-dCTP were
purchased from Amersham Biosciences (Buckingamshire, England). Scanning was
performed with Axon’s GenePix 4000B microarray scanner and the images were analyzed
with SpectralWare 2.2 for preparation of ratio plots. For higher-resolution array CGH, chip
8 of the 8-array Set with an average of 713 bp probe spacing was performed by the
manufacturer and relative ratios were determined using the SignalMap software package,
version 1.8 (NimbleGen Systems, Maddison, WI).

CLINICAL REPORT AND RESULTS
The patient was conceived through intracytoplasmic sperm injection due to reversal of a
vasectomy without a previous history of infertility. She was a diamniotic, dichorionic twin,
and her gestation was complicated by polyhydramnios. The twins were delivered at 34-
weeks gestation by Cesarian section. Growth parameters for both were appropriate for
gestational age. One twin presented with mandibulofacial dysostosis (Fig. 1A) while the
other twin was unaffected. Our patient presented with cleft palate, lower lid ablepharon,
microtia, prominent nasolabial folds, oral frenulae, microretrognathia, choanal atresia,
conductive hearing loss, and normal limbs and genitalia. She required a tracheostomy at 1
week and had poor oral intake with gastroesophageal reflux which required gastrostomy
tube placement and fundoplication at 1 month. She had significant lower lid ablepharon that
resulted in corneal ulcerations and required lower eyelid reconstruction at 3 months (Fig.
1B). A release of her oral frenulae was performed (Fig. 1C). At 8 months she was re-
evaluated and found to have normal development.

Computed tomography (CT) images revealed bilateral choanal stenosis and maxillary
hypoplasia, osseous external canal atresia, hypoplasia of the middle ear cavity with
dysplastic ossicles and an anteriorly displaced facial nerve. No pyriform aperture stenosis
was detected. A bone conduction auditory brain stem response test revealed a 30 db hearing
loss. CT imaging of the neck and plain films of the chest showed no overt vertebral
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abnormalities. Images from an echocardiogram, renal ultrasound, and pelvic ultrasound were
unremarkable.

A karyotype identified a balanced translocation reported as 46,XX,t(2;17)(q24.3;q23) at the
600 band level (Fig. 1D). Both parents had normal karyotypes. Array CGH analysis using a
1 Mb human BAC array did not identify an imbalance. To asses the possibility of a cryptic
copy number change at either breakpoint at higher resolution, an additional whole-genome
isothermal CGH array tiled with a median spacing of 6 kb was performed. Again, no copy
number changes were found in or around the affected chromosomal band (Fig. 2). Finally, to
test the idea that this patient has an atypical presentation of TCS with an unrelated balanced
translocation, sequencing of the entire TCOF1 coding region was performed clinically (The
Johns Hopkins DNA Diagnostic Lab, Baltimore, Maryland) and no mutations were detected.

For a higher-resolution breakpoint mapping analysis and to identify potential genes affected
by the translocation breakpoints, FISH with home-brewed BAC probes was performed on
metaphase chromosomes (Table 1). By FISH, the 2q breakpoint was mapped to 2q31.1 with
a single 176 kb BAC (RP11-387A1) that spans the breakpoint (Fig. 3A,B) and contains the
HOXD gene cluster and the EVX2 gene. FISH also refined the 17q breakpoint to a 2.5 Mb
region between 17q24.3 and 17q25.1 (Fig. 3C).

DISCUSSION
Our patient represents a provisionally unique mandibulofacial dysostosis syndrome. The
features that are atypical of TCS include multiple oral frenulae, more severe lower lid
ablepharon, and a distinctive nasal configuration. In addition, no mutation in TCOF1 was
identified. We hypothesize that the translocation disrupts or deregulates the expression of a
gene or genes in the 2q31.1 and/or 17q24.3–17q25.1 breakpoint regions producing the
described phenotype in our patient.

Individuals with TCS in association with cytogenetic abnormalities have been reported. Arn
et al. [1993] reported a child with a 3p24 deletion, and Sawada et al. [2002] reported a child
with a pericentric inversion of chromosome 2 with breakpoints at p11.2 and q21. It is
unknown whether or not these chromosome abnormalities were de novo. Jabs et al. [1991]
reported an individual with TCS and a de novo 4p deletion. Balestrazzi et al. [1983]
described a TCS patient with a de novo 5;13 balanced translocation. All of these cases were
reported to have typical TCS and do not involve the chromosomal regions of the breakpoints
in our patient.

In 1994, Nucci et al. reported a patient with a form of mandibulofacial dysostosis that had a
balanced de novo translocation between 2q and 10p. This child had mild abnormalities
similar to mandibulofacial dysostosis including cleft palate, pseudocoloboma of the lower
lids with atresia of the lacrimal punctae. They found that the breakpoint in this patient
interrupted the HOXD gene cluster at 2q31.1 occurring near the centromeric end of the
cluster between the HOXD11 and HOXD12 genes. Based on roughly equal hybridization
signal seen with FISH using the breakpoint spanning clone in our patient (Figure 3A) and on
the position of the HOXD cluster within this BAC (Figure 3B), the breakpoint in our patient
also likely disrupts the HOXD cluster near the centromeric end or in the flanking regulatory
region.

Genes in the HOXD cluster are not known to be expressed in the anterior pharyngeal arches
and specific deficiencies in these genes have not been shown to affect facial development in
mice [Condie and Capecchi, 1993; Favier and Dollé, 1997; Mark et al., 1997; Spitz et al.,
2005]. However, large interstitial deletions of chromosome 2q31.3 have been associated
with craniofacial dysmorphism [Ramer et al., 1989; Ramer et al., 1990; Slavotinek et al.,
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1999] and one patient with a 2q31.1–q32.2 deletion removing the HOXD gene cluster was
reported to have cleft palate, low set ears, hypertelorism, and microphthalmia [Del Campo et
al., 1999]. Deficiency of Hoxd3 in mice leads to defects of the skull base and cervical
vertebrae [Condie and Capecchi, 1993]. Mutations in the more posteriorly expressed
members of the HOXD gene cluster, including the EVX2 gene, cause patterning defects of
the trunk and hindlimbs including synpolydactyly [Akarsu et al., 1996; Mugaraki et al.,
1996; Goodman and Scambler, 2001], brachydactyly [Johnson et al., 2003], and hand-foot-
genital syndrome [Mortlock and Innes, 1997].

A large block of synteny between mouse and human spanning 4 Mb surrounding the HOXD
locus has been given as evidence of very long-range regulation of these genes [Lee et al.,
2006] and these regulatory elements are being delineated in mice with experimentally
induced rearrangements of the region [Kmita et al., 2000; Spitz et al., 2001; Kmita et al.,
2002]. This is exemplified in a report of three patients with apparently balanced
chromosomal rearrangements involving 2q31 occurring at distances greater than 390 kb on
either side of the HOXD cluster who all had limb anomalies similar to those seen with
mutations of the posterior genes of the HOXD complex [Dlugaszewska et al., 2006].
Another translocation reported by Spitz et al. [2002] demonstrated a translocation
breakpoint 60 kb telomeric to the HOXD cluster in association with mesomelic dysplasia
and vertebral defects.

The lack of limb, vertebral, and genital phenotypes in our patient and in the patient reported
by Nucci et al. [1994] suggests that a generalized loss of function of the HOXD genes is not
the mechanism causing anterior pharyngeal arch abnormalities in these cases. Agreement in
the localization of the two breakpoints leads us to hypothesize that mandibulofacial
dysostosis in these patients is due to misexpression of HOXD genes. We speculate that the
observed translocations separates the HOXD gene cluster from negative regulatory elements
(repressors) in the centromeric end of the cluster or brings HOXD genes into apposition with
inappropriate regulatory elements on chromosome 17 allowing abnormal expression of
HOXD genes in the pharyngeal arches. How inappropriate expression of HOXD genes
causes the mandibulofacial phenotype, however, is not clear.

Aside from the possibility that HOXD misexpressioin is involved in the craniofacial defects
in these cases, we considered what is known about the causes of TCS to search the relevant
breakpoint regions for genes plausibly involved in the development of mandibulofacial
dysostosis. TCS is caused by mutations in TCOF1, which encodes the Treacle protein.
Treacle is a nucleolar phosphoprotein thought to function in ribosomal DNA gene
transcription, and down-regulation of treacle results in reduced ribosomal DNA transcription
and cell growth [Valdez et al., 2004]. Treacle function requires interaction with the upstream
binding transcription factor (UBTF) [Valdez et al., 2004] making UBTF a candidate for
mandibulofacial dysostosis. The gene encoding UBTF is found at chromosome 17q21, more
than 25 Mb from the breakpoint in our patient, and is unlikely to be affected by this
translocation. Examination of the 17q24.3–17q25.1 region shows that it spans 2.5 Mb and
contains approximately 34 genes including multiple genes with known function in
embryonic development (Figure 3C).

Genes encoding for LisH motif-containing proteins also represent potential candidates for
the phenotype of our patient. Emes and Ponting identified sequence motifs, which possess a
LIS1 homology in the products of genes mutated in TCS and oral-facial-digital type1
syndrome [2001]. There are functional similarities between these nucleolar proteins and it is
suggested that they contribute to the regulation of microtubule dynamics. Given the co-
occurrence of TCS features and the oral frenulae seen in our patient, it is possible that the
causative gene or genes in our patient is/are associated with a similar sequence motif that
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causes aberrant microtubule dynamics and defects of cell migration. However, examination
of the genomic intervals near the breakpoints in this patient did not reveal any genes with
known LIS1 homology.

Our case represents a provisionally unique mandibulofacial dysostosis syndrome
highlighting the fact that mandibulofacial dysostosis is a primary feature of a number of
syndromes. In addition, our case, combined with the report of Nucci et al. [1994], provides
further evidence for the HOXD cluster as a candidate locus in patients with atypical TCS and
without TCOF1 mutations.
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Figure 1.
Photographs of patient: (A) in infancy; (B) after lower eyelid reconstruction; (C) after oral
frenulae release also showing cleft palate (arrow points to one remnant of oral frenulae). (D)
Partial karyogram of normal and derivative chromosomes 2 and 17.
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Figure 2.
High resolution CGH of the breakpoint intervals. Ratio plots for the 2q31.1 (top) and
17q24.3–25.1 (bottom) regions. No gains (relative ratio > 0.45) or losses (relative ratio <
0.85) of genetic material were detected across these intervals.
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Figure 3.
(A) Metaphase FISH using BAC probe RP11-387A1 shows that this clone spans the 2q31.1
breakpoint with signals on the normal chromosome 2 and on both the der2 and der17
chromosomes. (B) Map of the 2q31.1 breakpoint (chr2:176,450,000–176,900,000) shows
that the disrupted BAC (RP11-387A1) spans a 176 Kb region that includes most of the
HOXD gene cluster and EVX2 gene (shown boxed) as well as approximately 50 Kb of
upstream sequence. Two other genes in the region (shown as labeled arrows) lie outside the
disrupted BAC. (C) Map of the 17q24.3–25.1 breakpoint (chr17:68,165,340–70,882,076).
FISH mapping of a proximal BAC (RP11-65C22) and distal BAC (RP11-76G4) maps the
breakpoint to a 2.5 Mb interval that contains approximately 34 genes (shown as unlabeled
arrows).
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