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Abstract 

Clinical text is rich in acronyms and abbreviations, and they are highly ambiguous. As a pre-processing step before 
subsequent NLP analysis, we are developing and evaluating clinical abbreviation disambiguation methods. The 
evaluation of two sequential steps, the detection and the disambiguation of abbreviations, is reported here, for 
various types of clinical notes. For abbreviations detection, our result indicated the SPECIALIST Lexicon LRABR 
needed to be revised for better abbreviation detection. Our semi-supervised method using generated training data 
based on expanded form matching for 12 frequent abbreviations in our clinical notes reached over 90% accuracy in 
five-fold cross validation and unsupervised approach produced comparable results with the semi-supervised 
methods. 

 

Introduction 

Clinical notes are rich in acronyms and abbreviations. They allow for faster data entry, but are often ambiguous. 
According to Liu, 33.1% of UMLS (Unified Medical Language System) Metathesaurus abbreviations have multiple 
meanings,1 and we observed an even higher proportion of ambiguous abbreviations in clinical notes: 54.3%2.  In 
these notes, the same abbreviation can have different meanings in different healthcare institutions, in different 
medical specialties, between different healthcare practitioners, and even in the same clinical note. For example, in 
the “History of Present Illness” section, in a sentence like “The PT was admitted for a left tibial closed spiroid 
fracture”, PT means Patient; but in the “Labs” section, in the sentence “His PT was initially measured at 21.s”, PT 
means Prothrombin Time; and in a “Discharge Instructions” section, in a sentence like “Follow-up with PT weekly 
for the next 2 months”, PT means Physical Therapy. 

Moreover, ambiguous abbreviations often have different meanings in biomedical text (i.e., scientific publications) 
compared to clinical text. Natural Language Processing (NLP) applications developed for biomedical text have 
difficulties disambiguating abbreviations when used with clinical text. We would like an application that would 
understand “MD” as “Doctor of Medicine” in clinical text and “Mental Depression” in biomedical text. 

Well aware of this issue, but also convinced by the quality of NLP applications developed for biomedical text such 
as MetaMap,3 we are developing an abbreviation disambiguation tool for clinical text in the context of the POET 
(Parsable Output Extracted from Text) project at the University of Utah. The evaluation of the tool, called ABRADe 
(ABbReviations and Acronyms Disambiguation) is presented here.  

In this paper, we describe our methods for abbreviation detection and disambiguation, and their evaluation. We 
implemented a dictionary lookup module for abbreviations detection based on the SPECIALIST Lexicon LRABR 
resource. For abbreviation disambiguation, we used two approaches: a semi-supervised multi-class SVM classifier, 
and an unsupervised clustering method. The evaluation of both approaches is presented here. 

 

Background 

In the NLP domain, the correct interpretation of abbreviations has often been approached as a word sense 
disambiguation or text normalization problem.4,5,6 Several researchers have tried to resolve the ambiguity by using 
the proximity of the abbreviation with its expanded form, such as in “abbreviation (expanded form),” and this 
method showed good performance with biomedical text.7,8 However, this method does not work well with clinical 
notes. These notes are written for clinical experts and assume that these experts know the meaning of each 
abbreviation, and therefore it is extremely rare to see abbreviations with their expanded form. 

Disambiguating abbreviations involves two main tasks: detecting abbreviations, and choosing the correct expanded 
form (i.e., meaning) for each abbreviation detected. Dictionary lookup and morphology-based matching have been 
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used for the first task. For the second task, machine-learning approaches have been a popular choice. This task also 
requires more domain-specific knowledge, such as the UMLS SPECIALIST lexicon,9 a large biomedical and 
general English syntactic lexicon developed to provide the lexical information needed by various NLP applications 
developed by the National Library of Medicine. This lexicon includes syntactic, morphological, and orthographic 
information for each lexical item (word or term), and also includes the LRABR, a list of abbreviations and acronyms 
with their possible meanings. It lists 30,409 abbreviation-expanded form pairs (2009 release), with 18,335 unique 
abbreviations and 28,449 unique expanded forms.  

For abbreviations detection, Liu et al.1 extracted 163,666 unique pairs of abbreviation and expanded form from 
137,850 UMLS concept names with a subset of 16,855 UMLS abbreviations. They showed that 33.1% of 
abbreviations with six characters or less were ambiguous with an average of 2.28 expanded forms (i.e. meanings). 
They also found that the UMLS Metathesaurus included about 66% of the abbreviations in their clinical corpus. 

Kim et al.2 used 30,409 abbreviation-expanded form pairs from LRABR, and found that 17.8% of LRABR 
abbreviations were ambiguous with 4.68 different expanded forms on average. Also, using simple dictionary lookup, 
they detected 166,905 abbreviations (of ≥ 2 characters) representing 1,593 different abbreviations in 10,000 clinical 
notes and showed that 53.3% of the abbreviations detected were ambiguous. 

Xu et al.10 experimented with abbreviations detection without dictionary lookup and without an abbreviations 
database, using only general English terms and a medical lexicon. They detected abbreviations in 10 admission 
notes, using a decision tree classifier with morphological features and reached a precision of 91.4% and a recall of 
80.3% for 411 abbreviations. They measured that the UMLS Metathesaurus covered 35% of the abbreviation 
expanded forms.  

For abbreviation disambiguation, Pakhomov11 introduced a semi-supervised learning method based on Maximum 
Entropy to classify automatically generated training data based on local context. His method was based on the 
assumption that an abbreviation and one of its expanded forms were likely to have a similar distribution. He showed 
that there was a reasonable overlap between the contexts of an abbreviation and one of its expanded forms. His 
method showed over 89% cross validation accuracy on the generated training set. 

Joshi et al.12 used fully supervised learning for acronym disambiguation in clinical notes with an accuracy around 
90% with ten-fold cross validation. They annotated 7,738 instances of 16 ambiguous acronyms. 

 

Methods 

The detection of abbreviations starts with documents preprocessing. We use a sentence splitter adapted from 
openNLP and using the cTAKES13 trained model, and a simple tokenizer. The abbreviation annotator uses pattern 
matching and LRABR to annotate all abbreviations in our text. Each annotated abbreviation is then disambiguated 
as explained below. We also investigated the possibility to derive the abbreviation-expanded form pairs from the 
UMLS Metathesaurus, but chose the LRABR instead, for its superior coverage of abbreviations we could find in our 
corpus. 

To evaluate the detection of abbreviations, we built a reference standard of 37 randomly selected clinical notes that 
were manually annotated for all abbreviations by two authors (SMM and JFH), with disagreement adjudication. 

As mentioned above, we used two different approaches for abbreviations disambiguation: a semi-supervised and an 
unsupervised method. For the former, we built a training corpus of 9,963 (10,000 – 37) randomly selected clinical 
notes from the University of Utah Health Sciences Center, and created “synthetic” training cases using a method 
similar to the one proposed by Pakhomov11. We used the LRABR to detect all mentions of expanded forms (e.g., 
“cerebrovascular accident”) in 9,963 clinical notes, and then replaced the expanded form with the corresponding 
abbreviation (e.g., “CVA”). We then built feature vectors from these instances, with features that included the 
abbreviation itself, and the five preceding and following words (within the sentence) without any normalization. We 
pruned words that occurred less than five times in the training corpus.   

Our multi-class SVM classifier used LIBLINEAR14 with a one-against-all strategy. LIBLINEAR is a linear 
classifier and can deal with large-scale problems very efficiently. We created one classifier containing every 
instance instead of making a different classifier for each abbreviation. The goal of this method was to demonstrate 
that words only in a small context window already allow for good performance using multi-class SVM 
classification. We used 5-fold cross validation on the training cases.  
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Our second approach was based on unsupervised hierarchical clustering. This method allowed grouping the 
expanded forms of each abbreviation based on the cosine similarity in the same feature words used for semi-
supervised learning. We chose the single-link distance method15 to measure the distance between each cluster: the 
distance between the two nearest objects from two clusters, and used the clustering module available in Ling Pipe.16 
We implemented this method hoping that if our clustering reached reasonable performance, or at least comparable 
with the semi-supervised method, we could then directly apply this clustering method to instances with 
abbreviations and not rely on the assumption that contexts around expanded forms will be similar to those of 
abbreviations. We generated additional training instances with real abbreviations, and then applied the clustering 
method with the same feature used for expanded forms. After clustering, each cluster was annotated manually. This 
method allowed us to compare the differences between training data generated from expanded forms (as described 
earlier) or generated from abbreviations.  

 

Results 

Abbreviations detection: When comparing the reference with all abbreviations detected by our system, only 
satisfactory performance was observed, as shown in Table 1. Even partial matches (i.e., our system annotated only 
part of the abbreviation included in the reference standard) only reached an F1-measure of about 75%. 

 
 Recall Precision F1-measure 
Exact match 63.71 68.32 65.94 
Partial match 72.82 78.10 75.37 
Table 1: Abbreviation detection evaluation results. 

 
These results show the limitations of using a resource built for biomedical text (i.e. LRABR) with clinical text. Our 
system could only detect abbreviations found in LRABR. Table 2 lists the most frequent missed (i.e., false negative) 
and spurious (i.e., false positive) abbreviations with the number of instances in our 37 documents reference standard.  

Spurious abbreviations were listed in LRABR but not in the reference standard. For instance, “He” is mostly used as 
a pronoun in our notes, but is listed as an abbreviation in LRABR (e.g., Helium) and was detected by our system.  

 
False negatives False positives 

Abbreviation Instances Abbreviation Instances 
p.o. 48 He 128 
b.i.d. 27 q 50 
q.d. 21 b 27 
MedQ 15 In 26 
Mrs. 13 At 24 
HEENT 10 K 12 
mL 8 C 9 
dL 8 S1 5 
MRN 8 Ms 5 
q.h.s. 7 rehab 3 

Table 2: Top 10 false negative and false positive abbreviations 

 
Semi-supervised abbreviations disambiguation: In earlier research2, we presented the 20 most frequent ambiguous 
abbreviations in 10,000 notes of ten different types (Social Service Note IP, Rheumatology Clinic Note, Plastic 
Surgery Clinic Note, Operative Report, Obstetrics Gynecology Clinic Note, Hematology Oncology Clinic Note, 
Discharge Summary, Cardiology Clinic Note, Burn Clinic Note, and Admission H&P). For this classification task, 
we selected the 12 most frequent ambiguous abbreviations in our 9,963 training set notes, excluding abbreviations 
when one of their expanded form listed in LRABR corresponded to their meaning more than 90% of the times. 
When using abbreviation and expanded form pairs from LRABR to build synthetic training cases as explained in the 
Methods, we extracted 25,822 instances with very different distributions of each abbreviation as shown in Table 3. 
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Abbreviation Instances 
in corpus 

Different expanded 
forms in LRABR 

Different expanded 
forms in corpus 

Usage of 
LRABR (%) 

PO 9,030 10 4 40.00 
CA 8,390 66 22 33.33 
AP 3,893 47 21 44.68 
ER 1,530 21 5 23.81 
RA 1,121 27 14 51.85 
LV 698 13 8 61.54 
IV 392 16 6 37.50 
DVT 310 2 2 100.00 
MD 163 38 16 42.11 
PND 134 9 3 33.33 
CVA 113 3 3 100.00 
CT 48 4 4 100.00 

Table 3: Abbreviation instances in the training corpus and the number of different 
expanded forms for each abbreviation. 

 
 
We then proceeded with abbreviation 
expanded forms classification with five-
fold cross validation on the 9,963 
documents training corpus. Table 4 
shows the accuracy of LIBLINEAR’s 
classification for each abbreviation, 
followed by the percent coverage of the 
most and three common expanded forms. 
Table 5 shows the three most common 
expanded forms for each abbreviation. 
The LIBLINEAR accuracy was higher 
than just choosing the most common 
abbreviation expanded form, except with 
“DVT.”  

 

 
Table 4: Results of the semi-supervised method with  

five-fold cross validation on training instances                                                                                
 

Abbreviation Three most common expanded forms 
PO postoperative (49.86) posterior (48.67) perioperative (1.46) 
CA cancer (58.95) coronary artery (17.12) carcinoma (13.53) 
AP abdominal pain (43.98)  alkaline phosphatase (22.09) appendectomy (11.89) 
ER emergency room (65.23) external rotation (28.69) extended release (2.35) 
RA right arm (33.81) rheumatoid arthritis (28.19) right atrial (10.08) 
LV left ventricular (80.95) leucovorin (9.03) left ventricle (6.88) 
IV invasive (71.94) intraventricular (11.99) initial visit (6.63) 
DVT deep venous thrombosis (75.16) deep vein thrombosis (24.84)  
MD major depression (39.26) muscular dystrophy (14.72) myelodysplasia (13.50) 
PND paroxysmal nocturnal dyspnea (89.55) postnasal drip (9.70) prenatal diagnosis (0.75) 
CVA cerebrovascular accident 

(61.06) 
costovertebral angle (38.05) cardiovascular accident (0.88) 

CT computed tomography (60.42) connecticut (22.92) computed tomographic (10.42) 
Table 5: Three most common expanded forms found in clinical documents. 

 

Abbreviation LIBLINEAR 
accuracy (%) 

The most 
common (%) 

3 most 
common (%) 

PO 97.29 49.86 99.99 
CA 89.58 58.95 89.60 
AP 86.62 43.98 77.96 
ER 96.21 65.23 96.27 
RA 77.07 33.81 72.08 
LV 90.69 80.95 96.86 
IV 83.42 71.94 90.56 
DVT 68.71 75.16 100.00 
MD 46.01 39.26 67.48 
PND 89.55 89.55 100.00 
CVA 98.23 61.06 99.99 
CT 68.75 60.42 93.76 
Micro-average 91.09 53.83 91.42 
Macro-average 82.68 60.85 90.38 
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We also experimented with different sizes of context windows, ranging from one to ten words around the 
abbreviation, and observed a plateau after a size of 4 (Figure 1).  

Figure 1. Comparative result of different context window size 

 
Unsupervised abbreviations clustering: With the same features used for our semi-supervised classification (context 
window of size 5), we applied a clustering algorithm to our training instances, and got for example four clusters for 
“PO” and 22 for “CA.” Then, we were able to compare the clusters generated by LingPipe with training instances 
used for the semi-supervised method as reference standard. Table 6 shows the results of clustering by single-link 
with and a comparison with the accuracy of the semi-supervised method using LIBLINEAR. (Note: accuracy and 
F1-measure are equivalent when evaluating the semi-supervised method since the classifier must predict one 
expanded form and therefore produces no true negatives.) Recall and precision in clustering were calculated by 
comparing instances with the reference standard in each cluster, and counting them as true positives when placed in 
the cluster with the same manually assigned expanded form, false positives when having a different expanded form 
than the one assigned to the cluster, and false negatives when not found in the cluster with the same expanded form. 
For example, when examining the “per os” cluster, all instances of “per os” found in the cluster were true positives, 
all instances of other expanded forms found in the cluster were false positives, and all instances of “per os” not 
found in the cluster were false negatives.  

The most different result was measured with “AP” (44.50%) and the smallest with “PND” (1.44%). While the 
unsupervised method results are usually lower than the semi-supervised method results (micro-average: 32.64%, 
macro-average: 20.66%), they were higher for “DVT”. 

 
Abbreviation Clustering LIBLINEAR 

accuracy (%) 
Difference 

Recall Precision F1-measure 
PO 99.93 48.57 65.37 97.29 31.92 
CA 99.64 39.77 56.85 89.58 32.73 
AP 98.94 26.76 42.12 86.62 44.50 
ER 99.42 50.88 67.31 96.21 28.90 
RA 97.24 21.89 35.74 77.07 41.33 
LV 98.89 67.45 80.20 90.69 10.49 
IV 97.80 54.11 69.68 83.42 13.74 
DVT 99.75 62.91 77.16 68.71 -8.45 
MD 82.33 20.70 33.08 46.01 12.93 
PND 96.75 80.89 88.11 89.55 1.44 
CVA 98.73 52.97 68.94 98.23 29.29 
CT 90.56 44.48 59.66 68.75 9.09 
Micro Avg. 99.33 42.17 58.45 91.09 32.64 
Macro Avg. 96.67 47.62 62.02 82.68 20.66 

Table 6: Results of expanded form clustering for each abbreviation (Difference = LIBLINEAR – F1-measure) 
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We applied the same method described above to generate new training instances, and extracted 24,065 instances 
containing one of 12 abbreviations instead of expanded forms. We then clustered them with the number of expanded 
form found in LRABR (for instance, 10 for “PO” was set as a cluster size, 66 for “CA,” etc.). Five words preceding 
and following the abbreviation were used to calculate cosine similarity. Clusters with less than five instances were 
removed (e.g., eight clusters for “PO” with less than 5 instances were removed).  
 
A human expert (SMM) then reviewed the instances in each cluster and assigned the cluster to the most prevalent 
meaning (i.e., expanded form). A few clusters were merged when the human expert assigned them to the same 
expanded form. Table 7 includes information about each abbreviation’s clusters. The most frequent abbreviation in 
our corpus was “MD” with 7297 instances. In five abbreviations (“ER”, “LV”, “DVT”, “PND”, and “CT”), the 
assigned expanded forms were the same as the most common expanded form obtained with the semi-supervised 
method. However, abbreviations with numerous instances (such as, “MD”, “IV” and “PO”) had different expanded 
forms than with the semi-supervised method. We found out that “AP “and “ER” were sometimes used as initials of a 
reports author. 
 

Abbrev. Instances Number of 
cluster(s) 

Nb. clusters 
after review 

Most common expanded form(s) 

PO 1593 2 2 per os (= orally), post office 
CA 775 1 1 cancer antigen 
AP 893 3 3 anteroposterior, alkaline phosphatase, initials of a reports author 
ER 913 2 2 emergency room, initials of a reports author 
RA 590 1 1 rheumatoid arthritis 
LV 588 2 1 left ventricular 
IV 4595 1 1 intravenous 
DVT 783 1 1 deep vein thrombosis 
MD 7297 2 1 Medicinae Doctor (= Doctor of Medicine) 
PND 395 1 1 paroxysmal nocturnal dyspnea 
CVA 549 1 1 costovertebral angle 
CT 5094 1 1 computed tomography 
All 24065 18 16  

Table 7: The results of expanded form clustering for each abbreviation 
from generated data based on abbreviation matching. 

 

Discussion 

The abbreviation evaluation method we experimented with demonstrated that using a resource developed for 
biomedical text with clinical text did not allow for good performance. Adding domain- or institution-specific 
knowledge could increase recall significantly, and is the approach we plan to pursue, along with other improvements 
cited below. False positives could be reduced with some filtering heuristics or stop words (e.g., “He”, “In”, “At”). In 
this experiment, we detected abbreviations in a case sensitive way. It could therefore be possible to increase the 
recall by normalizing words to remove case information or punctuation in abbreviations. For instance, in the 
reference standard, “mL” is used for “milliliter” and “dl.” for “deciliter”. In LRABR, the abbreviations for these 
expanded forms are “ml” and “dl”. Detecting abbreviations with an edit distance method17 instead of strict string 
matching could also improve recall. 

When evaluating our semi-supervised abbreviation disambiguation method, the accuracy measured with “DVT” was 
lower than simply using the most common expanded form because of the presence of two close synonyms in our 
corpus: “deep venous thrombosis” and “deep vein thrombosis”. Normalizing these terms could improve 
performance, and could be applied to other abbreviations like “left ventricular” and “left ventricle” for “LV,” or 
“computed tomography” and “computed tomographic” for “CT.” A terminological resource such as the UMLS 
Metathesaurus could also be used to link all synonyms (e.g., “deep venous thrombosis” and “deep vein thrombosis”) 
to one common concept. 

The training cases we used relied on the “one sense per collocation” hypothesis proposed by Yarowsky18, that term 
(or abbreviations in our case) exhibit only one sense in a given collocation, in a given local context of surrounding 
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words. A limitation here is that Yarowsky’s hypothesis could not always apply for abbreviations and their expanded 
forms. For instance, we found numerous “MD” in our corpus, used as an abbreviation of “Doctor of Medicine”, but 
almost never found the expanded form. Our method therefore failed to generate the training instances for “MD.” The 
distribution of abbreviation meanings was clearly different when manually annotating abbreviations (i.e., when 
building the reference standard), when searching for expanded forms and create the synthetic training cases (i.e., 
meanings; Table 5), and when assigning a meaning to clusters (Table 7), but the local context remained similar 
enough to provide consistent features for abbreviations meaning prediction (Table 4).  

The unsupervised abbreviations clustering method gave us encouraging results, and has many opportunities for 
improvement such as a wider context window, using whole words in the sentence, using surrounding sentences as 
features etc. The cluster tree hierarchy of each abbreviation was very unbalanced, and most clusters had few 
instances and were removed. The main advantage of this method is its independence from the “one sense per 
collocation” hypothesis, that is could be used to detect several major expanded forms for each abbreviation. 

 

Conclusion 

Our abbreviations detection evaluation was based on a very useful resource, LRABR, but also showed its limitations 
to detect abbreviations in clinical notes when only using this resource. For better results, we will need more domain-
specific knowledge, adding new abbreviations and expanded forms as found in clinical rather than biomedical text. 
Our semi-supervised abbreviation disambiguation method with 12 abbreviations reached over 90% accuracy with 
five-fold cross validation. We also implemented two preliminary experiments with unsupervised methods by 
calculating cosine similarity of context words.  
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