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Abstract 
Evaluating the potential harm of a drug-drug interaction (DDI) requires knowledge of a patient’s relevant            
co-morbidities and risk factors.  Current DDI alerts lack such patient-specific contextual data.  In this paper, we 
present an efficient model for integrating pertinent patient data into DDI alerts.  This framework is designed to be 
interoperable across multiple drug knowledge bases and clinical information systems.  To evaluate the model, we 
generated a set of contextual DDI data using our local drug knowledge base then conducted an evaluation study of 
a prototype contextual alert design.  The alert received favorable ratings from study subjects, who agreed it was an 
improvement over traditional alerts and was likely to support clinical management and save physician time.  This 
framework may ultimately help reduce alert fatigue through the dynamic display of DDI alerts based on patient risk. 
  
Introduction 
Computerized physician order entry (CPOE) systems frequently employ clinical alerts as a means to influence 
physician prescribing behavior with the goal of improving patient safety.1-4 Such alerts can take a number of forms, 
from allergy warnings to overdose checking, but among the most widely implemented are drug-drug interaction 
(DDI) alerts.  These warnings are designed to guide physicians in the appropriate monitoring, modification, or 
discontinuation of potentially interacting medications.  Yet despite their widespread use, the potential value of DDI 
alerts has been limited by low rates of physician compliance.5,6  Doctors disregard the vast majority of drug 
interaction warnings, with 49%-96% of all such alerts overridden by the prescriber.6-9  One explanation for this high 
override rate is the issue of ‘alert fatigue’, in which physicians become less attentive to warnings in the setting of 
frequent, low-specificity alerts.2,10  
 
Improving the specificity of DDI alerts may in part be achieved by identifying a subset of ‘clinically significant’ 
interactions and eliminating less critical alerts.  Initiatives are currently underway to derive such a subset through 
expert consensus.11  Yet assessing the clinical significance of a DDI is difficult in the absence of patient context.12  
An interaction of little relevance to one patient may be of great relevance to another.  Ideally, a clinical decision 
support system would utilize patient context to dynamically alter the presentation of DDI alerts to highlight patients 
at higher and lower risk.  Achieving this goal requires integration of pertinent, patient-specific data into interaction 
warnings.  At present, the content of a DDI alert remains independent of patient characteristics, with the same 
information shown regardless of differences in patient age, co-morbidities, or medication history.  We sought to 
address this gap, and in the following paper we present a model for creating customized, patient-specific drug 
interaction alerts through the dynamic integration of relevant clinical data.  
 
Background 
The integration of patient-specific data into clinical alerts is a well-established strategy in clinical decision support 
(CDS).2,13  Studies have shown that the delivery of relevant patient laboratory results at the time of medication order 
entry (e.g., displaying creatinine when ordering gentamicin) can improve compliance with drug dosing 
recommendations.3,14  Similarly, providing pertinent laboratory results on initiation of a new long-term medication 
(e.g., showing liver functions tests when ordering a statin) has been shown to improve compliance with drug 
monitoring.15 For such interventions to succeed, however, clinicians and information system developers must work 
together to define what data elements are considered relevant within the context of a given order.  For example, a 
potassium value may be of great importance when ordering one medication (e.g., lisinopril) but have no relevance 
when ordering another (e.g., fluoxetine).  Thus, for each medication or triggering order, a unique set of pertinent 
data elements must be defined.    
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Drug-drug interaction alerts operate under the same principle.  In the setting of a potential interaction, what patient 
data is of interest to a physician will depend on the particular drugs involved and the associated adverse effects.  
Thus, to create DDI alerts containing meaningful patient-specific content, these relevant data elements must be 
defined for each interaction.  Creating these definitions is not a simple undertaking however.  We must consider the 
inconsistent format of existing drug interaction knowledge as well as sheer volume of interactions to be addressed.  
 
Most CPOE systems rely on DDI data provided by a handful of large knowledgebase vendors.   While the individual 
data elements that comprise a DDI alert vary slightly from one vendor to the next, the majority of alerts contain the 
following components: interacting drugs, severity of interaction, clinical effects, predisposing conditions, 
pharmacologic mechanism, recommended actions, and references.16 This information is generally provided in text-
format rather than as coded “computable” data, and it lacks conceptual mappings to standardized terminologies such 
as SNOMED-CT.  Due to this lack of standardization, a wide range of terms may be used to describe a given clinical 
effect.  For example, a number of drug interactions may cause bleeding in a patient; but this effect is described 
variably as ”hemorrhage,” “bleeding risk,” “coagulation defect,” and so forth.  The lack of consistent terminology 
makes it difficult to aggregate all interactions of a certain type.  Such aggregation is of value because it allows the 
“batch” assignment of relevant data elements to entire classes of interactions rather mapping one interaction at a 
time.   For example, we may wish to designate liver function tests as a “relevant lab” for all DDIs known to cause 
liver damage.  But without a standard term for liver damage, we cannot aggregate this group of interactions in an 
automated fashion. 
 
Another significant challenge is the sheer number of interactions to be reviewed.  Typical DDI compendia list well 
over 1000 drug interactions.16  For example, Drug Interaction Facts contains 1772 listings while the National Drug 
Data File contains 1846 DDI monographs.17,18  These numbers will continue to increase as new DDIs emerge in the 
literature.  Given this large and growing body of information, attempting to define relevant data elements for every 
interaction is a daunting task.  One approach is to focus solely on interactions labeled as ‘severe,’ yet prior research 
has shown a wide variability among drug information compendia in defining severity.16,19 Furthermore, interactions 
of even moderate severity may be clinically significant depending on patient context.  Thus, we ideally want to 
assess the full breadth of known interactions but to do so in an efficient manner. 
 
In the current paper, we address the aforementioned challenges by presenting a generalizable, sustainable model for 
integrating patient-specific data into drug-drug interaction alerts.  This framework is known as the context-aware 
drug-drug interaction (CADDI) model and is designed to be interoperable across multiple drug knowledge bases and 
clinical information systems.  We will describe the process for mapping drug interactions to relevant clinical data 
elements then present a web service that utilizes these data to generate patient-specific DDI alerts.  Finally, we will 
report the results of an evaluation study of a prototype CADDI alert design. 
 
Methods 
 
Drug Knowledge Source 
As the source of our drug interaction data, we used an in-house knowledge base developed and maintained by 
Regenstrief Institute for use in its CPOE system (‘Gopher’).  This database is regularly reviewed and updated by a 
pharmacy team and has been an integral part of Gopher’s decision support operations for over 25 years.  The 
database contains 601 distinct DDIs, including interactions between individual drugs and between drug classes.  
 
Mapping Strategy 
We sought to assign to each DDI a set of concepts specifying the patient data elements to be displayed when the 
alert is triggered.  Rather than making these assignments on a per-DDI basis, we performed batch assignments 
according to clinical effect.  So for example, all drug interactions causing ‘bleeding’ would be associated with 
relevant concepts such as hemoglobin, platelets, and PT/INR.  To identify and standardize the effects of each 
interaction, we utilized the Medical Dictionary of Regulatory Activities (MedDRA), a hierarchical terminology used 
in drug safety.  Because MedDRA contains some non-clinical concepts, we first reviewed the 76 MedDRA semantic 
types and eliminated 44 that were felt unlikely to be associated with adverse effects.  Using the remaining 32 types, 
we selected 51599 MedDRA terms as our core set of clinical concepts.  We then used natural language processing 
(regular expressions and stem matching) to search for these concepts in the ‘clinical effect’ section for each 
interaction in our knowledge base.  We identified MedDRA terms in 489 of 601 interactions, with a total of 93 
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unique clinical effects represented. Table 1 shows the 12 most common effects, accounting for 199 (33%) of the 
interactions in our database. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1. Most common clinical effects extracted from drug interactions in the Gopher database. 

For 11 of these 12 clinical effects (‘death’ was excluded), we selected a set of relevant data elements appropriate for 
display at the time of physician alerting.  Data elements were grouped into two categories: relevant tests and 
predisposing conditions.  Tests were coded to the Logical Observation Identifiers Names and Codes (LOINC) 
terminology.  Conditions were coded to Systematized Nomenclature of Medicine-Clinical Terms (SNOMED-CT). 
Figure 1 shows an example of the interactions, concepts, and relationships for the clinical effect ‘rhabdomyolysis’.  
 
 
 
 
 
 
 

Clinical Effect # of DDIs 
Arrhythmia 35 
Increased Anticoagulant Effect 27 
Torsade de Pointes 26 
Myopathy 24 
Rhabdomyolysis 15 
Digoxin Toxicity 15 
Nephrotoxicity 12 
Hypotension 11 
Hypertension 10 
Bleeding 8 
Death 6 
Cardiotoxicity 5 
Hyperkalemia 5 

	
  
Figure 1.  Sample relationships between drug interactions, clinical effects, and related data 
elements in the context-aware drug-drug interaction (CADDI) database 
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Prototype Service for Delivering CADDI Alerts 
Once the interactions, clinical effects, and related data were mapped and stored in the database, we designed a 
prototype web service for generation of CADDI alerts.  For our source of patient data, we utilized the Continuity of 
Care Document (CCD).  The CCD is a patient summary specification based on the HL7 Clinical Document 
Architecture.  CCDs play an important role in health information exchange and are increasingly offered as a format 
for export of patient data from electronic medical record systems.  A fully semantically coded (‘Level 3’) CCD, such 
as that generated by our institution, provides patient medications, diagnoses, and laboratory results in structured 
form using standardized terminologies. 
 
Figure 2 depicts the steps in the creation of a CADDI alert using the example of an interaction between simvastatin 
and diltiazem.  First, the web service receives as its inputs a patient CCD and a drug interaction identifier (e.g., a 
Gopher DDI ID).  Second, the service uses this identifier to query the CADDI database and retrieve static 
information about the DDI such as the interacting drug classes, severity level, and clinical effects.  Third, based on 
the clinical effect (e.g., rhabdomyolysis), the LOINC and SNOMED-CT codes for all relevant laboratories and 
predisposing conditions are retrieved from the database and passed to a CCD parser.  Fourth, the CCD parser uses 
these codes to search the patient’s record and retrieve any matching labs or diagnoses.  Finally, the service combines 
the static DDI information from the CADDI database with the dynamic patient-specific data from the CCD to 
deliver an integrated contextual alert.  
 

 
 
 
Prototype Alert Design 
Having created a model for integrating patient specific data into DDI warnings, we developed and evaluated a 
prototype alert design.   Few studies have explicitly explored the visual design of drug-drug interaction alerts, but 
several studies have looked at the design of clinical alerts in general.   Feldstein et al found that physicians placed a 
high priority on alerts being brief, clear, and easy to navigate with minimal mouse clicks.20  A study by Krall and 
Sittig found that users were sensitive to multiple keystrokes, excess screen switching, and frequent movement from 

	
  
Figure 2.  Steps in the generation of a context-aware drug-drug interaction (CADDI) alert.  
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mouse to keyboard.21 Phansalkar et al performed a human factors review of alerting principles and made several 
recommendations including coding alert priority using color and position, perceptually grouping related information 
to assist in decision-making, and tailoring alerts to individual patients and users.22  After considering this literature, 
we began an iterative alert design process.  Our goal was to create a succinct, textually sparse, and graphically 
strong alert.  Our initial designs were refined through critiques by experts in human-computer interaction as well as 
review by clinical peers.  An example of the final prototype design is shown in Figure 3.  
 

 
 
Usability Evaluation 
The goal of our evaluation study was to gather clinician perspectives on whether the addition of contextual data to 
drug interaction alerts would improve physician satisfaction, support clinical management, and save time. We also 
sought to measure usability factors specific to our prototype including its clarity, organization, and efficiency. 
 
Participants consisted of 11 physicians and 1 senior pharmacist.  Clinical experience ranged from 3 to 20 years, and 
all subjects except the pharmacist were currently engaged in clinical practice and were seeing patients at least one-
half day a week.  All subjects had prior experience with CPOE and electronic reminders.  The usability evaluation 
consisted of task analysis using a think-aloud protocol.  Subjects were informed that they were participating in an 
evaluation of a new clinical alert design and were thus aware of the focus of the study.  After providing consent, the 
subjects were presented with an interactive mock CPOE interface and instructed to prescribe a set of medications for 
two different sample patients.  During the course of ordering these medications, two contextual DDI alerts were 
triggered and displayed to the subject.  The displayed alerts were embedded in the prototype environment and not 
generated dynamically via the CADDI web service.  The triggering pairs of medications were 1) azithromycin and 
warfarin and 2) verapamil and simvastatin.   
 

	
  

 

Figure 3. Prototype design of a context-aware drug-drug interaction alert. 
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After the subjects provided their initial response to the alert, an observer asked them to perform a standardized set of 
tasks to evaluate the drug interaction.  These tasks included identifying the interacting medications, the clinical 
effect and severity, and the relevant patient labs and risk factors.  The subject was also asked to state their final 
clinical decision whether to accept or override the alert.  For each task, a "correct" answer was established by the 
investigator (JDD) and validated with an independent physician.  The observer questioned the participants regarding 
which data elements in the alert were most helpful, least helpful, and whether any information was missing.  Upon 
completion of the two patient scenarios, the subjects were presented with a 17-question survey addressing the 
overall usability and utility of the CADDI alert prototype.  
 
The types of data collected were 1) task success rates, 2) subjective user opinions as expressed during task 
performance, 3) responses to the post-test survey questions.  We performed descriptive statistics on physician ratings 
of prototype usability and clinical utility.  For the qualitative data, we aggregated subject responses and grouped 
them into design recommendations and new feature suggestions. 
 
Results 
 
Task Completion 
The tasks and their completion rates are shown in Table 2.  In the first scenario, subjects were able to find most 
information easily, but some had difficulty identifying the patient’s risk factors for the interaction.  Successfully 
answering this question required clicking on the Risk Factors tab to reveal the data (see Figure 3).  Some users did 
not see the tab or did not realize it was selectable.  In the second scenario, users were more successful at identifying 
risk factors, but many missed a question regarding data in the alert that should reduce the level of clinical concern 
(‘attenuating information’).  This question was an indirect reference to the duration of therapy—the patient had been 
taking both medications for many years and most physicians would be reassured by this fact.  However, only 58% of 
subjects made this connection. 
 

 
Post-Task Analysis of Usability and Clinical Utility 
Figure 4 shows summary results of the post-task survey scored on a 5-point Likert scale with 1 being ‘Strongly 
Agree’ and 5 being ‘Strongly Disagree’.  The survey found high levels of support for the integration of relevant 
patient data into DDI alerts.  All subjects agreed or strongly agreed that CADDI alerts were an improvement over 
traditional alerts (mean score of 1.3).  Looking specifically at the design and usability of the prototype, high marks 
were given to the alerts’ conciseness (1.3), efficiency (1.5), readability (1.8), and clear communication of data (1.8).  
Two areas of minor criticism were the layout of buttons and checkboxes and the lack of a more detailed reference 
section. 

Tasks % Successful 
Patient 1:  Warfarin + Azithromycin (High Risk Scenario)  
1. Identify the drugs involved 100.00% 
2. Identify the clinical effect / severity 91.70% 
3. Identify patient labs relevant to this DDI 83.30% 
4. Identify patient risk factors for this DDI 66.70% 
5. Identify any attenuating information provide by this alert 91.70% 
6. Choose the appropriate management for this alert 83.30% 
Patient 2:  Diltiazem + Simvastatin (Low Risk Scenario)  
1. Identify the drugs involved 100.00% 
2. Identify the clinical effect / severity 91.70% 
3. Identify patient labs relevant to this DDI 100.00% 
4. Identify patient risk factors for this DDI 83.30% 
5. Identify any attenuating information provide by this alert 58.30% 
6. Choose the appropriate management for this alert 91.70% 

Table 2.  Success rate in retrieving information from context-aware drug-drug interaction alerts. 
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In exploring the utility of CADDI alerts, the survey focused on how the availability of patient-specific data would 
affect DDI evaluation and management.  Here the physicians gave very high marks, agreeing strongly that CADDI 
alerts would support clinical decision making (1.2), increase confidence in management of drug interactions (1.2), 
and save time (1.3).  As a consistency check, we also asked two negatively worded questions, dismissing the 
importance of patient-specific data in evaluating and managing drug interactions. Physician strongly disagreed with 
both these statements (4.4 and 4.6 respectively).  
 

 
Analysis of User Comments 
During the course of task completion, physicians were encouraged to make comments on the alert design.  Overall 
response was highly positive (with statements such as “this is really cool” or “when will this be available?”), but the 
majority of comments were focused on design flaws and missing features.  The most commonly cited design 
concerns were the unnecessary use of tabs (7 subjects), small size of the patient data box (3 subjects), and lack of 
salience of the clinical effect (3 subjects).  The most common feature suggestions were to provide the normal ranges 
for labs (6 subjects), to offer alternative treatment options (4 subjects), to display whether a DDI is dose-dependent 
or idiosyncratic (4 subjects), and to provide more details about severity and clinical effect (3 subjects).   
 
Discussion 
 
In this paper, we demonstrated a successful model for integrating relevant, patient-specific data into drug-drug 
interaction alerts. We further showed that such warnings are of perceived value to physicians and are viewed as 
likely to save time and improve DDI management.  Our prototype alert design, notable for its compact graphical 

	
  
    Figure 4. Mean user responses regarding usability (black) and clinical utility (gray) of the context-aware drug-drug 
    interaction alert prototype. * denotes a negatively worded question.  
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form, was also viewed favorably, receiving high ratings for efficiency and clarity and was overall felt to be an 
improvement over traditional DDI alerts.  In this section, we explore the specific strengths and limitations of the 
CADDI model as well as discuss its potential application to the challenge of reducing alert fatigue. 
 
Replicability, Interoperability, and Maintainability 
Our goal was to provide a way to integrate relevant patient data into DDI alerts in a manner that is replicable across 
multiple drug knowledge bases, interoperable with multiple electronic medical record systems, and maintainable as 
new drugs and interactions emerge.  The CADDI model achieves these three objectives. 
 
The replicability of the model stems from its use of natural language processing and a standardized adverse event 
terminology (MedDRA) to convert text-based descriptions into coded clinical effects. This process can be applied to 
any DDI knowledge base (vendor or homegrown) that provides a section on clinical effects.  Thus, while in our 
particular project we linked local DDI identifiers to relevant patient data, the process would require only minimal 
additional time to link vendor DDI identifiers as well.  Once a knowledge vendor’s DDIs have been mapped to their 
coded clinical effects, contextual alerts can be generated without further effort.  The necessary mappings between 
the clinical effects and relevant laboratory and diagnosis codes have already been created and are independent of the 
DDI knowledge source.  
 
The interoperability of the CADDI model stems from its use of standardized terminologies such as LOINC and 
SNOMED-CT to define the relevant data elements for each clinical effect.  Thus, any system able to provide patient 
data using these standard terminologies should be capable of generating contextual DDI alerts.  CCD-based decision 
support strategies, such as that employed by the Clinical Decision Support Consortium23, would be a natural fit for 
our model, but CADDI can also be integrated into traditional CPOE systems.  Additionally, while we chose to use 
LOINC and SNOMED-CT to represent relevant data elements, the model is inherently extensible such that local 
laboratory or diagnosis concepts could be used if a particular vendor or institution wished to perform these 
mappings. 
 
In terms of its long-term maintainability, the CADDI model benefits from the batch aggregation and mapping of 
relevant data elements according to clinical effect rather than by individual drug-drug interaction.  As discussed, 
with thousands of known drug interactions it is impractical to create a system requiring ongoing review of every 
new and changed DDI as it emerges.  However, all of these DDIs are associated with a comparatively small number 
of clinical effects (93 in our knowledge base).  The CADDI model employs manual expertise only for the mapping 
of relevant data elements to this small number of clinical effects.  And once these effects are mapped, changes are 
likely to be rare (primarily based on new LOINC or SNOMED-CT codes rather than changes to fundamental clinical 
relationships).  Thus, ongoing manual maintenance of the CADDI database should be minimal even as new 
interactions emerge.  When a DDI appears, the only required step is to extract the clinical effects by natural 
language processing.  All data elements relevant to this DDI are then automatically mapped based on the existing 
relationships for these clinical effects. 
 
Lessons from the Prototype Design 
The evaluation study confirmed our expectation that physicians would see clinical value in integrating patient data 
into DDI alerts.  Physicians rated CADDI as likely to save time and improve DDI management.  Both findings are 
likely due to the reduced need to explore the patient’s chart to determine potential risk.  Another factor that may 
have lead to the perception of time savings was the alert’s minimalist style.  Textual content was sparse, reducing 
both scanning and reading time.  Yet some providers rejected this approach and wanted more detailed information 
regarding clinical effects and interaction severity.  This finding suggests that maintaining succinct ‘headline’ 
information while providing details on demand would be a more successful design strategy.  This approach is 
consistent with that recommended by Phansalkar et al in their review of human factors principles in clinical 
alerting.22 
 
Graphics were used in our prototype to augment the impact and clarity of the alert content.  Based on the survey 
results, these additions were not a distraction and did not lessen readability.   A few subjects commented that the 
visual aesthetics made the alert more prominent.  However, the long-term benefit of incorporating graphical 
elements is unclear.  Over time providers may become habituated to such designs, and further research is necessary 
to determine whether graphical images capture physician attention on a consistent basis.  
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Limitations 
Several limitations of the CADDI model should be noted. First, the model is reliant on capturing coded clinical 
effects from drug interaction knowledge bases using natural language processing.  However, some interactions do 
not list specific clinical effects or their effects may not be accurately captured by our NLP approach. We are 
currently conducting performance analysis to refine our data capture methodology.  Another limitation of the model 
is the challenge of comprehensively identifying LOINC and SNOMED-CT codes for clinical concepts.  This work 
requires both clinical expertise and an understanding of terminology structures and hierarchies.  For this project we 
performed data mappings for only 11 of 93 clinical effects, so additional mapping would be necessary to create a 
comprehensive database.   
 
Our prototype study had several limitations as well.  It was relatively small in size with only 12 subjects.  However, 
the data collected from this group showed remarkable consistency of themes and critiques, suggesting that we did 
indeed capture user perception accurately.  Another study limitation is the lack of a direct comparator in the form of 
traditional DDI alerts.  We relied on user’s existing perceptions of DDI warnings, which may have been highly 
variable, to characterize whether CADDI alerts were an improvement.  Finally, our study was conducted in a 
laboratory environment rather than a clinical setting.  While this may have sacrificed some clinical realism, the 
slower pace of the laboratory allowed for more detailed analysis of the prototype design and yielded robust 
commentary from study subjects.  
 
Future Work 
The CADDI model is a first step towards our goal of reducing alert fatigue through the dynamic display of clinical 
alerts.  Currently, CADDI adds relevant patient data to an alert but does not affect whether or not the alert is 
displayed.  The next stage of our work is to define thresholds for highlighting or suppressing warnings based on 
patient risk factors.  For example, in a patient with a low calcium level, interactions causing arrhythmia may be 
more prominently displayed.  Conversely, in a patient with a low potassium level, interactions causing hyperkalemia 
may be diminished or hidden altogether.  Further research is necessary to define and validate these thresholds as 
well as determine the proper algorithms for dynamic suppression. Additionally, we are currently preparing a trial of 
CADDI alerts in the clinical environment to evaluate impact on physician adherence and alert fatigue.  Ultimately, 
we hope the CADDI model will reduce the overall volume of clinical alerts while ensuring that the most important 
safety warnings for individual patients are preserved.  
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