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Abstract 

Adverse drug events (ADEs) create a serious problem causing substantial harm to patients. An executable 

standardized knowledgebase of drug-ADE relations which is publicly available would be valuable so that it could be 

used for ADE detection. The literature is an important source that could be used to generate a knowledgebase of 

drug-ADE pairs. In this paper, we report on a method that automatically determines whether a specific adverse 

event (AE) is caused by a specific drug based on the content of PubMed citations. A drug-ADE classification method 

was initially developed to detect neutropenia based on a pre-selected set of drugs. This method was then applied to 

a different set of 76 drugs to determine if they caused neutropenia. For further proof of concept this method was 

applied to 48 drugs to determine whether they caused another AE, myocardial infarction. Results showed that 

AUROC was 0.93 and 0.86 respectively.  

Introduction 

The World Health Organization (WHO) defines pharmacovigilance as “the science and activities relating to the 

detection, assessment, understanding and prevention of adverse effects or to other possible drug-related problems.”
1
 

Current surveillance systems have been developed to analyze large databases containing adverse event reports, such 

as the FDA’s Adverse Event Reporting System (AERS)
2
, European Medicines Agency

3
 and WHO.  Proportional 

reporting ratio (PRR)
4
 and Bayesian data mining methods

5-7
 are widely used to automatically detect novel adverse 

drug event (ADE) signals in these databases. There are several issues concerning these efforts. One problem is that 

most adverse drug events detected by physicians and patients are not reported to these agencies because reporting of 

adverse events is required only for the drug manufacturers, and therefore the incidences are significantly 

underestimated. Another problem is that data mining high volume databases can result in large numbers of potential 

drug-ADE pairs, which then need to be categorized into known and unknown groups manually. This is a time 

consuming process, which could be expedited if a database of drugs related to a certain adverse event phenotype 

were available. Micromedex
8
 is an excellent resource, which contains high-quality information concerning ADEs, 

but is proprietary, not freely available to the public, and is not always up to date. SIDER
9
 is another drug-ADE 

knowledgebase which was obtained by extracting drug-ADE information from drug labels, and it is publicly 

available. But it is likely to have a substantial number of questionable entries for two reasons. One reason is that 

many of the drug-ADE pairs were gathered using natural language processing of online textual drug labels based on 

a straightforward pattern matching method, which therefore would be likely to result in a number of errors. The 

second reason is that the labels themselves usually contain a long list consisting of adverse events reported during 

clinical trials of the drugs. Although those events were reported to have occurred during a trial, they were not 

necessarily caused by the drug. For example, Atorvastatin has over 120 side effects listed in SIDER, but only some 

of them are actually ADEs. 

The biomedical literature contains articles reporting on drug-ADE relationships, and can be used as a resource to 

detect such relationships. PubMed
10

 contains millions of citations concerning the biomedical literature from 

different journals. Citations also contain MeSH headings which are added to the articles based on manual curation of 

experts. Medical Subject Headings (MeSH)
11

 is the National Library of Medicine's controlled vocabulary thesaurus 

that are used to represent primary concepts associated with the articles. Thus headings may contain diseases, such as 
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neutropenia as well as the names of medications. Headings also may have subheadings, which are also called 

qualifiers that can be attached to MeSH headings, and describe a specific aspect of a concept. For example, “adverse 

effects” and “chemically induced” are frequently found in the subheading lists, and are useful features for detecting 

drug-ADE relationships. Most articles in PubMed contain abstracts written in English, and simple text analysis of 

the abstracts could also provide a set of features to help detect drug-ADE relations. Other research has been 

conducted to extract information from the biomedical literature. Srinivasan and Rindflesch
12

 introduced eight 

relationships from the biomedical literature, such as “treatment cures disease” and “disease is a result of a treatment”. 

Data mining methods
13-14

, such as neural networks and statistical graphical models have also been designed to find 

drug relationships from the biomedical literature . But these methods were all designed to extract information at the 

level of individual sentences, whereas our work aims to determine the likelihood of a specific drug-ADE 

relationship based on the classification of multiple documents associated with the pair.  

The objective of our research is to develop a method to extract knowledge from PubMed that determines drug-ADE 

relationships which could then be used to create a knowledgebase for known drug-ADE relationships to support 

pharmacovigilance and decision support.  In this work we focus on two serious adverse events but our ultimate goal 

is to extend the methodology to a set of 23 serious adverse events
15

, which were selected by an expert panel as being 

the most important for pharmacovigilance. 

Methods 

We choose a serious adverse event neutropenia as a target adverse event to develop the drug-ADE detection 

algorithm, but other adverse events could have been used to develop the algorithm as well. Neutropenia is a blood 

absolute neutrophil count that is two standard deviations below the normal population mean
19

.  Patients with 

neutropenia are at higher risk of life threatening infections, and there are number of non-

chemotherapy drugs that are known or suspected to cause neutropenia
20

. The entire pipeline 

for the overall process is illustrated in Figure 1. Step 1 involves a PubMed search to retrieve 

articles containing terms associated with a given drug-ADE pair, e.g., neutropenia and the 

drug docetaxel. Step 2 involves classification of individual documents, and step 3 involves 

classification of the drug-ADE relation based on classification results of the retrieved 

articles. In step 2, each of the retrieved articles is individually classified as denoting or not 

denoting the drug-ADE relation. In step 3, it is determined whether the drug likely caused 

the ADE using the results of the step 2, namely by considering the articles that were 

positively classified. The details are explained below. 

Data set creation: 25 drugs were selected by a physician, where 16 were known to cause 

neutropenia and 9 known not to cause neutropenia. After querying each drug and 

neutropenia pair for the 25 drugs using PubMed, more than 13,000 articles were retrieved, 

and from that set, 600 articles were randomly selected.  Each article was reviewed by one of 

F
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three experts to form a gold standard data set, where each expert reviewed a total of 200 articles. We removed 

duplicate articles as well as articles which could not be definitively classified by the experts. From the remaining 

articles, we randomly choose a data set totaling 400 articles, which consisted of 200 positive cases denoting that the 

drug caused neutropenia, and 200 negative cases where the articles did not denote that the drug caused neutropenia. 

This dataset of 400 articles was used to train and test the classifier. 

Feature extraction: The retrieved articles were in an XML format, containing tags corresponding to the different 

sections, such as title and abstract, and metatags, such as MeSH headings, substance names, and publication type. 

Two sets of features were extracted: ontological features and textual features and they were listed in Table 1. 

Ontological features were extracted based on MeSH headings and subheadings, and also included publication related 

entities and chemical compound related entities. Twenty-one ontological features were extracted, where some were 

binary and some were multi-value discrete. For example, the second variable of the ontological features in Table 1 is 

a binary variable, which was set to a 1 if the article was a case report, and to 0 otherwise, and ninth variable is a 

multi-value discrete variable, which is a numeric value based on the number of occurrences of the MeSH 

subheading adverse effects in the article.  Fourteen simple textual features were extracted from the text of the title 

and abstract.  In order to increase performance, we considered drug names for both generic and brand names and 

performed stemming of certain keywords. For each drug, generic name was provided and  RxNorm
16

 was used to 

determine the brand names. For example, for vinorelbine, we considered its brand name navelbine as well. For  
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Table 1. Features extracted from retrieved articles. “key” represented positive key word. 

 Ontological features year published 

case report 

journal article 

review 

Cochrane review 

drug appeared in the chemical list 

numbers of chemicals 

human subject 

number of occurrences of “adverse effects” 

number of occurrences of “chemically induced”  

number of occurrences of “drug therapy” 

both drug and “chemically induced” appear in MeSH 

both drug and “adverse effects” appear in MeSH 

both drug and “drug therapy” appear in MeSH 

both drug and “poisoning” appear in MeSH 

both drug and “drug effects” appear in MeSH 

both symptom and “chemically induced” appear in MeSH 

both symptom and “adverse effects” appear in MeSH 

both symptom and “drug therapy” appear in MeSH 

both symptom and “poisoning” appear in MeSH 

both symptom and “drug effects” appear in MeSH 

Textual features drug in title 

symptom in title 

key in title 

drug+symptom in title 

symptom+key in title 

drug+key in title 

drug+symptom+key in title 

number of sentences in abstract containing drug 

number of sentences in abstract containing symptom 

number of sentences in abstract containing key 

number of sentences in abstract containing drug+symptom 

number of sentences in abstract containing symptom+key  

number of sentences in abstract containing drug+key  

number of sentences in abstract containing drug+symptom+key 

 

symptoms, we also considered synonyms and variants, and used simple regular expressions. This approach affects 

the textual feature extraction and would have to be delineated differently for each different ADE. For example, for 

neutropenia, we also considered the “neutropeni*”, “agranulocyt*”, “bone marrow supress”, “supress bone 

marrow”, “leukopeni*” and “granulocytopeni*” by checking with UMLS and Cochrane collaboration systematic 

reviews. For the current work, searching the synonyms and variants of symptoms was not automated since there 

were no such database and we had to check for every symptom manually. Abbreviations are widely used in 

biomedical literatures, such as human immunodeficiency virus, which was frequently referred to in the abstracts as 

HIV. Abbreviations which were defined within the abstract were also considered as being the same as the 

corresponding full form of the drug or symptom when obtaining the features. In the title and abstract, there were 

several words, which often denoted that the drug causes an ADE, which also helped classify the article. For example, 

induced is a positive keyword in the sentence “Chemotherapy-induced neutropenia and treatment efficacy in 

advanced non-small-cell lung cancer: a pooled analysis of three randomised trials”. After consulting with 

physicians, we found the following positive key words “toxicity”, “adverse”, “side effect”, “develop”, “induce”, 

“tolerate”, “risk”, and “complicate”, which were then stemmed. Since there were only eight key words, we designed 

regular expressions for stemming manually. For example “toxici*” was used to represent “toxicity” and “toxicities”. 

With the above processing step, 14 textual features were extracted. The first variable in textual set would be set to 1 
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if the title contained the drug name and to 0 otherwise. The last variable in the textual set represented the number of 

sentences which contained the drug name, neutropenia, and some positive key words. 

Classification algorithm: Finding articles, which denoted a drug-ADE relationship, can be formulated as a 

document classification problem. We used logistic regression
17

 to classify the articles. Feature selection
18

 used the 

best predictive features under cross-validation. The classification algorithm uses 2 steps. Step 2 in Figure 1 

corresponds to the document classification step where each retrieved article is classified as denoting a drug-

neutropenia ADE relation or not. Step 3 in Figure 1 corresponds to the drug-ADE classification step, which uses the 

results from all the classified documents to determine whether the drug-ADE pair is really an ADE relation. 

Significant support of an ADE relation is provided if many articles are positively classified, but little support is 

provided if very few articles are positively classified. Therefore, we used a percentage to compute a ratio of articles 

that were positively classified over all articles retrieved as a likelihood measure of the actual relation based on the 

classification of the articles. If the percentage of positively classified articles was high for the drug, based on a 

threshold which was determined automatically through ROC analysis, this drug was considered to be more likely to 

cause neutropenia. For example, by searching vinorelbine and neutropenia using a PubMed query, we retrieved 618 

publications where 68% of the articles denoted that vinorelbine caused neutropenia. Therefore, it was likely this 

drug did cause neutropenia. In contrast, when searching meropenem and neutropenia, we retrieved 77 articles, but 

only 10% were classified as ADE relations, and therefore meropenem-neutropenia was considered unlikely to be an 

ADE. Therefore, we determined a threshold for the percentage. For some drugs, searching PubMed only returned 

very few articles (i.e., less than 10); therefore a cutoff value based on the number of retrieved articles was also used 

to filter out those drugs because there were not enough articles concerning them. We chose the cutoff value of 10. 

To evaluate the document classification step (e.g. step 2), we trained and tested the classifier on the 400 samples 

using 10-fold cross validation experimenting with three sets of features: ontological features only, textual features 

only, and combined features. This evaluation was used to determine the most predictive feature set. Then the final 

document classifier was trained on the full data set of 400 samples using the most predictive features.  

To evaluate the drug-ADE classification step (e.g. step 3), we used the final document classifier, and classified the 

articles associated with each drug in the set of 25 drugs, and obtained a percentage of articles positively classified. 

Area under ROC (AUROC) was used to assess the performance of the drug-ADE classifier.  

The overall system was tested on a larger set of different drugs obtained from the SIDER database as potentially 

causing neutropenia. In SIDER, 210 drugs were listed as causing neutropenia. We removed 30 drugs from the list 

because they were used in the training set or they had unusual names which could not be identified as drug names, 

such as ads.  This resulted in a set of 180 drugs. A gold standard was created by a physician who determined 

whether each of the drugs could cause neutropenia. The physician determined that 112 drugs did cause neutropenia 

and 68 did not.   

The overall system was also tested on another adverse event that was different from neutropenia. Myocardial 

infarction was chosen, and 48 drugs (16 known to cause and 32 known not to cause myocardial infarction) were 

selected by physicians as the gold standard.  

Results 

The results of document classification of the 400 samples using 10 fold cross validation are the following. The 

prediction accuracy was around 0.5 using all 21 ontological features and was 0.73 when selecting 14 features. When 

using all 14 textual features, the prediction accuracy was 0.75 and none of the smaller feature sets consisting only of 

textual features performed as well as the full textual feature set. The prediction accuracy using all 35 features from 

the combined two sets of features was around 0.6 and accuracy using 15 selected features (8 from the ontology and 7 

from the text) was 0.78.  

Table 2 shows some results of drug-ADE classification for the 25 known drugs. For the drugs known not to cause 

neutropenia, the percentages generally ranged from 0.0952 to 0.2623, and only one drug filgrastim had a high value 

of 0.4739. For the drugs known to cause neutropenia, the percentage ranged from 0.5212 to 0.7463 and only one 

drug mechlorethamine had a low value of 0.4194. The AUROC was 0.99 with 95% CI (0.95 1.00) because there was 

only one drug misclassified, either filgrastim or mechlorethamine. The sensitivity was 0.89 and specificity was 0.94 

using a percentage threshold of 0.45. 
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Table 2. Examples from the 25 drugs; the first 3 drugs were known not to cause the neutropenia and the last 3 drugs 

were known to cause the neutropenia. 

Drug name # retrieved 

articles  

percentage of articles 

classified as drug-ADE 

amphotericin 793 0.2623 

filgrastim 614 0.4739 

meropenem 77 0.1039 

6-mercaptopurine 94 0.5319 

mechlorethamine 31 0.4194 

vinorelbine 618 0.6828 

 

Only 76 drugs from SIDER remained after using a cutoff value of 10 articles. The results of applying the classifier 

to these 76 drugs are shown in Figure 2. The AUROC was 0.93 with 95% CI (0.86 1.00), the sensitivity was 0.85 

and the specificity was 0.98 when using a percentage threshold of 0.45. 
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Figure 2. The ROC curve of results for the 76 drugs from SIDER. 

When we applied the classifier to another serious adverse event myocardial infarction, 10 drugs were filtered out 

because fewer than 10 articles were retrieved for them, and 38 drugs remained. The results are shown in Figure 3. 

The AUROC was 0.86 with 95% CI (0.74 0.98), the sensitivity was 0.90 and specificity was 0.78 using a percentage 

threshold of 0.24.  
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Figure 3. The ROC curve of results for the 38 drugs associated with myocardial infarction. 

Discussion 

The drug-ADE detection algorithm was developed based on a machine learning approach using PubMed articles. 

Empirically, it has been shown that there are no big differences in  classification performance for the different 

classifiers, such as logistic regression, naïve bayes classifier, SVM and other statistical graphical models
13-14

.  The 

key to the performance of the classifiers were the features. Ontological features used in the algorithm were based on 

MeSH, which is structured and represents biomedical knowledge corresponding to relevant concepts in the article. 

The other advantage of using MeSH is that the entire article could have been read by an expert indexer, and the 

MeSH codes may contain some of the important concepts that were missing from the title and abstract. 
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The query strategy of searching for a specific drug and ADE pair made the analysis much easier. If we only searched 

for the drug from PubMed, then too many articles would be retrieved, and the signal of a drug causing an ADE 

might easily be hidden. The same situation would be true when searching for an ADE only. If the subheading 

adverse effects appeared many times, it is likely this article was about the ADE, but not necessarily the specific drug 

we were interested in. But overall this feature did increase the likelihood that the drug we were interested in caused 

the ADE. If there were several chemicals appearing in the MeSH heading, it was likely this article concerned a drug 

comparison in a case report or study, which in turn increased the possibility of a drug-ADE relation. Therefore the 

ontological features contained some information, which improved the prediction. 

The method demonstrated its potential for determining a broad range of drug-ADE pairs based on the literature. 

However, the classifier was successfully applied to 76 drugs from SIDER associated with neutropenia and to 

another serious adverse event myocardial infarction. The document classifier, which was used in step 2, was learnt 

based on neutropenia and it was then directly applied to myocardial infarction, which caused the AUROC in Figure 

2 to be greater than the AUROC in Figure 3. If we used both samples from the two ADEs to learn the document 

classifier, the AUROC in Figure 3 might have been better. In future work, we will perform further evaluations using 

different serious adverse events and different sets of drugs in order to assess whether our approach will generalize 

well.   

The current method will only work for a specific drug, but not for a class of drugs or pro-drugs. For example, 

azathioprine is a pro-drug which changes into 6-mercaptopurine when ingested into the body. Therefore, side 

effects reported for azathioprine can be attributed to 6-mercaptopurine, but our method considered them as two 

different drugs. 

The drug filgrastim was misclassified as causing neutropenia because filgrastim was used to decrease infections for 

patients who received chemotherapy medications, which in turn may decrease the number of neutrophils, and cause 

neutropenia.  The main topic of the articles retrieved from filgrastim concerned the usage of filgrastim with other 

chemotherapy medications and therefore the extracted features were more similar to the features extracted from the 

articles describing chemotherapy drugs causing neutropenia. This situation may be very difficult to differentiate. 

Our method also has limited power to detect the drug-ADE pair from drug combinations, which introduces adverse 

events caused by drug-drug interactions. Only one drug can be considered in our algorithm, and this method should 

be generalized to interactions based on use of multiple drugs. Another limitation of this method is that if the drug 

and adverse event occur in different sentences, the connection might be missed. In the abstract, two or three 

sentences that are adjacent may together express that the drug caused the ADE, e.g. in the first sentence "docetaxel 

was used" was stated and "neutropenia was developed after a week" appeared in the second sentence.  Currently the 

textual features were selected by consulting with physicians, but we would try to learn the feature set from the 

abstract by language properties, such as distance between sentences, and statistical methods, such as topic models, in 

the following work. Logistic regression only considered a bag of features without dependency; therefore a more 

sophisticated statistical graphical method should be designed to capture such semantic relationships more accurately. 

Also the percentage rule in step 3 did not work well for the drugs with only few retrieved articles (e.g. < 10). But the 

analysis of these drugs could be more important for finding the newer drug-ADEs because they are recent and are 

usually associated with fewer publications.  

Conclusion 

In this study, we developed a machine learning method to extract knowledge from PubMed, which determines drug-

ADE relationships in order to support pharmacovigilance and decision support.  The method uses MeSH headings 

and subheadings as well as text in the title and abstract. The method was applied to two adverse events neutropenia 

and myocardial infarction. The results of high drug-ADE prediction accuracy demonstrated the efficacy of the 

method and its potential to meet our ultimate goal to automatically generate a knowledgebase of serious adverse 

events to support pharmacovigilance.  
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