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Abstract 

The increasing availability of personal genome data has led to escalating needs by consumers to understand the 

implications of their gene sequences. At present, poorly integrated genetic knowledge has not met these needs.  This 

proof-of-concept study proposes a similarity-based approach to assess the disease risk predisposition for personal 

genomes. We hypothesize that the semantic similarity between a personal genome and a disease can indicate the 

disease risks in the person. We developed a knowledge network that integrates existing knowledge of genes, 

diseases, and symptoms from six sources using the Semantic Web standard, Resource Description Framework 

(RDF). We then used latent relationships between genes and diseases derived from our knowledge network to 

measure the semantic similarity between a personal genome and a genetic disease. For demonstration, we showed 

the feasibility of assessing the disease risks in one personal genome and discussed related methodology issues.  

Introduction 

The rapid growth of genomic knowledge can enrich the annotation of personal genome sequences as well as drive the 

trend of applying whole genome sequencing in the clinical setting. However, the existence of knowledge does not 

necessarily guarantee its effective use. The current lack of knowledge resources and tools for understanding personal 

genomes remains a severe challenge in the translation from genomic research to genomic medicine. In addition, the 

existing genomic knowledge bases do not communicate with one another as they were originally developed for 

specific genomic research and not for integration into clinical use. Consequently, it remains a laborious task for 

researchers to search for and integrate scattered genomics knowledge manually for clinical decision-making 

Recently, Ashley et al. analyzed a human genome sequence in the clinical context
9
, which is regarded as the first 

attempt to comprehensively identify the clinical significance of a whole genome sequence to a patient. In order to 

study the genetic risks of various diseases, drug responses, and pathogenicity of novel variants, they devoted 

substantial time and effort to querying and summarizing information from scattered knowledge bases.  There is 

neither an established tool for annotating personal genome sequences nor an integrated knowledge network for 

genomic medicine despite the large number of databases available for genomic research.  In addition, there are  no 

resources for linking together disease, biological pathways, genes, Gene Ontology (GO)
10

 terms, and symptoms, 

which are necessary in order to establish the foundations of genomic medicine. The lack of annotation tools for 

personal genome sequences is partly due to this absence of an integrated knowledge resource. 

Due to rapidly declining costs, whole genome sequencing technology has become more accessible and affordable to 

large health care facilities and the general public
1-4

. Some hospitals have started sequencing personal genomes for 

research use and are exploring methods to analyze and convey the clinical implications of personal genome 

information to clinicians and health consumers
5-8

. In early 2010, scientists at the Johns Hopkins Kimmel Cancer 

Center (JHKCC) began using data from whole genome sequencing of cancer patients to develop individualized 

treatments
7
. Currently, JHKCC provides only a limited range of genomic analysis that identifies translocations in 

solid tumors, and thus named the approach the Personalized Analysis of Rearranged Ends (PARE). PARE has been 

offered as a regular clinical genetic test at a cost of $5,000 per patient, which is relatively expensive compared to 

traditional diagnostic measurements.  However, JHKCC believes that PARE will become more cost-effective as 

sequencing costs continue to decline and the amount of information provided to patients increases as we gain better 

understandings of the implications of these genetic sequences.  Since conventional diagnostic tools have limited 

applicability for detecting the molecular signatures of cancer cells, we believe that the trend of whole genome 

sequencing for clinical applications will be increasingly common for predicting disease risks and individualized drug 

responses.  

1524



 

  

An integrated knowledge resource is needed to reveal disease relationships. Recently, researchers measured the 

genetic similarity between diseases using the accumulated disease-gene knowledge in the Online Mendelian 

Inheritance in Man database (OMIM).Goh et al. created a disease network consisting of diseases as nodes
11

. Two 

nodes were connected if they shared disease-related genes based on information obtained from OMIM. However, 

joining disease nodes only by gene overlap might miss some true associations because different genes can participate 

in the same function. Even if two diseases share no genes, they may have genetic relationships when their genes 

participate in the same biological pathway. For example, we can find 16 genes for prostate cancer (OMIM ID: 

#176807) and 6 genes for ovarian cancer (OMIM ID: #604370) in the OMIM knowledge base without a common 

gene. However, we identified 42 GO intersected terms between the two cancers when we changed the level of 

comparison from gene to GO terms. Table 1 shows the GO term intersection between prostate cancer and ovarian 

cancer. At the gene level, some people might think that the inherited bases for prostate and ovarian cancer do not 

overlap. However, there might be overlaps between inherited bases of the two cancers when comparing them from 

functional dimensions using GO rather than at individual gene level. In the absence of this latent information, it 

would be difficult to navigate the complex relationships between genes and diseases.  

Table 1. Intersection of Gene & GO between Prostate Cancer and Ovarian Cancer in OMIM. 

Abbreviations: GO, Gene Ontology; OMIM, Online Mendelian Inheritance in Man 

To address these problems, we created a knowledge network that integrates knowledge about diseases, genes, and 

symptoms, and developed a tool to use this knowledge network to estimate potential disease risks associated with a 

personal genome. We hypothesize that the semantic similarity between the textual representation for a personal 

genome and a disease can indicate the disease risks in the person. In the rest of this paper, we present the design and 

results of this method for using rich genetic knowledge about diseases and genomics to interpret personal genomes. 

2. Methods and Materials 

2.1 Development of a ‘genome-disease’ knowledge network KNODGE 

Our knowledge network is called the KNOwledge-extension for Disease-Gene Associations (KNODGE).  KNODGE 

integrates six heterogeneous biomedical knowledge bases (OMIM
12

, GO
10

, Human Phenotype Ontology
13

, GO 

Annotation
14

, Entrez Gene
15

, and KEGG pathway database
16

). OMIM was our first choice for a knowledge source 

because it is the most widely accepted gene disease knowledge base and it shares common semantic entities with 

other knowledge sources. For example, OMIM has genes associated with various diseases, but the GO and KEGG 

pathway databases contain functional structure and regulatory information for disease and symptoms that overlap 

 Prostate Cancer (OMIM ID: #176807)  Ovarian Cancer (OMIM ID: #604370)  

OMIM Gene HPCX, TUSC3, MSR1, CHEK2, ELAC2, 

MXI1, HNF1B, BRCA2, MAD1L1, CD82, 

HIP1, PCAP, KLF6, PTEN, AR, ZFHX3 

PIK3CA, PARK2, MSH6, OPCML, 

AKT1, BRCA1 

Intersected Gene - 

Intersected GO endoplasmic reticulum, protein binding, integral to plasma membrane, nucleotide binding, 

protein serine/threonine kinase activity, transferase activity, ATP binding, metal ion 

binding, response to DNA damage stimulus, protein amino acid phosphorylation, cell 

cycle, DNA damage response signal transduction resulting in induction of apoptosis, 

nucleus, DNA binding, transcription activator activity, protein homodimerization activity, 

positive regulation of gene-specific transcription from RNA polymerase II promoter, 

negative regulation of apoptosis, positive regulation of transcription DNA-dependent, 

DNA damage response signal transduction by p53 class mediator resulting in transcription 

of p21 class mediator, double-strand break repair, response to estrogen stimulus, double-

strand break repair via homologous recombination, protein complex, cytoplasm, 

nucleoplasm, spindle, cytosol, plasma membrane, apoptosis, regulation of apoptosis, Golgi 

apparatus, zinc ion binding, double-stranded DNA binding, intracellular, enzyme binding, 

magnesium ion binding, PDZ domain binding, negative regulation of protein amino acid 

phosphorylation, regulation of neuron projection development, central nervous system 

development, signal transduction 
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with disease components in OMIM. We used the semantic Web standard Resource Description Framework (RDF) to 

represent each knowledge source. All semantic relationships were represented as RDF triples in the “subject-

predicate-object” format and merged to form an integrated knowledge network. This knowledge network harbors 

545,008 triples. Example triples are „gene:FGFR-relation:hasGO-GO:skeletal system development‟ or „gene:FGFR3-

relation:hasDisease-disease:Bladder cancer.‟ After converting all knowledge into such triples, we merged all the 

triples into one file so that we could query and obtain a novel association such as “bladder cancer has an association 

with gene function, skeletal stem development via anchor, FGFR3.” To facilitate easy interrogation of the knowledge 

base, we also designed a Web-based semantic query interface using the SPARQL query engine.  We also considered 

other related knowledge sources for microRNA and DNA copy number variance, which are genomic components 

that have known strong associations with diseases.  However, their associations with diseases were established only 

recently and have not been widely tested, and thus we did not include them in this first step of our proof-of-concept 

study. In addition, one advantage of the RDF format is that new knowledge can be easily inserted at anytime in the 

future; therefore, we can still incorporate these knowledge sources when they are more mature.  

2.2. A similarity analysis algorithm GEAR 

Having an integrated network of gene, disease, and GO, we developed a tool to predict associations between disease 

and abnormal signatures of personal genomes on the functional dimension (i.e. GO space). We developed the 

following 4-step procedure. First, we identified deleterious variants from personal genome sequences.  Second, we 

mapped them to GO terms through genes that harbor the abnormalities. Third, we mapped disease-related genes to 

GO terms to make them comparable to GO terms from the abnormal signatures of personal genomes; and fourth, we 

compared the two lists of GO terms to evaluate their similarity.   

We limited the input data type to a list of SNPs because the primary result of whole genome sequencing was 

presented as a list of SNPs
1-4

. From the input, SNPs were selected when the substitution of a nucleotide results in a 

structural change to a protein with deleterious effects on its function. The PolyPhen-2 algorithm
17

 was used for SNP 

selection. PolyPhen-2 calculated the naive Bayesian posterior probability that a given mutation was damaging. We 

downloaded an annotation file, HumVar, consisting of 110,939 SNPs and their status to list all SNPs that may have 

abnormal effects. Each of the selected SNPs was scored as 0, +1, or +2 according to the number of dysfunctional 

alleles in each SNP genotype.  

For the SNPs in a gene, the scores were summarized to determine the gene disruption score (GDS). Genes with a 

GDS greater than „1‟ were regarded as „abnormal genes‟ and used for further analysis. Afterward, all GO terms 

annotated as abnormal genes were extracted. We included not only explicit but also implicit GO annotations for each 

gene, incorporating GO hierarchical information. Similarly, we extracted all of the GO terms of major diseases based 

on the integration of Entrez Gene (GO-gene annotations) and OMIM (gene-disease associations). This provided us 

with various lists of GO terms: one from abnormalities found in the personal genome data and others from disease-

associated genes. We incorporated a GS2 algorithm
18

 to measure semantic similarities among the lists of GO terms. 

GS2 was originally developed to measure gene set similarity using GO semantics, and therefore we considered GS2 

well suited to our scheme. Briefly, the measure quantified the similarity of the GO annotations by averaging the 

contribution of GO terms and their ancestral terms with respect to the GO vocabulary graph. The input of GS2 is two 

lists of GO terms, and it measured the similarities between the two lists by incorporating the hierarchical structure of 

GO. Briefly, for each GO term in the first list, it calculates how similar its ancestor set is in comparison to the 

ancestors of the terms in the second list. It normalizes and averages the values and returns a score between 0 and 1. 

The estimated relationships were visualized as a network at the end of the process.  We took the negative logarithm 

of the similarity score in order to generate a better presentation of the network diagram. To facilitate user interaction 

with the knowledge base for understanding their personal genomes, we developed a Web-based system, Genetic 

Abnormalities Report (GEAR), to allow users to access the aforementioned analysis module. 

3. Results 

3.1 Example uses of KNODGE 

KNODGE is freely available at http://impact.dbmi.columbia.edu/~juw7003/KNODGE/index.html. The home page 

(Figure 1a) briefly describes the structure of the knowledge base and contains a search box to begin navigation. 

Users can query either disease or gene terms to obtain matching genes, diseases, gene pathways, and symptoms. 

Example terms are provided next to the search box. For example, users can type „BRCA1‟ to search for other 
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diseases and symptoms associated with the gene and those known to be associated with breast cancer. In addition, 

users can type „Diabetes‟ to query related diseases, genes, pathways, or symptoms of this disease. 

If a user enters the keyword ‟Diabetes,‟ KNODGE returns the records that match the keyword in their names, 

descriptions, or synonyms (Figure 1b). The matched term is highlighted so that users can understand why those 

records were retrieved. A user can further specify the particular term to query all semantic relationships related to the 

term.  Assume that a user selects „Type 2 Diabetes Mellitus,‟ one of the instances listed with the disease semantic 

type, and wants to obtain all related biomedical entities linked to this disease. Each query usually requires 4 to 5 

seconds to complete. Figure 1c shows the screenshot of this query result. All entities related to this disease are 

returned, including 114 biological pathways, 803 GO terms, 28 genes, and 4 symptoms. The query results can be 

downloaded in a structured format. Some entities are connected via „anchor.‟ For example, a GO term and disease 

are semantically related via a gene as an anchor. According to Figure 1d, the gene „RETN‟ is associated with the 

„type 2 diabetes mellitus,‟ and it serves a particular role in the biological pathway „hormone activity.‟ 

 

 

  

Figure 1. Sample KNODGE screenshots:  

(a) the schematic structure of the knowledge base and the semantic query interface;  

(b) the query results for one search keyword 'Diabetes', grouped by entity types, including disease, gene, gene 

terms, and gene pathways; (c) the filtered query result for the entity ‘type 2 diabetes mellitus’; all the results can 

be downloaded in a structured format; (d) a subset of GO terms that describe the genes associated with ‘type 2 

diabetes mellitus’. 
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Figure 2.  The Web interface for GEAR. 

 

3.2 Example uses of GEAR 

GEAR is a web-based system for evaluating the use of KNODGE for assessing personal genomes in the clinical 

setting. It is available at http://impact.dbmi.columbia.edu/~juw7003/GEAR/index.html. Personal genome 

information can be summarized as a list of sequence variants after comparisons with the reference sequence. Among 

the various types of sequence variants (e.g., copy number variations (CNVs), SNPs, insertions, and deletions), the 

current version of our module can only accept SNPs. Users may choose the diseases of interest (Figure 2) such as 

those for which they have concerns or those related to a family history of a certain disease, and they can compare the 

similarity between disease-related genes as specified in OMIM and their personal genetic abnormalities. The other 

input element would be a list of SNPs and their genotypes.  

The SNP identifier should be a dbSNP identifier so that GEAR can determine which genes are potentially affected 

by the sequence change. Figure 3 shows the output of GEAR. Each node represents diseases of interest or the 

individual owner of the input genotype data. Edges indicate the genetic similarities among nodes. The genetic 

structure similarity between the two corresponding nodes increases as the edge becomes shorter. The topological 

structure reveals the relative distance between the „personal genome‟ and „diseases‟ but does not reveal the distance 

between diseases. For instance, it does not indicate that bladder cancer is more similar to gastric cancer than to 

prostate cancer, but that the abnormal signature of the test genome is more similar to diabetes and lung cancer than to 

prostate cancer or gastric cancer.  
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4. Discussion 

In this proof-of-concept study, we developed KNODGE by integrating various sources of genomic knowledge and 

demonstrated that this integration enables a preliminary clinical assessment of personal genomes. First, we integrated 

six knowledge resources related to genes and diseases. Then, we developed GEAR, which measures the genetic 

similarity between abnormal signatures of personal genomes and diseases. In comparison, we used the integrated 

knowledge, using GO instead of only specific genetic sequences, to assess the functional relationships among the 

objects. Briefly, GEAR selects potentially deleterious SNPs and summarizes the number of deleterious substitutions 

at the gene level. Next, we measured the genetic similarity between personal genomes and diseases using GO terms 

annotated to the significant genes that can be directly extracted from our knowledge network. Theoretically, this 

method has advantages over simply comparing the list of significant genes. If we search the relationships using only 

a single gene, we could miss additional relationships considering the fact the multiple genes are often involved in the 

same biological processes. Overall, our integrated genomic knowledge enables measurements of genetic similarity.   

One other important characteristic of our design is that we provide only „similarity of genetic structure‟ between a 

personal genome and diseases. Our scheme is fundamentally different from that of current direct-to-consumer 

companies. For example, GEAR does not provide any deterministic information such as „90% risk of breast cancer,‟ 

which can often be a false positive that raises unnecessary concerns for the general public. Instead, our reports 

measure relative distances between personal genomes and diseases to inform people of their general risks. Cancer, 

diabetes, and heart disease can develop in anyone because their occurrence is largely influenced by environmental 

factors. Without these environmental factors, we can never measure „true disease risk.‟ Therefore, we strongly 

believe that reporting imprecise disease risk based only on genetic information is not appropriate. Instead, people 

could use GEAR to determine which diseases have similar structures to their own genomes. In other words, GEAR 

can be used for prioritizing diseases that people should be alerted to. For instance, if one‟s genome appears to be 

closer to colon cancer than gastric cancer in GEAR output, he or she might be suggested towatch for any symptoms 

related to colon cancer for early prevention of this disease. . 

 

Additionally, our integrated knowledge base can be used to increase the sensitivity for identifying genetic 

relationships between diseases. Using this knowledge network, researchers could easily explore the genetic basis of 

 

Figure 3. GEAR result: Relative genetic distance between personal genome and diseases 
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diseases and generate hypotheses of disease similarity. This possibility is particularly important because molecular 

similarity of diseases could be used for finding new applications of existing drugs. For instance, Suthram et al. 

measured disease similarity based on gene expression profiles and identified a strong correlation between urothelial 

carcinoma and acute myeloid leukemia.
19

 They also found that the FDA approved drug Flouroucil, is used to treat 

both of the diseases. However, Suthram et al. used gene expression data only for measuring disease similarity. Our 

integrated knowledge base could enrich the disease similarity network by incorporating additional layers of 

knowledge. Another advantage of our knowledge network is that it is easy to use and extend. Any newly added 

knowledge to any knowledge source can be converted to the RDF format and appended to the integrated RDF 

knowledge network. This knowledge base can also be easily integrated with other knowledge bases using the 

Semantic Web standard such as RDF. 

Our study has several limitations, which will be addressed in our future work. This knowledge network provides us 

with a new infrastructure to generate hypotheses, but we have not evaluated the validity of the novel associations 

recommended by our integrated knowledge network. Involvement of clinical and biological researchers in a pilot 

study can help us test some meaningful hypotheses generated by this novel knowledge network. In addition, we have 

not evaluated the performance of our similarity metric, which was primarily due to the lack of a gold standard to 

compare against. In the current version of GEAR, the list of diseases used for interrogating personal genome is too 

short to be useful in real clinical setting. We first listed over 50 diseases but it made GEAR user interface cluttered 

and confusing. Therefore, we only selected a handful diseases of higher prevalence rates in United States for this 

pilot version. The interface should be re-designed to deal with a larger number of diseases. The other limitation is 

that data cannot be entered to GEAR if there is no Reference SNP (rs) identifier. The input module should be revised 

to accept variants without rs number because personal genome sequence will contain not only known common 

variants but also novel and rare variants. There are also far more personal variants beyond SNPs (e.g., CNVs), which 

are currently our sole form of input. Additionally, other functional SNPs can affect splicing, transcriptional, and 

post-translational regulation. We only used SNPs that affect protein coding. Thus, we will need to extend our 

analysis coverage to other functional SNPs. Accordingly, our tool and algorithms need further constant upgrading as 

knowledge of the genome expands. The other limitation of our study is the coverage of our knowledge network. The 

current version of KNODGE only includes a limited number of entities (disease, gene, pathway, GO, and symptoms). 

Future versions of KNODGE will include other entities and semantic relationships such as „microRNA-gene target 

information‟ or „protein-protein interaction‟ that may be important to genomic medicine. Furthermore, the „gene-

disease‟ relationships will become more complex by adding „genomic variation‟ (e.g., SNPs and CNVs) that 

establishes relationships in OMIM.  Future work will include evaluating the plausibility and validity of these novel 

associations in a constrained medical domain using subject matter experts. 

5.  Conclusion 

In this study, we contribute an integrated knowledge network that provides integrated access to knowledge of 

relations between genes, diseases, and symptoms. The creation of this new knowledge resource has the potential to 

enable biomedical researchers to query one single knowledge source to generate hypotheses about diseases, 

symptoms, and genes, as well as to generate hypotheses about their personal genome‟s risk factors. We also 

implemented a similarity measurement algorithm to explore the interpretations of personal genomes.  We conclude 

that this knowledge network is rich and extensible and has the potential to serve as an integrated knowledge resource 

for personal genome interpretation.  
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