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Abstract

Natural language processing (NLP) has become crucial in unlocking information stored in free text, from both clinical

notes and biomedical literature. Clinical notes convey clinical information related to individual patient health care,

while biomedical literature communicates scientific findings. This work focuses on semantic characterization of texts

at an enterprise scale, comparing and contrasting the two domains and their NLP approaches. We analyzed the

empirical distributional characteristics of NLP-discovered named entities in Mayo Clinic clinical notes from 2001-

2010, and in the 2011 MetaMapped Medline Baseline. We give qualitative and quantitative measures of domain

similarity and point to the feasibility of transferring resources and techniques. An important by-product for this study

is the development of a weighted ontology for each domain, which gives distributional semantic information that may

be used to improve NLP applications.

Introduction

Natural Language Processing (NLP) is crucial to clinical informatics because information that is stored in clinical

notes is too massive to be humanly comprehensible, but too complicated to be directly interpreted by a machine.

Enterprise-level concept extraction systems like cTAKES [1] have begun to process vast amounts of clinical data, but

the accuracy of their output has been evaluated on comparatively small amounts of annotated data. An alternative

strategy is to limit evaluations to use cases, describing NLP systems’ effects on downstream applications. We may

then ask: How can clinical NLP output be evaluated at an enterprise level?

The same scenario arises for documents in other domains as well. Most notably, NLP in the biomedical literature

domain seeks to understand the results of prolific biomedical research. Ultimately, information from both clinical

and biomedical domains may be used in furthering the science of healthcare delivery. But Meystre, et al. have clearly

distinguished between the clinical and biomedical domains, pointing out divergent characteristics such as misspellings,

ungrammaticality, the use of shorthand, informal templates, and diversity of input sources [2]. Accordingly, Demner-

Fushman and colleagues have found that it is difficult to apply certain question-answering tools across domains due

to abbreviations [3]. There are substantial patient privacy issues associated with clinical texts that are not present for

published biomedical literature.

These are practical issues that make cross-pollination difficult, but the results reported here focus on the big pic-

ture of semantic distance between the two domains. This study empirically compares and contrasts the aggregate

characteristics of NLP-discovered named entities in clinical and biomedical text. It is therefore the first enterprise-

level evaluation of NLP output, and suggests where transferability between the two domains may be easier or harder.

For clinical data, ten years of Mayo Clinic’s clinical notes have been processed by a production-level precursor to

cTAKES [4]. For biomedical data, we use the output of MetaMap [5] on Medline/PubMed abstracts, which contains

most of the biomedical citations to date.

The applications of methods used here are not limited to cross-domain comparisons. Comparisons of subdomains [6],

sections of a document [7], and longitudinal semantic shift [8] have all been attempted. We also expect that similar

studies would be used to compare successive versions of NLP output at an enterprise level. It would be prudent to test

NLP components against a regression set of data as they improve, but the integrity of extracted semantic information

in a large-scale deployment is rarely studied. Indeed, the biases of each NLP system can even be seen in this study, as

data is prepared for cross-domain comparison.

A more practical use of the concept distributions we analyze here is that they entail the building of a weighted ontology,

which may be used for, e.g., concept similarity metrics, document similarity metrics, or use case-specific terminol-

ogy subsetting. As statistical processing and machine learning techniques increasingly dominate NLP, a means for
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merging these methodologies with expert-curated ontological information is necessary. Berndt, et al.’s recent work [9]

calls information at this scale “macro-ontological,” and rightly points out that it may be inserted into the text min-

ing process. Similar to their work, the concept weights gathered here are in a format that completely preserves the

ontological structure; however, our counts provide empirical distributional semantic information, and are based on

corpora rather than the structure of the ontology itself. Structure-based weights and distribution-based weights are

likely complementary, though a thorough exploration is beyond the scope of this discussion.

The remainder of this paper will proceed as follows: the data and processing for the experiment will be described,

followed by the resulting distributional characteristics in qualitative and quantitative form. Finally, we will discuss the

implications of the results, and draw conclusions about the similarities and differences between the two domains.

Experimental Procedure

The distributional comparison between clinical and biomedical texts was carried out according to Figure 1.
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Figure 1: Block diagram of data collection for clinical (top) and biomedical (bottom) data.

The data source for clinical text was Mayo Clinic clinical notes between 1/1/2001–12/31/2010, retrieved from the

Mayo Clinic Life Sciences System (MCLSS). MCLSS stores processed data from a comprehensive snapshot of Mayo

Clinic’s service areas, excluding only microbiology, radiology, ophthamology, and surgical reports. Additionally, each

possible note type at Mayo was represented: Clinical Note, Hospital Summary, Post-procedure Note, Procedure Note,

Progress Note, Tertiary Trauma, and Transfer Note.

Biomedical text was from the 2011 Medline/Pubmed Baseline, which contains all 19,569,568 of the indexed citations

(abstracts) to date. This similarly represents a comprehensive brush of different subfields in biology and clinical

research.

Both of these were pre-processed with the standard NLP tools in their respective domains. Mayo’s Clinical Notes

Index (CNI) is a UIMA-based NLP pipeline [4] that may be considered an enterprise-level precursor to cTAKES [1].

For biomedical data, we used an existing repository1 of MetaMap’s [5] output on the Medline/Pubmed Baseline. Each

system identifies named entities in its respective text, tying the term used in text to an ontology (e.g., SNOMED code

or ULMS CUI). Our study is based primarily on the frequency of named entity usage in each corpus.

The dashed line in Figure 1 indicates that the NLP processing was completed before this experiment. In fact, the

results of CNI were stored in MCLSS, allowing us to query directly for counts of concept frequency in Mayo’s data.

Biomedical data in the MetaMapped Medline Baseline was accessed in MetaMap Machine Output (MMO) format,

and thus scripts had to be written to find the frequency of concepts discovered in Biomedical text. A further difference

between Mayo data and Medline data is that CNI only performed concept identification for SNOMED codes in a

limited set of semantic types, whereas MetaMap used any UMLS codes. Thus, some converting of data had to be done

for clinical data, and some restricting of data had to be done for biomedical data.

From this point, both data sources underwent the same processes — a hierarchcial propagation (described in the

1Accessible at http://skr.nlm.nih.gov/resource/MetaMappedBaselineInfo.shtml
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following subsection), and depth and string lookups — to produce two output tables in each domain. The format of

these output tables is similar to the UMLS Rich Release Format (RRF), as can be seen in the table below.

CUI TUI Preferred Name Depth Count

C0000726 T029 Abdominal (qualifier value) 8 19,237,214

C0000727 T184 [D]Acute abdomen (situation) 10 36,356

C0000729 T184 [D]Abdominal cramps (situation) 4 122,000

C0000731 T033 [D]Abdominal swelling (situation) 11 272,058

C0000733 T037 Injury of abdomen (disorder) 10 7389

Before we discuss the process of hierarchical propagation, a few more details should be mentioned pertaining to how

we obtained the raw data.

CUI. Mayo’s CNI concept identification output primarily uses SNOMED codes (UMLS 2005AA release) rather

than the UMLS Concept Unique Identifiers. We mapped these codes to 2010AB CUIs that were also present in

2005AA. For Medline data, we used MetaMap’s 2010AB-based output CUIs; however, for fair comparison we

eliminated CUIs not cross-indexed with SNOMED codes in the UMLS 2005AA release.

TUI. Only certain Type Unique Identifiers (based on UMLS 2005AA) were used in CNI, and MetaMapped re-

sults were filtered to use only these as well. These were broken into 4 broad semantic groups, motivated by

Bodenreider and McCray [10]:

1. Anatomical Sites: T021, T022, T023, T024, T025, T026, T029, T030

2. Procedures: T059, T060, T061

3. Disorders: T019, T020, T037, T046, T047, T048, T049, T050, T190, T191

4. Findings: T033, T034, T040, T041, T042, T043, T044, T045, T046, T056, T057, T184

Preferred Name. A “preferred” string representations for the CUI in question, based on MRCONSO.RRF from the

UMLS 2010AB release. A synonym or abbreviation may instead be the actual term discovered in the text. For

example, ‘allergy’ is mapped to the CUI for ‘hypersensitivity,’ and ‘cancer’ is mapped to ‘malignant neoplasm.’

Depth. This is the length of the longest path when traversing SNOMED ‘isA’ relationships (from MRREL.RRF,

UMLS 2010AB release) from a node to its greatest ancestor. If a node has no parent, it will have a depth of 0.

Count. A summed frequency of concepts for all documents in a domain. The unpropagated version is directly cal-

culated from the output of NLP components, whereas the propagated version will be described in the following

section.

Both propagated and unpropagated frequencies give a numerical value to each concept. Portions of the ontology that

are more commonly used (and therefore more “important”) have higher values. Therefore, each of these frequency

distributions may be considered a weighted ontology.

Hierarchical Propagation

If a concept is present in text, it would be logical to say that the concept’s parents are implied. This is true as we move

up the entire hierarchy of ‘isA’ relationships, so that an instance of a concept should add to the count of each of its

ancestors. The result is propagated counts (the second and fourth outputs in Figure 1).

As an example, consider “Acute abdominal pain” (SNOMED: 116290004, CUI: C07400577). There are four paths to

the root, two of which are shown here. Concepts that are common between the two paths are shown in italics:

1. Acute abdominal pain ⊂ Abdominal pain ⊂ Pain of truncal structure ⊂ Finding of trunk structure ⊂ Finding of

body region ⊂ Finding by site ⊂ Clinical finding ⊂ SNOMED CT Concept
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2. Acute abdominal pain ⊂ Abdominal pain ⊂ Pain of truncal structure ⊂ Pain finding at anatomical site ⊂
Pain ⊂ Pain/sensation finding ⊂ Sensory nervous system finding ⊂ Neurological finding ⊂ Clinical finding ⊂
SNOMED CT Concept

These multiple paths arise because each node in SNOMED can have multiple parents. The propagating of “Acute

abdominal pain” counts is done recursively. First, each parent is considered. If the parent has previously been visited

for the current count, it is skipped; otherwise, the count value is added to the count at that parent, and the parent’s

parents are explored. Thus, every node that is an ancenstor of “Acute abdominal pain” has its count incremented

exactly once for each occurrence of the concept.

Results

Our goal is a large scale comparison of unstructured text in clinical and biomedical domains, but such an empirical

comparison is intrinsically limited to the corpora that are available. It is important, therefore, to note some of the

characteristics of the representative corpora. These are summarized in Figures 2(a) and 2(b).

Mayo Medline

# of documents 41,300,263 19,569,568

# of char 105,744,557,997 15,799,786,165

Char per doc 2,560.385 807.365

CUIs represented 60,085 57,635

Concept mentions 3,607,188,946 387,189,859

Mentions per doc 87.34058 19.78530

Mentions per char 0.0341129 0.02450602
(a)

Mayo only

16,963

Medline only

14,513

Mayo & Medline

43,122

Unused CUIs

116,270

(b)

Figure 2: Corpus-wide statistics (a) For size and ‘density’ of each corpus, and (b) showing the domain-specific usage

and overlap of codes.

Note that the Mayo corpus has over twice as many documents, and over three times more text per document, for an

overall difference of approximately 6.7 times more text than in Medline. At the bottom of Figure 2(a), we can also see

that the NLP techniques discover more concepts per unit of text in the clinical text than in biomedical text (within the

4 semantic groups).

The Venn Diagram of Figure 2(b) has an outer box corresponding to all UMLS Codes that are both cross-indexed

with SNOMED and in the four targeted semantic groups. Not shown in the box is the fact that out of the 190,868

CUIs (unused + used in either corpus) of this appropriate semantic type, 26,885 were anatomical sites, 46,404 were

procedures, 78,784 were disorders, and 38,795 were findings.

The left circle is unpropagated counts on Mayo clinical notes, where 60,085 CUIs were utilized; this amounts to

31.4% usage out of 190,868 CUIs. On the right, biomedical text in the Medline/Pubmed Baseline used 57,635 CUIs

for 30.2% usage.

The semantic contents of the four sets of data (unpropagated/propagated clinical, unpropagated/propagated biomed-

ical) can be compared and contrasted both qualitatively and quantitatively. First, it is illustrative to consider what

concepts are most frequently used in each domain, shown in Table 1. We have included both propagated and unpropa-

gated counts here for completeness, though (a) and (b) are sorted on unpropagated counts, while (c) and (d) are sorted

on propagated counts. The latter tables are included to answer whether differences in domain vocabularies arise from

discussion on fundamentally different topics, or from stylistic differences.

On a more quantitative level, Figure 3 gives two different perspectives on the concept distributions in the two domains.

The x-axis of 3(a) is a ranked listing of concepts by frequency, so that the top 1,500 concepts are shown with their

frequencies. The frequencies (y-axis) for Medline have been inflated by a factor of 9.32 so that there would be as
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CUI Type Preferred Name d Unprop. Prop.

(a) Clinical text, sorted by unpropagated concepts

C0226896 T029 Oral cavity structure 13 32,236,636 76,282,880

Anat. C1278910 T029 Entire oral cavity 14 32,235,510 32,235,510

C1267547 T029 Entire mouth region 13 32,117,398 32,117,398

C0087111 T061 Therapeutic procedure 4 56,879,390 94,755,125

Proc. C0543467 T061 Surgical procedure 5 45,569,157 140,087,294

C0040732 T061 Transplantation 6 23,031,955 26,125,497

C0020517 T046 Hypersensitivity 9 100,468,522 103,987,580

Disord. C0011884 T047 Diabetic retinopathy NOS 15 72,572,180 72,591,107

C0006826 T191 Malignant neoplasm of unspecified site 10 40,876,164 151,723,239

C1457887 T184 [D]Symptoms NOS 4 52,146,747 52,146,747

Find. C0013404 T184 Dyspnea 9 51,930,291 54,364,872

C0262926 T033 History of 3 49,538,699 49,538,699

(b) Biomedical text, sorted by unpropagated concepts

C0007634 T025 Cell 4 6,953,646 25,396,028

Anat. C1269647 T025 Entire cell 5 1,845,159 13,835,867

C0040300 T024 Body tissue structure 4 1,786,460 26,631,714

C0087111 T061 Therapeutic procedure 4 6,692,103 9,853,609

Proc. C0185117 T061 Expression - action 8 3,265,739 3,265,739

C0002778 T059 Analysis 5 3,003,052 3,005,552

C0012634 T047 Disease 5 2,314,616 67,806,901

Disord. C0027651 T191 [M]Neoplasms NOS 9 2,092,336 9,610,846

C0332157 T037 Exposure to 4 1,681,851 1,681,851

C0086045 T041 Concentration 7 3,977,538 3,977,538

Find. C0445223 T033 Related 9 2,962,048 2,962,048

C0021469 T044 Inhibition 6 2,511,785 2,511,785

(c) Clinical text, sorted by propagated concepts

C0005898 T029 Body region structure 4 3,262 640,580,828

Anat. C0229962 T023 Body part structure 5 28,620 603,753,689

C0460002 T022 Body system structure 4 9,553 467,307,325

C0418956 T061 Regimes and therapies 2 12 156,928,734

Proc. C0543467 T061 Surgical procedure 5 45,569,157 140,087,294

C0087111 T061 Therapeutic procedure 4 56,879,390 94,755,125

C1260954 T190 Morphologically altered structure 2 1,288 517,592,257

Disord. C0333343 T190 Cavity 5 312,953 217,120,971

C1290837 T047 Disorder of trunk 8 3 165,081,858

C0427350 T033 Clinical history and observation findings 5 7 306,807,228

Find. C0577559 T033 Mass of body structure 6 9,789,342 217,237,523

C0333949 T040 Growth alteration 4 24 209,167,102

(d) Biomedical text, sorted by propagated concepts

C0460002 T022 Body system structure 4 23,908 63,103,622

Anat. C0005898 T029 Body region structure 4 9,789 54,630,436

C0229962 T023 Body part structure 5 6,571 51,912,244

C0022885 T059 Laboratory procedure - general - NOS 6 2,725,576 14,950,364

Proc. C0543467 T061 Surgical procedure 5 2,326,931 13,760,485

C0087111 T061 Therapeutic procedure 4 6,692,103 9,853,609

C0012634 T047 Disease 5 2,314,616 67,806,901

Disord. C1260954 T190 Morphologically altered structure 2 43,155 35,060,838

C0332447 T190 Morphologically abnormal structure 3 3,026 33,734,763

C0574125 T033 Functional finding 6 2,383 21,298,135

Find. C0577559 T033 Mass of body structure 6 553,914 14,748,953

C0333949 T040 Growth alteration 4 406 14,355,901

Table 1: Highest-frequency concepts with depth d and 2 types of frequency counts. Subtables have 3 CUIs each

for Anatomical Sites, Procedures, Disorders, and Findings. (a) and (b) are sorted within each semantic group by

unpropagated counts of mentions in clinical and biomedical text, respectively. (c) and (d) are sorted within each

semantic group by propagated counts, giving a sense of common topics for each domain.
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many concept mentions as there are in the Mayo corpus. Additionally, the top of the plot has been truncated to focus

on the characteristics at lower frequencies. It should be observed that at approximately rank 250, the two lines meet,

and beyond that biomedical concepts are consistently used more frequently than clinical concepts.
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Figure 3: Alternative views of the domain-specific differences in frequency distribution. (a) Adjusted frequencies of

the top 1,500 codes in each domain. (b) Frequency histograms for propagated and unpropagated codes in each domain.

Figure 3(b) displays two histograms, each comparing the two domains. The x-axes represent how often a code was

used in each respective corpus, and the y-axes indicate how many of the 60,085 (for clinical) or 57,635 (for biomedical)

codes were used with that range of frequencies. Thus, there are over 8,000 clinical codes that were only used a few

times, but there were only a few codes that were used with extremely high frequency. The x-axis is on a log
2

scale,

and numbers under each frequency bin represent any frequency with ⌈log
2
C⌉, where C is the raw count.

We may also be interested in considering what types of concepts are unique to each domain. The most frequent specific

codes for each domain are shown in Table 2.

CUI Type Preferred Name Depth Count (unprop.)

Most frequent concepts unique to clinical data

C1290956 T033 Medication (IADL finding) 4 32,784,979

C0021485 T061 Injection of therapeutic agent 9 14,013,728

C0449201 T029 PER 3 6,639,386

C0424927 T033 Details of education 6 6,132,688

C1313971 T190 Abnormal tissue appearance 0 5,430,700

C0687058 T029 Depression (external anatomical feature) 6 4,482,187

C0016205 T184 [D]Flatulence, eructation and gas pain NOS 13 3,016,160

C1273875 T033 Values (community) 9 1,912,720

C0423572 T184 Pins and needles 11 1,582,854

C1279702 T047 Calorie overload 8 1,361,713

Most frequent concepts unique to biomedical data

C0007634 T025 Cell 4 6,953,646

C0012634 T047 Disease 5 2,314,616

C0439631 T061 Primary operation 7 1,510,502

C0221198 T033 Lesion 4 1,199,479

C0021107 T061 Implantation 4 726,011

C0478530 T033 [X]Examination and observation for reason, unspecified 4 605,052

C0205054 T029 Portal 5 582,197

C0600688 T037 Toxic effect 4 551,577

C0460148 T190 Human body structure 4 396,627

C0011581 T048 Depressive disorder 8 370,674

Table 2: The most frequent concepts that are only present in one domain.
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Further quantitative analysis of the concepts unique to each domain can be done — the plot in Figure 4 shows how

many concept mentions were at a particular depth in the SNOMED hierarchy, where the depth in the hierarchy is

assumed to be a reasonable measure of how specific a concept is (the higher the number, the more specific). This is

noisy, however; for example, depths 0–3 focused concepts for which no parents were found.
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Figure 4: Mention frequencies for codes of different depths in the SNOMED hierarchy, in clinical (left) and biomed-

ical (right) text.

Discussion

We may draw interesting conclusions from the foregoing data. First, though, we should caution that because we used

any CUI that appeared in both UMLS 2005AA and 2010AB for this study, there are several confounding variables

besides the domain difference. For example, CNI’s SNOMED output might be mapped to a different UMLS code than

the same string in MetaMap; or, codes may have been deprecated in usage between 2005AA and 2010AB.

In any case, each NLP system has its own concept identification process, including synonymy and abbreviation de-

tection and word sense disambiguation. Thus, the coding schema and bias of NLP systems is present in the data. For

example, the presence of “diabetic retinopathy” as one of the overall most frequent codes in clinical text (72,572,180

mentions, i.e., more than once per document) was likely discovered as “DR.” and indicative of an error in abbreviation

detection. Also, CNI allows multiple concept annotations on the same span, possibly inflating some of the counts. Ir-

respective of these shortcomings, the massive scale of data we have processed has allowed us to gain some big picture

understanding of the differences between the domains and the quality of the NLP systems.

Concept-level characteristics

It is evident that there is significant overlap in the coverage of clinical and biomedical texts. From Figure 2(b), we can

see that the majority of codes found were held in common — 71.8% of the codes used in clinical text were also used

in biomedical text, and 74.8% of the biomedical codes were shared with clinical text.

Additionally, where the domains differ in the codes they use, they do so in an understandable way. Recall that we had

filtered MetaMap output based on the 2005AA version of the UMLS for the sake of fair distributional comparison. If

we modify the experimental setup to use the updated 2010AB version of the UMLS that was used in MetaMap, the

shared proportion is 71.8% for clinical and 70.4% for biomedical texts, leaving about the same amount of semantic

content unique to each domain. This implies that each domain has roughly the same amount of semantic coverage,

i.e., that the contents of clinical notes and biomedical abstracts are similarly diverse and broad in scope.

Qualitatively, we may consider Tables 1(c)–(d), which contain propagated counts that give a sense of what types of

concepts are most frequently mentioned. “Mass of body structure” and “Growth alteration” show up on both Findings

lists, and similar correspondences are frequent in the propagated concept counts. Differences show up here as well, in

a manner quite telling of the underlying domains — these propagated Findings lists are headed by “Clinical history
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and observation findings” for clinical text, and “Functional finding” for biomedical text.

However, the most frequent propagated concepts are infrequently mentioned in the text. Thus, major differences in

concept usage are seen in the unpropagated concepts of Tables 1(a)–(b). These tables have very little commonality;

Findings that concern clinical texts may be general (e.g., “symptoms”) or specific (e.g., “dyspnea”), but are very

different from biomedical Findings (e.g., “concentration,” “inhibition”).

The most frequent domain-unique concepts in Table 2 show the extreme cases of this semantic divergence between

domains. “Medication” would not be used as a finding in biomedical text, whereas “cell” is rarely used in clinical

text. Further, terms like “flatulence” and “pins and needles” deal with very human-oriented concepts, and this patient-

centered perspective is lacking from the biomedical domain.

Distributional characteristics

We can move beyond individual concepts and look at the similarities and differences between the domains at an

even broader scale. Consider the distribution of frequency-ranked concepts in Figure 3(a). Both Mayo data and

Medline exhibit the same shape of distribution, with a steep drop at the beginning, and then a long tail. This does

not quite follow Zipf’s law, as natural text would, but this is likely due to the fact that we are constrained to finite

terminologies — thus, the tail must end. In the face of bias or errors in the NLP systems or coding methods, the fact

that these distributions are not altogether incongruous reaffirms that the NLP methodologies have extracted reasonable

information.

The differences in Figure 3(a) are also instructive. The Mayo clinical data has a steeper curve, meaning that it has a

more skewed distribution than biomedical data. As pointed out before, the two curves meet at around 250. The top

250 clinical terms have much more frequency mass than the top 250 biomedical terms; the difference is so stark that it

takes the roughly 60,000 concepts in the tail to make up the difference. This implies that when training or evaluating

NLP systems in clinical text, a larger sample of text (than in biomedical text) is needed in order to find rare terms.

The skewed characteristic is also observable in the histograms of Figure 3(b), where the y-axis is now the number of

CUIs rather than the number of mentions. Again, we have similar distributional shapes for the two domains. Medline,

however, has a more balanced usage of codes, exhibited by the higher bars in the middle of the plot that make it closer

to a normal distribution.

Since extracted concepts in clinical data is meant to represent actual phenotypes, we may conclude that clinical pheno-

types are in fact extremely skewed. Many terms (e.g., Aleutian disease, basophilic hyperplasia) are very uncommon,

whereas a few terms (e.g., pain) are very common. Despite this, the fact that both domains have overall similar

distributional shapes indicates that methodologies used in one domain may be helpful in the other.

Style characteristics

A careful examination of Figure 3(b) also has implications about the style in the clinical vs. biomedical domains —

are the terms used in each domain more general and abstract, or more focused and precise? First, note that propagation

has the effect of spreading out the distribution; this spreading is only possible by an increase of frequency counts for

non-leaf nodes in the hierarchy. The spreading effect is greater in the clinical codes. This means that many non-leaf

nodes (more general terms) are used infrequently in the raw text; however, they are implied by the other terms. A

smaller spreading effect in biomedical CUIs means that more general terminology has already been used to some

degree.

The depth charts of domain-unique codes in Figure 4 confirm this observation, but add a little more information.

Medline abstracts seem to have both a larger number of shallow-depth codes, as we would expect from the previous

observations. However, biomedical data also seems to have a longer depth ‘tail’ — clinical concepts are more focused

in the middle depths. To the degree that depth measures general vs. focused terminology (it is, in fact, a very noisy

measure), word senses in biomedical text seems to be more skewed, such that they are either (loosely) very general or

very specific.

This confirms intuition about the nature of the document sources. In clinical notes, commonly observed phenomena
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are relatively precise. Physicians are able to deal with some ambiguity because of contextual information, and there-

fore do not need to use concepts that are overly specific. In biomedical literature, broad-brushing descriptions are

complemented by extremely precise, technical language (e.g., “Highly pathogenic avian influenza viruses (HPAIVs)

cause severe disease in humans”).

Conclusion

In this work, we have compared and contrasted large-scale NLP results in the clinical and biomedical domains. We

discovered large amounts of overlap in the general semantics of the two domains, and frequency distributions were

shaped similarly. However, the two types of data differed significantly in the mentioned concepts, how often semantic

concepts were invoked, and the generality of terms used.

The similar distributional characteristics, paired with understandable domain-specific semantic variation, indicate that

NLP techniques are significantly capturing the content of each domain. This points to the ability to share techniques

and resources between the two fields, but the likely need for fine-tuning. In preparing each corpus for semantic

comparison, we have also constructed empirically-determined weighted ontologies, which may make practical use of

these domain characteristics in future work.
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