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Abstract 

The analysis of disease using protein-protein interaction networks and network pharmacology has enabled better 

understanding of disease etiology and drug action. New insights into disease etiology and a better understanding of 

biological subsystems have opened up the possibility of finding new uses for existing drugs besides their original 

medical indication. We present an approach which makes use of the biological processes associated with diseases 

along with their known drugs and drug targets to predict Biological Process-Drug relationships. Network analysis is 

used to further refine these associations to eventually predict new Disease-Drug relationships. The approach is 

validated by the observation that, out of 2078 predicted disease-drug relationships, 401 (18.1%) have been used in a 

clinical trial. 

Introduction 

There have been fewer drug approvals in the past decade compared to the past, along with frequent drug recalls [1]. 

The high cost of new drug development is partly to blame for this. Drug repositioning, making alternative uses of 

drugs outside their original indication, has the potential to drastically offset drug development costs. Although drug 

repositioning has been pursued for a long time, many of them have been serendipitous discoveries [2] or on 

observable clinical phenotypes. Making clinical decisions based solely on observable phenotype can be risky and 

lead to sub-optimal treatment.  On the positive side, new high-throughput techniques and better methods for data 

analysis have enabled a detailed understanding of disease etiology and its underlying cellular subsystems. Biological 

knowledge such as protein-protein interaction (PPI) networks and biomedical ontologies have accelerated the 

development of network-based approaches to understanding disease etiology [3, 4] and drug action (network 

pharmacology) [5]. This has increased the possibility of finding new disease-drug relationships for existing drugs 

(drug repositioning) [2]. If the underlying pathophysiology of the disease and knowledge of the mechanism of drug 

action is utilized to make decisions on drug repositioning, it can potentially lead to better treatment with lower side 

effects. 

A disease is usually caused by congenital or acquired mutations, or by the action of external agents that disrupt gene 

regulation [6]. This in turn disrupts biological processes in which the genes participate. Disruption of the biological 

processes results in phenotypes that characterize each disease, with the phenotype depending on the influence of the 

affected biological processes on the larger biological network.  Reproducibility implicating a set of genes across 

multiple microarray analyses [7] of a disease state is often low. Representations that summarize the contributions of 

groups of genes such as GO-Processes have helped determine signatures in meta-analysis of studies on breast cancer 

[8]. If the affected biological processes can be identified, then suitable drugs can be used to offset the anomalies 

(over/under regulation). In principle, the same drug or set of drugs could be used for other diseases that share the 

affected biological processes.  

In related work on drug repositioning, Gloecker et al [9] used informed insights and high-throughput assays to test 

the drug closantel resulting in its being used for onchocerciasis. Chiang & Butte [10] connected all diseases that 

shared a drug and made inferences on new drug-disease pairs using guilt-by-association, and verified the 

associations against clinical trails. Qu et al [11] present an rdf-framework with controlled vocabulary using various 

knowledge sources on pathways, drugs and diseases. Dasika et al [12] identified all proteins affected by targeting a 

specific protein in the network and used a constrained downstream problem to find if a GO-Process is affected. 

Additionally, network-based methods have been employed to find combinations of drug to treat a disease, 

discovering new drug targets [13] and finding potential drug side effects. Network properties like degree, centrality, 

cutsets, articulation points can be used to quantify a gene's influence on a network [14] and used to study the extent 

of a drug’s influence on the network [15]. Swanson et al [16] introduced methods for learning new relations between 

entities from bibliographic databases and applied them to learn new therapies for existing diseases. 

Ontologies have been helpful in knowledge representation and inferring relationships between different entities. The 

GO-Process ontology [17] is used to represent the cellular and biological processes that genes participate in whereas 
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UMLS vocabularies like SNOMED-CT, MeSH and RxNorm [18] have been used to integrate clinical and biological 

information. 

In this paper, we present a novel approach to highlight new applications for known drugs that is based on existing 

annotated data resources and protein interaction network analysis. We find that several of the predictions are 

supported by ongoing and completed clinical trials. 

Method 

We first determine genes involved in a disease from various high quality sources of annotation and then represent 

the disease in terms of potentially affected biological processes (based on GO annotation of genes). These Disease-

Process associations and existing Disease-Drug-Drug Target mappings are then used to compile a list of biological 

processes affected by each drug. The drug target's role in each biological process is then estimated using protein-

protein interaction networks by computing its centrality (vide infra for section on ‘Estimation of centrality’) among 

the gene products in the GO-Process subnetwork.  A list of refined Process-Drug pairs is obtained after selecting for 

drug targets that exhibit high centrality in the respective processes. Using these pairs and Disease-Process pairs, new 

Disease-Drug pairs are predicted. The predictions are validated by searching for the presence of corresponding 

clinical trials listed at http://www.clinicaltrials.gov. 

Data Sources: Disease-Gene associations were derived from Swisprot disease text (3000 lines), disease-gene 

associations from GeneRIF, and heading and sub-headings from OMIM disease records. Disease Ontology (DO) [19] 

and UMLS vocabularies (SNOMED-CT, NCI, MeSH, ICD-9) were used as controlled vocabulary for disease names. 

GO-Process ontology (March 2010) was used for the biological processes associated with diseases. To increase the 

precision of the predictions, only experimentally derived annotations were used; the annotation of genes to GO-

Processes inferred from electronic annotation (IEA evidence code) was not considered. Drugbank [20] was used to 

find Disease-Drug and Drug-Drug Target (genes) associations. The 'Indication' field of approved drugs from 

Drugbank was used as it consistently provides unambiguous text mentioning diseases being treated with each drug. 

Protein-Protein Interaction network was extracted from Pathway Commons that integrates information from 1400 

pathways in humans. A total of 85,254 clinical trials having ‘Drug Intervention’ as an XML tag were downloaded 

from http://clinicaltrials.gov/. The <condition> and <intervention_name> fields were used for diseases and drugs 

respectively. The dataset included ongoing, completed or discontinued clinical trials. 

 

1a) Drug-GO-Process Associations                                           1b) Sub-networks of a GO-Process 

 

1c) Predicting new Drug-Disease Associations 
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Figure 1. Methods involved in predicting Drug-Disease associations. ‘GO’=GO-Process; ‘g’=Gene, ‘D’=Disease 

and ‘drg’=Drug. Figure 1a. Disease D1 is associated with GO1 and gene g1, the latter is also the drug target 

identified from Drugbank. Process GO1 is inferred to be associated with drg1. Figure 1b. Example of 2 sub-

networks for a GO-Process with genes g1, g2, g3, g4, g5, g6 where g3 is the drug target. Figure 1c. Predicting new 

Drug-Disease associations from GO-Process – Drugs and Disease-GO-Process associations. 

Associating Genes to Diseases:  Gene-disease associations were pooled from multiple sources since there is variable 

coverage of disease terms in different ontologies. For example, though MeSH has broad coverage on a variety of 

subjects, it has several missing terms and lacks detail in the disease section. To overcome this, the Disease Ontology 

(DO ver. 3) vocabulary was augmented using UMLS (MeSH, SNOMED-CT, ICD9) as described in [21]. The DO 

consisting of 12082 terms was augmented with synonyms to a total of 33085 terms. To increase the amount of 

annotated data available, Disease-Gene associations from OMIM, Swissprot and GeneRIF were pooled together. 

Swissprot records were matched against UMLS using MetaMap. GeneRIF identifiers that were previously mapped 

to DO terms were mapped to the corresponding Entrez genes using available associations at NCBI 

(ftp://ftp.ncbi.nih.gov/gene/GeneRIF/ftp://ftp.ncbi.nih.gov/gene/GeneRIF/). OMIM records were mapped against 

UMLS AUI records from which Concept Identifiers (CUIs) were extracted. Protein identifiers from Swissprot, gene 

identifiers from OMIM, and GeneRIF identifiers were matched with corresponding Entrez gene identifiers. In the 

final annotation, each DO identifier was annotated with Entrez gene identifiers. 

Mapping Text to Controlled Vocabulary: MetaMap was used to map disease text to UMLS identifiers with 7 

semantic types indicated in [21]. The disease text included text in the 'Indication' field from Drugbank and text from 

the <Condition> field in clinical trial records. A score of >=850 was used as a filter to minimize the occurrence of 

false positives while sacrificing recall. The diseases terms were mapped back to DO identifiers. The drug names in 

clinical trials and Drugbank were mapped to UMLS's RxNorm vocabulary using MetaMap. Thus disease and drug 

names from Drugbank were converted into controlled vocabulary terms in DO and RxNorm. 

Association of Drugs with GO-Processes: GO-Processes associated with each disease were identified by measuring 

the over-representation of GO-Processes in the corresponding gene set by using the hypergeometric test, and 

correcting for multiple testing using the Benjamini-Hochberg test. To minimize false-positives, a minimum 

membership of at least 3 genes was required for a GO-Process to be considered significant. To avoid abstract terms 

(low resolution information), only GO processes having a depth greater than 5 were chosen. GO-Processes with a p-

value cut-off of 0.005 were extracted and only the most specific were associated with each disease. For example, in 

figure 1a, disease D1 is shown to be associated with Processes GO1, GO2 and GO3. 

 The disease-drug-drug target triplets from Drugbank and disease-GO Process pairs were used to associate drugs 

with GO-Processes. The drug was mapped to a GO-Process if it contained the drug target. To avoid false pairings, 

the association was made only if the drug targeted the same disease as the GO-Process was enriched in. For example, 

in figure 1a&b, using information from Disease D1, associations GO1-drg1, GO2-drg1 and GO3-drg2 were derived. 

However, GO3-drg4 or GO1-drg5 are not accepted since, even though the drug target is contained in the GO-process, 

the drugs are associated with a different disease. 

Extraction of  GO-Process subnetwork: As the hypergeometric test assumes independence of entities (genes in the 

disease), many GO-Processes tend to get associated with a disease resulting in numerous drug-GO-Process 

associations. This increases the possibility of false associations. To overcome this, we use protein-protein interaction 

networks to find the influence of the drug target in the GO-Process. The sub-network relating to a GO-Process is 

extracted by computing shortest paths between every pair of genes in the PPI network. Intermediate genes (g7 in 

figure 1b) are also considered to be part of the sub-network. The assumption is made that each gene in a subnetwork 

has  potential to regulate or disrupt it and a pair of genes is most likely to interact through the shortest path.  
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Estimation of Centrality: If a sub-network is viewed as a biological module involved in a disease, the gene through 

which a lot of communication occurs can be considered as a potential drug target [22]. Betweenness centrality [14] 

gives the centrality measure of a vertex in a graph. The strength of a gene is defined as the ratio of its centrality over 

the average centrality of genes in the sub-network. For example, in figure 1b, centrality of gene 'g3' is high in both 

scenarios, even though the degree is lower in the 2
nd

 case. The Drug-GO-Process associations were filtered by using 

a cut-off of strength >1.  

Prediction of new Drug-Disease pairs: Exploiting the Drug-GO-Process pairs and Disease-GO-Process pairs, drugs 

were associated with diseases. In figure 1c, given that disease D2 is associated with processes GO1and GO3, it is 

subsequently associated with drg1 and drg2. 

GO-Process Information Content: A common denominator of various diseases is the set of genes that participate in 

the immune response such as B/T-cell proliferation, chemotaxis and regulation of isotype switching. These processes, 

though not very specific to disease etiology, can be associated with many palliative drugs. To minimize the 

confounding effect of this, each GO-Process was normalized by its information content in the GO-Process graph and 

its information content in disease space. 
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where NF is the Normalizing Factor for the GO-Process, ICGO is the information content of the GO-Process P in the 

entire GO-Graph, and ICDIS is its information content in disease space. MaxICGO and MaxICDIS are maximum 

information contents in GO-Graph and Disease Space respectively. In effect, the effect of promiscuous association 

was mitigated. 

Validation using Clinical Trials: Drug-Disease pairs already present in Drugbank were removed from the list of 

predicted Drug-Disease pairs, leaving only purely predicted pairs. The remaining predictions were checked against 

the Disease-Drug pairs in clinical trials. 

Results 

Mapping Text using MetaMap:  Disease-related terms from the disease text in the ‘Indication’ field in Drugbank and 

<condition> entry of clinical trials were extracted using MetaMap. A random sample of 50 mappings from each was 

taken and the precision was found to be 94% in case of Drugbank and 98.7% in case of clinical trials. The high 

precision is attributable due to the high score cutoff ( >=850) and other improvements suggested in [21]. The disease 

text from clinical trials consisted mostly of 1-2 words, hence the higher precision. The text related to drugs from 

Drugbank and clinical trials were mapped to RxNorm terms. The precision was 100% in case of Drugbank and 99% 

in clinical trails. Since the drug text mostly included only drug names, recall was 98% and 96% respectively. 1322 

of 1398 approved drugs had a corresponding RxNorm identifier. Recall was not calculated for the disease text due to 

the vastness of disease vocabulary. From a previous study involving disease text from Swissprot [21], we estimate it 

to be approximately 72% in disease text. Recall was sacrificed for precision, as the focus is on short-listing Drug-

Disease mappings to the more actionable predictions. 

Disease, Drug, GO-Process Associations: A total of 1698 drug-disease associations between 948 approved drugs and 

581 diseases (DO terms) were extracted from Drugbank. A total of 40,731 clinical trials were determined to be 

associated with 1920 diseases and 792 drugs. 1188 diseases from DO were found to be enriched in 1480 GO-

Processes - totaling 75,195 associations after filtering described in the Methods section. Using the drug-disease and 

disease-GO-Process associations, 1424 associations between 63 diseases, 147 GO-Process and 226 drugs were made. 

After the GO-Process sub-network analysis, where the betweenness centrality of the drug target was required to be 

higher than the average centrality of all genes, a list of 288 Drug-GO-Process associations between 45 GO-Processes 

and 95 drugs was created. 

Predicted Drug-Disease Associations: Using the final list of Drug-GO-Process associations, drugs were associated to 

diseases enriched in the corresponding GO-Processes (figure 1c). 2222 Drug-Disease associations were made 

between 169 diseases and 76 drugs. Out of these, 144 (6.4%) were found to be in Drugbank leaving 2078 new drug 

repositioning candidates.  

Validation using Clinical Trials: The 2078 Drug-Disease associations were checked against drug-disease 

associations in clinical trials. A total of 401 out of 2078 (19.3%) were found to be either a completed or ongoing 

308



  

clinical trial (involving 167 diseases and 67 drugs). The GO-Process information content was used to find the 

optimal cutoff as shown in Table 1. 

Table 1. Drug-Disease pairs found in clinical trails with corresponding GO-Process p-value cutoffs 

GO-Process 

Information Content 

Number of Disease-

Drug Associations 

% found in 

clinical trials 

Maximum 0.14 3000 15. 13% 

0.16 2512 16. 14% 

0.18 2365 17.09% 

0.2 2078 19.25% 

0.22 2010 19.25% 

0.28 1384 13.06% 
0.3 1173 15.15% 

0.35 507 12.86% 

 

It can be observed that at a p-value cutoff of 0.2, 19% of predicted drug-disease associations were found in clinical 

trials. To find if this cutoff is better than random association of drug and diseases a significance test was performed 

using randomly paired drugs and diseases (2078 pairs). These random pairs were checked against clinical trails and 

the number of matches recorded. A P-value was estimated as the number of matched clinical trials by random 

disease-drug pairs exceeding those found from the described method. This was done 1000 times and the resulting p-

value was effectively 0. This shows that the drug-disease association prediction is not happenstance. 

A representative sample of the Drug-Disease associations that had a clinical trial, together with the associated GO-

Process, are presented in Table 2. 

 

Table 2. Drug-Disease pairs found in clinical trails with corresponding GO-Process p-value cutoffs 

Disease Drug GO-Process 

Alzheimer's 

 Disease 

 

Aripiprazole Synaptic transmission, 

dopaminergic 

 Obesity 

 

Metoprolol 

 

G-protein signaling, coupled to 

cAMP nucleotide second 

messenger 

 Polycystic 

Ovary 

Metformin 

 

Regulation of fatty acid metabolic 

process 
Coronary 

Arteriosclerosis 

Telmisartan Regulation of vasoconstriction 

Cerebrovascular 

Accident 

Alteplase Negative regulation of blood 

coagulation 

 

Discussion 

The drug industry has been adversely affected by fewer drug-approvals and increase in recall rates of drugs. There 

has been a recent push towards repositioning of existing drugs and targeting the underlying etiology of diseases 

rather than merely treating their effects. New techniques in data generation and analysis have enabled a better 

understanding of disease mechanisms. In this paper, we have presented a novel approach to drug repositioning by 

combining biological information of a disease and drug-disease relationships by using ontologies and network 

analysis. Ontologies are helpful not only in unambiguous data representation but also in finding relationships 

between entities and their importance [23]. They have helped to bridge the gap between biology and medicine (e.g, 

UMLS and GO). Protein-protein interaction networks that are based on physical interactions offer insight into 

biological modules. This has led to the development of network pharmacology through which methods have been 

developed to find new drug targets, disease modules and make advances in polypharmacology [24]. We have used 
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the betweenness centrality measure to find the relevance of a gene in the GO-Process sub-network. This appears to 

help in improving the accuracy of predicted disease-drug associations. Without using this step, only 8% of 

predictions were found to correspond to a clinical trial (data not shown). In contrast, incorporation of the 

betweenness centrality resulted in a verification rate of 19.3%. Low information content of GO-Processes is helpful 

in filtering out abstract terms, rather than relying only on a rigid cutoff like being greater than 5 levels deep. To 

eliminate palliative drug associations, which have been extensively studied, the information content of diseases was 

combined with that of GO-Processes. 

The gene target of aripiprazole (used to treat schizophrenia [19]) has been found to have high betweenness centrality 

in the GO-Process “Synaptic transmission, dopaminergic.” This GO-Process is also involved in bipolar disorder, 

dementia and Alzheimer's disease, making it an attractive drug for repositioning. Telmisartan is an angiotensin II 

receptor antagonist (ARB) used in the management of hypertension. Regulation of vasoconstriction is a process 

affected in myocardial infarction, coronary arteriosclerosis and other cardiac disorders. Metformin improves 

glycemic control by improving insulin sensitivity and decreasing intestinal absorption of glucose and is used to 

improve glycemic control in type 2 diabetics [19].  Its target in regulation of fatty acid metabolic process was found 

to have high centrality and could potentially be used to treat PCOS. Some of the limitations of this approach are 

lower recall rates among disease text, which leads to lower disease-drug associations. The betweennness centrality 

measure eliminates false positives, but is a harsh threshold as it causes a decrease in recall. 

Conclusion 

In this paper, we have used the biological processes affected in a disease and existing disease-drug associations to 

predict new disease candidates for existing drugs. This is done using ontologies to match between biomedical text 

and network analysis of existing drug targets. Future work includes the use of additional network measures in 

conjunction with pathway data to check the importance of drug target genes in the network, thus increasing recall. 

Further investigation of similar biological processes involved in diseases of similar etiology (unpublished data) 

along with evidence of drug action can be used to quantify the use of existing drugs to treat a disease outside its 

original use. 
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