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Abstract 

The contents of parentheses in biomedical text have many potential uses in text mining applications.  
However, making use of them requires the ability to determine what class of contents they are.  A system 
that automatically classifies parenthesized text into one of 20 categories is presented and evaluated 
here.  It performs at a micro-averaged accuracy of 68% and a macro-averaged accuracy of 60% on an 
annotated corpus.  The application is available as a Java class and as a Perl module. 

Introduction 

One of the major upcoming changes to biomedical text mining is a new focus on processing the full text 
of journal articles.  Although systems that deal with full text have been built in the past1,2,3,4,5, the 
majority of work in biomedical, especially genomic, natural language processing has dealt with 
abstracts.  However, the creation of PubMedCentral and public access requirements instituted by the 
National Institutes of Health are poised to make a flood of full-text journal articles available to the text 
mining community. 

One of the identifying features of full-text journal articles is the presence of parenthesized material.  
One study examined structural and content differences between abstracts and the corresponding article 
bodies and found that abstracts contained only a small amount of parenthesized text and that parentheses 
were only used for a limited range of functions6.  In contrast, they found that article bodies contain 
many more instances of parenthesized text, and that parentheses are used for a wider range of purposes 
in article bodies than in abstracts.  In fact, they found 17,063 instances of parenthesized text in just the 
97 article bodies in the CRAFT corpus6,7. 

Various researchers have pointed out problems related to the presence of parenthesized text.  One study 
noted that it caused problems for parsers, and deleted it entirely8. Another study found that it caused 
errors in hedge scope assignment9.  Early work noted correctly that parenthesized text in biomedical 
documents is often confusing to patients and laypeople, but may be useful to biomedical scientists10.  
For example, one popular algorithm uses it for abbreviation definition11.  Another system used 
parenthesized text for grounding references to genes to specific entries in the Entrez Gene database12.  
Other researchers have noted that sentences containing parenthesized citations can be put to a number of 
uses, including establishing rhetorical relations between papers, synonym identification, and locating 
information for model organism database curation13. 

All of these researchers worked on isolated uses of single types of parenthesized data.  We have 
identified a considerably larger set of use cases for a wide variety of types of parenthesized data.  
However, to anticipate the remainder of this paper, they all require the ability to first identify what type 
of data is in the parentheses.  We list some use cases in Table 1 (next page) and expand on them in the 
Discussion section.  Some of the categories may seem trivially simple to classify.  However, that turns 
out not to be the case.  We found five ways to write just the category of statistical test values alone, and 
had to write the equivalent of a recursive descent parser with a BNF-style grammar to recognize figure 
references with subfigures—the variability in how authors express these categories is far higher than 
might be expected.  The opposite problem, of ambiguity, exists as well.  For example, text strings like 
+/- are often used to indicate the genotype of experimental subjects, but they may also be used to 
indicate which panel of a figure to examine. 
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Methods and Materials 

The implementation consists of two decoupled classes (in the technical sense—it is available as Java 
classes or as Perl modules).  The first is optional.  Its function is to extract parenthesized material from 
text.  Its main advantages are that it can deal intelligently with unbalanced parentheses (of which we 
found 47 instances in the 97 documents of the CRAFT corpus6,7) and with embedded parentheses (of 
which we found 76 instances in the CRAFT corpus).  The second class actually classifies the text that 
has been extracted from parentheses. 

The classifier itself consists of a number of regular expressions.  Many of them are surprisingly 
complex, with multiple branching conditions.  The regular expressions are additionally notable in that 
they will accommodate a number of aspects of Unicode that would cause non-Unicode-aware regular 
expressions to make false negative errors in classification (i.e., they would not classify material 
incorrectly, but rather would fail to classify it at all).  This turns out to be an unexpectedly important 
aspect and advantage of the classifier, and we return to it in the Discussion section. 

If multiple categories occur within the same set of parentheses, then the classifier returns multiple 
categories, along with the character offset for each one.  For example, given an input like (0.79 ± 0.05, 
mean ± SEM compared with 0.76 ± 0.02, p > 0.7, Figure 6C), the system returns four labels— Data, 
Parenthetical statement, P-value, Table/Figure—with the character offset for each instance. 

 

Category Use case 

Gene symbol or gene 
abbreviation 

Gene normalization, coreference resolution 

Citation Summaries, high-value sentences, bibliometrics 
Data value 

 

Information extraction 
P-value Link weighting, meta-analysis 
Figure/table pointer Strong indicator of good evidence 
List element Mapping sub-figures to text 
Singular/plural Distinguish from other categories 
Part of gene name Gene normalization 
Parenthetical statement Potentially ignorable, or information extraction target 

Table 1.  Use cases for various types of parenthesized data.  These are expanded on in the Discussion 
section. 

Evaluation methodology 

We evaluated the classifier based on an annotated corpus.  An annotator with an advanced degree in the 
biomedical sciences manually examined 42 articles related to mouse genetics, found every example of 
parenthesized text, and marked it with the category to which it belonged.  The resulting data set contains 
7,820 annotations.  There was no double annotation, so we do not report inter-annotator agreement 
values.  

When multiple categories appeared within the same set of parentheses, they were all marked separately 
(see above for a relevant example). 

As would be expected, the resulting corpus displayed an imbalance in the categories.  Table 2 shows the 
distribution of categories in the corpus, arranged in descending percentage of instances.  We take this 
imbalance into account in reporting our results, giving both micro- and macro-averaged performance. 
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Category Percentage Count 

Parenthetical statement 22.98% 1,797 
Figure/Table 
abbreviation 

Stu 

22.46% 1,756 
Other 

 

19.80% 1548 
Citation 8.57% 670 
Abbreviation or acronym 6.16% 482 
Gene symbol or gene 
abbreviation 

3.96% 310 

Data value 3.90% 305 
P-value 2.03% 159 
NCBI reference 2.01% 157 
Descriptive statistics 1.99% 156 
Genotype or allele 1.83% 143 
Nucleotide sequence 1.25% 98 
Statistical test value 0.74% 58 
List element 0.73% 57 
Appositive 0.69% 54 
Part of gene name 0.36% 28 
Units 0.24% 19 
Singular/plural 0.19% 15 
Definition 0.05% 4 
Typographical error 0.05% 4 
Total annotations 100% 7,820 

Table 2.  Distribution of categories in the annotated corpus. 

Results 

We calculate accuracy and present results for each category; micro-averaged results for the entire data 
set (i.e., averaged over all instances); and macro-averaged results (i.e., averaged over all categories).  
Table 3 gives the results, ordered alphabetically by category. 

Category Percent 
correct 

Count  

Abbreviation or acronym 67.43% 325/482  
Appositive 0.00% 0/54  
Citation 96.87% 649/670  
Data value 72.46% 221/305  
Definition 0.00% 0/4  
Descriptive statistics 71.79% 112/156  
Figure/Table pointer 66.46% 1,167/1,756  
Gene symbol or gene 
abbreviation 

35.16% 109/310  

Genotype or allele 41.96% 60/143  
List element 0.00% 0/57  
NCBI reference 67.52% 106/157  
Nucleotide sequence 71.43% 70/98  
Other 55.49% 859/1548  
P-value 97.48% 155/159  
Parenthetical statement 78.13% 1404/1797  
Part of gene name 0.00% 0/28  
Singular/plural 100.00% 15/15  
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Statistical test value 91.38% 53/58  
Typo 100.00% 4/4  
Units 84.21% 16/19  
Total (micro-averaged) 68.09% 5325/7820  
Total (macro-averaged) 59.89% N/A  

 

Table 3.  Accuracy for the categories marked in the corpus.  The micro-averaged total is the total 
performance for all 7,820 instances.  The macro-averaged total is the average of the accuracies of all 
categories. 

Error analysis 

The main contributor to errors in general and to the micro-averaged accuracy in particular is the Other 
category.  The problem is the difficulty of differentiating between Other and Parenthetical statement. 
Impressionistically, we suspect that the annotation guidelines for these categories need to be sharpened.  
Ultimately, it may not be important to make this distinction, since there is no use case that requires 
differentiating between them. 

A number of categories with small numbers of members and low performance had negligible effect on 
the micro-average but a large effect on the macro-average. 

Very short strings are difficult to categorize without additional context.  For example, the single letter A 
might refer to a figure panel, a list element, or a nucleotide.  We discuss our plans to utilize context in 
the Future Work section. 

Discussion 

This paper has presented an application that parses out data from parentheses and classifies it into a 
number of classes, most with a defined use case in text mining.  We expand here on the use cases 
sketched briefly in Table 1. 

• Gene symbol or gene abbreviation: These categories are useful for gene normalization systems 
(systems that attempt to map a mention of a gene in text to a specific database entry, e.g. an 
Entrez Gene ID) and for coreference resolution systems.  In the case of gene normalization 
systems, mapping gene symbols to full gene names is often a crucial step in the algorithm.  
(We note that gene mention systems may be a better approach to this problem than our regular 
expressions.)  In the case of coreference resolution, mapping gene symbols to gene names is 
important for finding coreferring noun phrases in text; in fact, it has been hypothesized that in 
the case of multi-document summarization, the problem of coreference resolution for genes 
may be reducible to the gene normalization problem. 

• Citations: A number of uses have been identified for sentences that contain citations.  In the 
BioCreative shared tasks and in other work13, it has been shown that sentences that contain 
citations are often likely to contain information that should be a target for information 
extraction systems.  Citations have also been shown to indicate that a sentence is likely to 
provide strong evidence for assertions of interest.  In building summarization systems, 
sentences containing citations can indicate information that should be included in the summary, 
particularly for multi-document summarization systems.  Finally, such sentences are a key 
input to bibliometric studies.   

• Data values: Data values constitute a target for some information extraction systems. 

• P-values: P-values have several uses.  In systems that build networks based on literature 
analysis14,15, it might be desirable to weight links in the network by some measure of 
confidence, which could include the P-value attached to a link.  For meta-analyses, it is 
essential to be able to extract P-values.  Finally, some databases include the P-values attached 
to assertions in the database, e.g. PharmGKB (Y. Garten, personal communication), so there 
are applications to database curation. 
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• Figure/Table pointers: Experience from the BioCreative shared tasks suggests that sentences 
that contain pointers to figures or tables are strong evidence for assertions and may 
characterize the best evidential sentence in an article.  It has also been shown that it is useful to 
be able to map panels of figures to related sentences in abstracts16. 

• Parenthetical statements: The primary point of interest about parenthetical statements is that by 
definition, they are incidental to the assertion being made by a sentence, and therefore they can 
be ignored without harm.  This is important for a number of reasons, including knowing when 
it is not a problem to use the technique described above8 for improving parser performance by 
deleting parenthesized text entirely.  There is an alternative point of view, which is that 
parenthetical statements may themselves contain information that should be a target for 
information extraction; in this case, being able to recognize parenthesis contents as a 
parenthetical statement informs us what exactly the scope of the text making the assertion 
should be.  

• List elements: List elements are useful for mapping sub-figures to text. 

• Singular/plural: The main use for this category is to distinguish the parenthesized s from other 
categories, such as list elements. 

• Part of gene name: Parts of gene names are useful for the gene normalization task. 

Beyond the individual use cases described above, there are more general reasons why this multi-
category system was worth building, versus a proliferation of code written by individual system 
developers to classify one-off categories of their interest.  The following facts suggest that it was 
worth building and is a valuable tool to have: 

• Parenthesized data is pervasive in full-text biomedical journal articles.  The work presented 
here allows for a unified treatment of all such data, and for replicability of work involving any 
parenthesized data type. 

• The system allows for proper handling of Unicode characters. 

This last point is so important that we expand on it here.  PubMedCentral documents turn out to contain 
not just a large amount, but an astonishing diversity, of Unicode.  At first blush, this might not seem like 
an issue, since Unicode is handled natively by Java, Perl, and Python. For example, Java has Unicode 
support built into the language. The type ‘char’ denotes a Unicode character, and the ‘java.lang.String’ 
class denotes a string built up from Unicode characters.  However, it turns out that the Java regular 
expression language is buggy with respect to Unicode.  This has repercussions specifically for handling 
parenthesized data, since a number of characters that are common in parenthesized text in scientific 
writing are outside of the ASCII character set but in Unicode, e.g. ±, µ, α, β, χ, °, Δ, ≤, and ≥.  The 
character ± alone is the third-ranked Unicode character in PubMedCentral Open Access documents as 
of December 2010, constituting 7.03% of all Unicode characters in those documents.  (The second-
highest-ranking character is a non-breaking space, which breaks Java’s ability to recognize word 
boundaries in regular expressions.) 

Two of the categories that we attempted to distinguish, abbreviations and gene symbols, are difficult to 
distinguish with regular expressions.  Sophisticated system developers might want to combine the 
application described here with an application specifically designed to detect abbreviation/definition 
pairs11 and with one of the many currently available gene mention systems, and use the application 
described here for the other eighteen categories. 

We currently hypothesize that the major contributor to our errors is a combination of a less than optimal 
set of categories, and a need for better definitions of the categories that we use. Our work was originally 
driven by a specific set of use cases, but our annotations reflect a larger set of categories.  It is likely that 
some of these should be lumped together.  (This would clearly improve our performance—for example, 
just merging the Other and Parenthetical categories, which have no clear use case to distinguish them, 
raises the micro-average from 68% to 76%.)  For example, it is not clear from the annotations that there 
is a meaningful distinction between appositives and definitions.  We are currently pursuing this issue.  
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Future work 

The current version of the system examines only the content of the parentheses, ignoring context.  This 
causes a number of problems, including for instance our inability to differentiate between list elements 
and references to panels of figures.  In future revisions, we will allow the program to optionally make 
use of context if the user wishes to provide it. 

Conclusion 

This paper presents an application for parsing out and classifying the contents of parentheses, as well as 
a set of use cases that demonstrates the utility of such an application.  The application is available at 
bionlp.sourceforge.net, and the corpus will be made freely publicly available on completion. 
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