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Abstract 

SHARPn is a collaboration among 16 academic and industry partners committed to the production and distribution 

of high-quality software artifacts that support the secondary use of EMR data.  Areas of emphasis are data 

normalization, natural language processing, high-throughput phenotyping, and data quality metrics.  Our work 

avails the industrial scalability afforded by the Unstructured Information Management Architecture (UIMA) from 

IBM Watson Research labs, the same framework which underpins the Watson Jeopardy demonstration.  This 

descriptive paper outlines our present work and achievements, and presages our trajectory for the remainder of the 

funding period.  The project is one of the four Strategic Health IT Advanced Research Projects (SHARP) projects 

funded by the Office of the National Coordinator in 2010. 

Introduction 

In December of 2010, the Office of the National Coordinator (ONC) announced the Strategic Health IT Advanced 

Research Projects (SHARP)[1] as part of the federal stimulus project.  This report outlines the scope and trajectory 

of one of the four awarded projects which focuses upon secondary data use of information arising from Electronic 

Medical Records (EMRs). SHARPn[2] (for normalization) is a collaboration of 16 academic and industry partners to 

develop tools and resources that influence and extend secondary uses of clinical data. The program assembles 

modular services and agents from existing open-source software to improve the utilization of EHR data for a 

spectrum of use-cases and focus on three themes: Normalization, Phenotypes, and Data Quality/Evaluation. The 

program was assembled into six projects that span one or more of these themes, though together constitute a 

coherent ensemble of related research and development. The six projects are strongly intertwined and mutually 

dependent, specifically: (1) Semantic and Syntactic Data Normalization, (2) Natural Language Processing (NLP), 

(3) Phenotyping Applications, (4) Performance Optimizations and Scalability, (5) Data Quality Metrics, and (6) 

Evaluation Frameworks. All of these services are developing open-source deployments as well as commercially 

supported implementations. 

 

The secondary use of EHR sourced data is a broad domain.  It includes patient safety and clinical quality metrics and 

development programs as the most obvious, but other clinical applications range from clinical decision support to 

practice variation monitoring.  The entire categories of clinical and translational research are fundamentally 

dependent on effective secondary use of clinical information, including clinical trials, observational cohorts, 

outcomes research, comparative effectiveness, and best evidence discovery. 

 

Our vision is to develop and foster a federated informatics research community committed to open-source resources 

that can industrially scale to address barriers to the broad-based, facile, and ethical use of EHR data for secondary 

purposes.  Within this collaborative community, we seek to create, evaluate, and refine informatics artifacts that 

contribute to EHR data use for improving care, generating new knowledge, and addressing population needs.  We 

are committed to making all artifacts available as open-source tools, services, and scalable software.  However, we 

partner with industry developers for commercial deployment and support of our software artifacts, recognizing that 

many adopters will eschew exclusively open-source resources that may lack reliable, commercial support. 

 

The consortium of organizations funded and participating in SHARPn include:  Mayo Clinic, University of Utah, 

Intermountain Healthcare, Agilex Technologies, CDISC (Clinical Data Interchange Standards Consortium), 

Centerphase Solutions, Deloitte, Group Health Seattle, IBM Watson Research Labs, Harvard University & i2b2, 

Minnesota HIE (MNHIE), MIT, Mirth Corporation, State University of New York at Buffalo, University of 
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California San Diego, University of Pittsburgh, University of Colorado.  As is evident in Figure 1, the consortium is 

a blend of academic communities, large and small businesses, an HIT standards development organization, and a 

consulting group.  Such multidisciplinary talent is crucial to achieve the ambitious goals of the consortium. 

 

We structure our presentation around each project, although the interdependencies are substantial.  For example, the 

phenotyping algorithms rely heavily upon the pre-existing normalization of clinical data, to assure comparability and 

 

  

 
Figure 1 SHARPn Project Organization 

 

consistency of cohort retrieval among medical centers with differing EHR environments.  Our closing discussion 

paints the spectrum of development and application which we target. 

 

Semantic and Syntactic Normalization  

 

An underlying principle for secondary data use is that all applications are more efficient and reliable if the data on 

which they are premised is comparable and consistent[3].  One way to make heterogeneous data from disparate EHR 

systems comparable and consistent is post-hoc normalization.  This is precisely what we engineer with our first set 

of software appliances.   

 

As with most of our software developed in SHARPn, we invoke the Unstructured Information Management 

Architecture[4] (UIMA) as our framework; this open-source artifact from IBM Watson Labs – the framework on 

which the Watson Jeopardy engine was built – is described in more detail in the Performance Optimization project 

below.  We provide two dimensions of normalization, essentially syntactic and semantic. 

 

Syntactic normalization relies heavily on the 20-year history of Health Information Exchange (HIE) and disparate 

data source normalization undertaken by the Regenstrief Institute and the Indiana HIE.  The Regenstrief team has 

developed a normalization pipeline, Health Open Source Software
[5]
 (HOSS), which will soon be formalized as 

open-source.  HOSS excels at making ill-formed HL7 message contents into well-formed structures. Since these 

algorithms have accreted over decades, a SHARPn task will be to modularize and simplify normalization task 
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elements, and render them in a high-throughput UIMA-AS[6] pipeline.  SHARPn will publish these normalization 

algorithms and a reference implementation of their deployment in UIMA. 

 

Semantic normalization invokes the mature technologies emergent from Mayo’s open-source LexGrid project[7] for 

terminology services, and in particular the caBIG supported LexEVS implementation[8].  Semantic normalization is 

not magic, and ultimately depends upon the creation or availability of mapping files, for example local laboratory 

codes into LOINC.  However, Pareto optimization pertains, where in practice 99% of the cases are handled by 2% of 

the codes, making practical map creation scalable and practical.  The standards-based generalization of these 

terminology services will soon be manifest in the CTS2 (Common Terminology Services) specification being 

finalized by HL7 and the Object Management Group.  Our final semantic normalization functionality will wrap 

CTS2 services as UIMA artifacts, which are callable by a variety of SHARPn use cases, including NLP. 

 

Both syntactic and semantic normalization require that a “common” form, or canonical representation, is specified 

as a target for normalization activities.  While the HOSS pipeline has worked well using HL7 message syntax as a 

de facto normalization scheme, we believe that additional specificity is needed to address the spectrum of use-cases 

in secondary data use, and the clinical granularity of information being generated in today’s EHRs.  SHARPn has 

chosen the Clinical Element Models[9] (CEMs), historically developed by Intermountain Healthcare, as our 

canonical representation.  They are described as: “the basis for retaining computable meaning when data is 

exchanged between heterogeneous computer systems as well as the basis for shared computable meaning when 

clinical data is referenced in decision support logic.” Presently, over 4,000 XML schema for CEMs, such as blood 

pressure measurement or specific laboratory tests, are defined.  SHARPn, and a growing consortium of informatics 

users, are contributing to the CEM library, which is an open-source artifact. 

 

Natural Language Processing (NLP)  

 

Within the NLP project, our goal is the development of enabling technologies for high-throughput phenotype 

extraction from clinical free text. In parallel, we are exploring the ability to hybridize clinical data extracted from 

medical reports with the already-structured data existing in data repositories to facilitate a complete phenotype. Our 

focus is NLP and Information Extraction (IE), defined as the transformation of unstructured free text into structured 

representations. Thus our goal is to research and implement general purpose modular solutions for the discovery of 

key components to be used in a wide variety of biomedical use cases. Specifically, our efforts are on methodologies 

for clinical event discovery and semantic relations between these events. Subsequently, the discovered entities and 

relations will populate normalization targets, in our case the CEMs where each CEM is invoked through the concept 

SNOMED CT or RxNORM code. 

 

Labeling atomic events with their arguments facilitates more complex processing of the textual data such as 

identifying temporal information facilitates causal reasoning. Therefore, the discovery of clinical events and entities 

is the building block of a relation-extraction system for deep language understanding. Our methods use as features 

the local and global linguistic and domain context through multi-layered linguistic annotations generated by clinical 

Text Analysis and Knowledge Extraction System (cTAKES)[10][11], University of Colorado’s CLEAR TK[12], 

and the tools provided by the participating co-investigators. The extracted features are then fed to train a machine 

learner to distinguish events from non-events and to label each event. Our relation-extraction methodology relies on 

the syntactic structure of the sentence and each constituent’s semantic role in that sentence (e.g., “patient,” “agent,” 

“theme,” “location”) and employs machine learning. Concept graphs[13, 14] are then used as the knowledge 

representation for the discovered relations across the sentences in the given document. Events and entities are the 

nodes with the edges between the nodes being derived from the semantic relations. The information in the concept 

graphs is used to populate the CEM-based templates for entities and relations. In addition, we are exploring active 

learning techniques[15] to minimize the amount of training data. Each module will be evaluated in a standard 10-

fold evaluation (9 folds for training, 1 fold for testing) for its task against the gold standard.  

 

The engineering framework within which the NLP project functions is UIMA AS. Core technologies such as 

cTAKES and CLEAR TK are built within UIMA providing a solid basis for expandability and software 

development. One of the main UIMA concepts is that of a type system, which defines the annotations and their 

structure as generated by the pipeline. An agreed-upon basic type system ensures a software development 

foundation. Among our goals is to release to the community such a basic type system around which new modules 

can be contributed or existing modules can be wrapped within cTAKES.  
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The NLP project has set forth an aggressive release schedule. The core system, cTAKES, has been expanded with a 

number of modules. The dependency parser (released September, 2010) uses the CLEAR dependency parser[16], a 

state-of-the-art transition based parser developed by the CLEAR computational semantics group at the University of 

Colorado at Boulder. The Drug profile module (released December, 2010) discovers medication mentions in the 

patient’s clinical notes, normalizes them to an RxNORM code and populates a template with relevant attributes such 

as dosage, duration, start date, end date, form, frequency, route, strength. The Smoking status classifier (released 

March, 2011) assigns each patient one of four smoking status labels: current smoker, past smoker, non-smoker and 

unknown[17]. Among our 2011 releases are a full cycle prototype for processing text through cTAKES and 

populating OrderMedAbm CEMs (of note, OrderMedAmb represent medications). Thus, by fall of 2011, the 

phenotype applications project will be enabled to start directly consuming output from the NLP artifacts,  

 

Phenotype Applications  

 

The term phenotyping is significantly overloaded in our application of meaning.  Our use implies the algorithmic 

recognition of any cohort within EHR for a defined purpose.  These purposes were inspired by the algorithmic 

identification of research phenotypes[18] in the NHGRI funded eMERGE (electronic MEdical Records and 

GEnomics)  cooperative agreement consortium[19] in which Mayo is a founding member; these phenotype 

algorithms are used to define case and control cohorts for genome-wide association studies (GWAS).  However, the 

SHARPn view of phenotyping includes inclusion and exclusion criteria for clinical trials, numerator and 

denominator criteria for clinical quality metrics, epidemiologic criteria for outcomes research or observational 

studies, and trigger criteria for clinical decision support rules, among others.  Nevertheless, the underlying principles 

of using well-defined algorithms across diagnostics fields, laboratory values, medication use, and NLP-derived 

observations adheres to the practices demonstrated in eMERGE[20]. In the following paragraphs, we introduce and 

discuss a range of research topics and issues addressed by this sub-project within the SHARPn program. 

 

A key aspect of the EHR-based phenotyping algorithms is the ability to implement and execute them across multiple 

institutional boundaries and EHR system settings. While we were highly successful in eMERGE to achieve this 

goal, one of the limitations was the lack of a structured representation that can be leveraged for algorithm design and 

specification. Consequently, all the phenotyping algorithms developed by the eMERGE consortia resided in 

Microsoft® Word and Excel files without necessarily following any particular template and structure, making them 

primarily amenable to human consumption and interpretation. There are two main issues with such an approach: 

first, due to the lack of any structure or template used for algorithm representation, the algorithms themselves are not 

computable and machine processable, even semi-automatically, and second, the unstructured nature of the 

algorithms introduces the risk for misinterpretation and ambiguity in cohort eligibility criteria specification. Figure 

2, for example, shows a graphical representation of the hypothyroidism algorithm developed within eMERGE. To 

address this limitation, in SHARPn we are investigating structured eligibility criteria representation models, in 

particular CDSIC’s Protocol Representation Model (PRM[21]). Based on the BRIDG model[22], PRM provides a 

standardized template and artifacts for specifying different aspects of a cohort eligibility criteria, thereby enabling 

case/control definitions for the phenotyping algorithms to be represented in an XML-based representation. While 

one has to still interpret, implement and execute information stored the XML files for the algorithms (that is, the 

XML files cannot be executed directly within an EHR system), PRM nonetheless provides a structured 

representation that can be queried and parsed via software applications. In fact, our goal is to implement a publicly 

available Web-based library of phenotyping algorithms that can be accessed and searched by a range of clients. 
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Figure 2 Hypothyroidism algorithm (courtesy of the eMERGE consortia) 

Related to the topic of cross-institutional implementation and execution of phenotyping algorithms, is understanding 

and addressing issues related to the variation and heterogeneity of EHR data across multiple institutions for a given 

disease or phenotype that arise due to a multitude of factors including modalities of data recording, storage, and 

organization. For example, the usage of a particular or set of ICD-9 codes or prescription of a specific brand of drug 

may vary across institutions, which arguably would result in the variability of algorithm query results, as well as, 

potentially cause issues in multi-site data integration and analysis. In SHARPn, one of our goals is to evaluate the 

extent to which such variability can result into issues for a comparable case/control definition, at least based on data 

from Mayo Clinic and Intermountain Healthcare. 

 

Another key aspect relevant to EHR-based phenotyping algorithms is a cost-benefit analysis from the perspective of 

time and effort spent in algorithm design, execution and validation. Specifically, the historic norm for cohort 

identification has been to rely on manual chart/nurse abstraction and/or leverage billing and diagnoses codes (ICD-9, 

and CPT-4 primarily). The former is arguably non-scalable, expensive and time-consuming, while the latter is error-

prone due to biases in coding practices. As evidenced by Figure 2 above, the EHR-based phenotyping algorithms on 

the other hand, apply a range of information typologies, including laboratory measurements and medications, which 

typically require development of sophisticated natural language processing techniques. This obviously raises the 

“cost-benefit” question for requiring the additional effort and resources for such an elaborate process. Led by 

Centerphase, within SHARPn we are currently implementing a pilot study to understand such issues more 

coherently for Type 2 Diabetes cohort identification. Specifically, our goal is to compare and document the pros and 

cons, primarily from a time, effort, resource, and cost perspective, in EHR-based phenotyping algorithm design and 

development. 

 

The data flow for phenotyping has demonstrated convincingly that a persistence layer for clinical data is required. 

This is because phenotyping constitutes a question/answer process, where within an algorithm one ascertains 

whether a particular patient does or does not manifest definitional criteria. This persistence layer can be in any 

manner forms, including: tag data elements, RDF triple stores, or conventional modeled databases. For convenience 

in our development phases, we opt for SQL database technology although we recognize that decision is arbitrary.  

Our ultimate goal is to decouple the algorithms from any physical implementation of a persistence layer. 
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The clinical data persistence layer also comprises storage target for normalization services, including NLP.  

Phenotyping algorithms, to ensure reproducibility across EHR environments, are dependent on well-normalized  

data. Thus, one can regard the persistence layer as a data store for normalized representations.  Because phenotyping 

is question and answer by nature, it would seem efficient to normalize data in batches, and pose questions against a 

normalized persistence layer.  However, one can envision posing question across an HIE environment, doing just-in-

time normalizations on the answers, thereby supporting phenotyping over a denormalized, distributed collection of 

clinical data. 

 

Performance Optimization  

 

UIMA[4] is a freely available, Apache Software Foundation open-source project, intended to bring interoperability 

and reusability in the arena of unstructured information analytics.  It has been widely adopted by both academic and 

commercial developers, and is helping to create a community of unstructured information analytics developers that 

build upon each other’s work.  Mayo Clinic was the alpha user of UIMA in 2003, using it as the backbone for our 

cTAKES NLP pipeline. UIMA includes an asynchronous scaleout capability, UIMA-AS[6] (AS = Asynchronous 

Scaleout), that is very effective in exploiting both multi-core architectures and clusters of networked machines to 

achieve high throughput.  This capability was recently demonstrated by IBM’s Watson when it competed on the TV 

show Jeopardy!
®[23]

 Watson used UIMA-AS to scale out the processing needed to compete on Jeopardy! to 

thousands of compute cores.  UIMA-AS forms the core framework for SHARPn software artifacts. 

 

The SHARPn infrastructure approach attempts to span both immediate program needs, supporting the researchers in 

their quest for new and improved algorithms, while at the same time yielding a framework immediately available for 

evaluation and production implementations. SHARPn partnered with Mirth Corp. to develop a new adapter to their 

MIRTH CONNECT[24] op

SOAP, XML, etc.), the new

F  

 

igure 3 UIMA integration into MIRTH translation platform
 

en source interface engine, already supporting various protocols (HL7 2.x, HL7 3.0, 

 adapter enables any number of  UIMA based algorithms developed and published by 
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the project to be invoked from clinical data flows.  The diagram below depicts the design of the new adapter to be 

used to host UIMA processing. 

 

UIMA represents a extremely useful infrastructure for high performance processing, and its overall utility within the 

SHARPn project will be investigated, however another infrastructure to also be utilized within the project  is WS-

BPEL, specifically those services provided via Apache ODE. By utilizing MIRTH CONNECT’s existing SOAP 

capabilities, Service Oriented Architectures will be evaluated and contrasted with the UIMA pipelines capabilities to 

determine the relative benefits of each to the goals of the project. 

 

It is interesting to note that the entire software stack used by the project is open source, components utilized were: 

Ubuntu for its cloud computing, NHIN CONNECT for its secure internet exchange support, MIRTH CONNECT as 

the hosting hub for UIMA-AS, and WS-BPEL, as well as JBOSS to host the ODE web services orchestration engine 

and MySql for persistence services for both test data sets and results output. The diagram below depicts the flow 

enabled via the use of these open source packages. 

 

This means that any group wanting to evaluate the solutions developed by the SHARPn program can do so with 

minimal costs, those groups interested in accessing the fitness of the NLP, Data Normalization or Phenotyping 

algorithms developed are immediately enabled to carry out experiments and those wanting to utilize the algorithms 

in production can do so by installing the software within their local environment. 

 

Evaluation Framework and Data Quality Metrics 

 

The initial evaluation strategy is to exchange normalized data (as produced in the normalization pipeline) as the 

payload in NHIN Connect services communicating via the internet between Intermountain Healthcare in Salt Lake 

City and the Mayo Clinic in Rochester.  A first working version of this communication will transmit de-identified 

laboratory data from Intermountain to a normalized data store that exists within the cloud at the Mayo clinic.  Data 

in the form of HL7 Version 2 messages will be sent from Intermountain to an instance of the Mirth interface engine 

installed within the Intermountain network.  The interface engine will interact with LexEVS terminology services 

and with UIMA components to convert the HL7 Version 2 message into a normalized Clinical Element (CE) 

instance.  Coded data within the CE instance will be represented using LOINC and SNOMED CT codes.  

Normalization of the CE instance will be guided by the definition of the LOINC code, SNOMED CT value set, 

allowed units of measure, numeric constraints, and other information contained in the definition of the specific 

Clinical Element Model for the kind of lab data being sent. When the normalized CE instance has been created, the 

Mirth interface engine will initiate communication through a standard NHIN Connect Gateway that has been 

installed in the Intermountain network.  The normalized CE instance will be placed as the payload within the NHIN 

Connect message, and the gateway will transfer the data to another instance of an NHIN Gateway that has been 

installed at the Mayo Clinic in Rochester.  The NHIN gateway will forward the data to an instance of a Mirth 

interface engine installed in the Mayo cloud.  The Mirth interface engine will then persist the data into a de-

identified patient data store in the Mayo cloud.  If the laboratory data includes elements that are free text, the Mirth 

engine will invoke an NLP pipeline to extract coded data from the free text.  The newly extracted coded data would 

then also be stored into the patient data store. 

 

Once we have the communication link working from end to end, we will evaluate the availability, stability, and 

performance of the system, as the primary framework for system throughput evaluation and benchmarking for 

continuing improvement strategies. 

 

An important issue in secondary use of EHRs, is the variation across health care delivery institutions in the way 

medical information is recorded and coded.  For example, the rate at which a given ICD-9 code is used may vary 

across institutions, even though the rate at which the condition exists may not vary.  Such variations have potentially 

large implications both for the goal of generalizing findings from EHR analysis from one institution to a broader 

population, as well as for combining EHR-based results across institutions.  It must be acknowledged that true 

variations across institutions in disease prevalence also exist, due to ethnic and cultural differences, behavioral and 

climate differences, genetic differences, etc.  Nevertheless it is important to understand how variations in data 

collection and representation affect the ability to use EHR in a generalizable way. 
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In order to develop valid methods for combining information across health care delivery institutions, it is important 

to understand the variation in the EHR data relative to any given disease or phenotype.  An example of a SHARP 

test case for automated determination of phenotype for subjects within a health system is that of the phenotype “type 

2 Diabetes Mellitus”.  Northwestern University, as a member of the eMERGE consortium, developed an algorithm 

for identifying cases with this phenotype based on routine EHR documentation.  It would be important to understand 

to what extent the application of this algorithm, or any other algorithm, yields comparable case definition across 

Mayo Institute and Intermountain Health Care. At the end of this test case, we should be able to characterize 

differences between these 2 institutions, in terms of recording and coding of diagnoses, billing codes, lab results, 

medications, etc., that would have an impact on the generalizability of algorithms for phenotyping Type 2 DM.   

 

Finally, we hope that this study will pave the way for a broader study on data heterogeneity issues relevant to inter-

institutional mining of the EHR for secondary purposes.    

 

Discussion 

 

The challenges confronting all users of EMR data, with respect to comparability and consistency, are formidable.  

These challenges are magnified for secondary use cases, where data aggregation, integration, inferencing, and 

synthesis are made more complex in the face of heterogeneous data from disparate sources.  SHARPn seeks first to 

facilitate data normalization through sharable software resources, including the generation of structured information 

from unstructured data through NLP.  Drawing from virtual, distributed, or locally resident persistence layers of 

normalized clinical data, the execution of standardized phenotyping algorithms, for a spectrum of cohort 

identification use-cases, from libraries of well-curated and validated phenotyping standards will facilitate the speed 

and reduce the effort levels associated with reliable secondary use applications.  Finally, establishing metrics for 

reliability and establishing frameworks for incremental improvements will continuously drive the quality and 

consistency of our software. 

 

Substantial limitations persist, not the least being the unavoidable requirement for well-curated semantic mapping 

tables among native data representations and their target standards.  This impediment remains restricted by human 

authoring and review, though some promising techniques for semi-automated mapping algorithms are beginning to 

appear.  Fortunately, surprising large fractions of real data appear to be addressed by a modest proportion of all 

possible mapping, making this labor intensive step reasonably scalable, if one is willing to trade off 100% 

completeness for semantic transformation.   

 

More interestingly, SHARPn has created a community which not only interacts remarkably well within itself, but is 

creating strategic links with related projects such as many of the Nation Centers for Biomedial Computing, including 

the National Center for Biomedical Ontology (NCBO), Informatics for Integrating Biology and the Bedside (i2b2), 

and Integrating Data for Analysis, Anonymization and SHaring (iDASH).  The modular, open-source nature of 

SHARPn deliverables enables innovative adoption by academic groups and developers.  However, as SHARPn 

matures, our commercial partners will lead the path toward commercially support implementations of  SHARPn 

technologies which should expand our adoption community to a much broader audience.  Nevertheless, its status as 

“middle-ware” will always limit any highly visible manifestations of the tools to end-users of secondary use 

applications. 
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