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We are interested in understanding the mechanisms behind and the character of the sway
motion of healthy human subjects during quiet standing. We assume that a human body can
be modelled as a single-link inverted pendulum, and the balance is achieved using linear feed-
back control. Using these assumptions, we derive a switched model which we then investigate.
Stable periodic motions (limit cycles) about an upright position are found. The existence of
these limit cycles is studied as a function of system parameters. The exploration of the
parameter space leads to the detection of multi-stability and homoclinic bifurcations.
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1. INTRODUCTION

In spite of recent advances in revealing the mechanisms
responsible for balancing during quiet standing (see
[1-11]) the physiological mechanisms are far from
being understood. In recent years, there has been a
growing interest among scientists to use mathematical
modelling and numerical simulations to gain new
insights into the problem of balancing. In the literature,
it has been argued that forward body sway can be cap-
tured using models where the muscles and tendon—
muscle complexes act as springs with certain stiffness
and the neuromuscular system generates the corrective
torque [12-15]. Models based on these assumptions
have been tested experimentally [8,12,13,16]. In the
studies of Maurer & Peterka [8] and Peterka [16], a
single-link inverted pendulum model with simple
linear feedback was introduced. Different feedback
laws were considered to obtain the best match to exper-
imental data, and it was shown that a corrective torque
proportional to the position and velocity signals com-
bined with time delays can be used to account for the
body sway observed experimentally.

Early work [17] suggested that intermittent control
plays an important role in human motor control.
Recent research [18,19] shows that intermittent control
is a mechanism that can explain the results found in
experimental tests. However, the authors also point
out that there are alternative control models that can
reproduce experimental results. Further research is
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needed to design experimental tests that can help to dis-
criminate between different control models. An
alternative model for human postural sway was con-
sidered in Eurich & Milton [20]. In this work, the
authors use a reduced first-order model with a time-
delayed feedback. In place of intermittent control,
Eurich & Milton [20] consider a switched control
system depending on a threshold for the angular pos-
ition. For the first-order model, Eurich & Milton [20]
show the existence of bi-stable limit cycles. In the
study of Milton et al. [21,22], the switch-like balance
controller was considered as a type of intermittent con-
trol. The idea of switched control was further explored
in Milton et al. [23,24]. The authors considered a
model with switched control, random perturbations
that model noise, and time delay. It was shown that
the interplay between noise and time delay may have
a stabilizing property. The authors also argued that
the control applied by humans is an adaptive switched
control. The idea of switched control applied by
humans during quiet standing serves as a starting
point for the modelling approach adopted in this paper.

We approach the problem of human balancing by
considering the subjects standing on both legs with
eyes closed or open. We are interested in investigating
the sway motion that occurs in the sagittal plane, i.e.
we consider a forward—backward body sway.

The following assumptions are made:

— the body control is achieved using proprioception
only (reception of internal signals such as posture

This journal is © 2011 The Royal Society
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and body sway through the length and elongation
velocity of the muscles);

— we include time delays in the control system that
represent the combined delays owing to sensory
reception, neural transmission, neural processing,
muscle activation and force development of the
proprioception motor-neural control system;

— we exclude the control effects of exteroception (sen-
sing of external signals such as pressure) and
vestibular system (it senses the angular velocity
and the acceleration of the head). We Dbelieve
that an inclusion of these effects should yield
additional terms in our model such as, for instance,
force feedback or a control term proportional to the
measured acceleration;

— we assume a threshold value of the angle of the
sway below which the motor-neural control of
the proprioception is not applied, similarly as in
the work of Eurich & Milton [20]. This assumption
is justified by the finite accuracy of sensing, as well
as by the recent finding of impulsive like control
muscle movements reported in Loram et al. [18];

— we assume that the motor-neural control of the mus-
culoskeletal system when sensing the error works like
a PD (proportional—derivative) control system with
the time delay in the position and velocity error
signals. The letter ‘P’ refers to the corrective torque
that is proportional to the error signal between the
desired angle 6r (6ef=0 in our case) and the
measured angle multiplied by the proportionality
factor, say K, that can be thought off as a stiffness
factor. The letter ‘D’ refers to the corrective torque
that is proportional to the velocity of the error
signal between the desired velocity of the angle 6,
(6t = 0 in our case) and the measured angular vel-
ocity with the proportionality factor, say Ky, that
can be thought off as a damping factor.

Owing to the presence of a threshold value, our model is
a hybrid (switched) system with time delay. The model
we propose is similar to the one studied in Asai et al.
[25]—the PD control is switched on or off depending
on the value of state variables. The model studied in
Asai et al. [25] is an extension of the studies conducted
in Bottaro et al. [26,27] where the authors introduce
intermittently switched on/off controller that allows
for a bounded motion, and it is this type of control
which Asai et al. [25] propose as the possible expla-
nation for the sway motion during quiet standing. In
the study of Asai et al. [25], it is also shown that the
bounded dynamics is linked with a motion along the
stable manifold of a saddle point. The control strategy
used in Asai et al. [25] is based on the assumption that
a bang—bang control does not allow sufficiently small
bounded motion [27] to be produced, with the sway angle
of about 1°, which could correspond to the sway motion
during quiet standing. In our paper, we consider the sim-
plest possible form of a dead zone, which is physiologically
feasible, and we show in §4.4 that small scale stable peri-
odic oscillations may be observed in bang—bang control
systems in the presence of a dead zone.

We briefly summarize the results of our investi-
gations. In order to maintain balance, the control of
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the proprioceptive system must use both: (i) the infor-
mation on the elongation and (ii) the information on
the velocity of the elongation of the muscles. This
agrees with the fact that to stabilize an inverted pendu-
lum (for small angles 6 when the linear model of the
pendulum is assumed) a linear controller must at least
use the proportional and derivative signals of the
error. Stabilization is achieved through the existence
of stable oscillations about an offset angle + 6, where
6y corresponds to the size of the dead zone. For a
broad range of parameters, these oscillations are
accompanied by stable larger scale oscillations. The
difference in the amplitude of the angle of larger scale
oscillations in relation to smaller scale oscillations is at
least two orders of magnitude. In the context of upright
standing, the small scale oscillations can be seen as a
jitter about the nearly upright position; the ideal
upright position cannot be achieved owing to our
assumption that the motor-neural control of the musculo-
skeletal system only reacts to values larger than the
aforementioned offset angle ||, which is physiologi-
cally determined. By adding white noise to our model
equations, we numerically show that close to a homocli-
nic bifurcation the system dynamics switches between
two symmetric attractors. This scenario can explain
noise-induced switchings between two coexisting attrac-
tors reported in Eurich & Milton [20]. Finally, we
should note that multi-stability as well as the presence
of periodic oscillations have already been reported in
the literature on switched delay differential equations,
see [28—-31]. However, the delay differential equations
studied in these works contain discrete time delay in
the position feedback only.

The rest of the paper is outlined as follows. In §2; a
class of systems of interest is introduced. The system
without the time delay in control function is first studied
in §3. We then go on to explore the effects of time delay on
system dynamics in §4. In the following §5, we introduce
the modifications to the model that will be tested in the
future. Finally, §6 concludes the paper.

2. THE MODEL EQUATIONS

We simplify the biomechanics of the body by represent-
ing it as an inverted pendulum with the body sway
occurring in the sagittal plane about the ankle joint
axis. Gravity ¢ acts on the centre-of-mass when the
angle 0 (measured in radians) between the vertical
ankle joint axis and the body’s position becomes
non-zero; when there is no sway the body is vertical
and 0 = 0. The centre-of-mass m is located at height
h above the ankle joint axis.

We assume that to control the upright position a cor-
rective torque T is applied through a PD controller
when some fixed, but non-zero, positive threshold 6, is
detected.

This leads to the following model equations:

J§ = mghsin(¢) for |¢| < o,

when there is no control applied to the system, and

J¢$ = mghsin(¢p) + T for |¢| > ¢,

(2.1)

(2.2)
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when the PD control is switched on; J is the moment
of inertia of the body about the ankle joint axis. The
delay terms are present in the applied torque generated
by the PD controller. Namely,

T= Kd(t— M)+ Ka(t—A),  (2.3)
where K, and K, are negative constants, and Ay, Ay >0
are time delays.

We make a number of observations regarding the
physical interpretation of the model. For |¢| < ¢y,
the equations that govern system dynamics describe
the dynamics of an inverted pendulum falling under the
force of gravity. On the other hand, for |¢| > ¢, we
have J¢ = mgh sin(p) + K,(t — A1) + Kad(t — As).
For A; =A,=0 and sin(¢)=¢, this equation is an
equation of motion of a linear oscillator where the stiffness
coefficient is given by (— K,—mgh)>0 and the damping
by — K4>0. For A; and A, non-zero and positive, we
obtain a second-order linear delay differential equation
whose dynamics is significantly more complex than that
of a second-order linear oscillator [32,33]. For sufficiently
small A; and A,, and under appropriate continuity
assumptions, the dynamics of the delayed system can
be studied using a set of ordinary differential equations
(ODEs) [34]. However, the presence of switchings makes
this reduction impossible even for small values of time
delays.

Making the approximation sin¢g = ¢, which is justi-
fiable for small angles ¢ of the body sway, the model
equations (2.1) and (2.2) become

J .
m—ghd) =¢ for |p| < ¢ (2.4)

and

I

- (2.5)

. T
¢:¢+m—gh for [¢] > .

To reduce the number of parameters, we study
system (2.4) and (2.5) in the mnon-dimensional
form; we introduce the non-dimensional time
t=1/(g/h)t and set &(t) = 6(t), =(t)=de(t)/dt.
Then ¢(t) =6(1)(\/g/Vh) and &(t) = (g/h)6(T) and
we obtain

6= A0

for |0| < 00 (26)

and

6=A0+T for|6] > 6, (2.7)
where A = mh?/J, T = BO(t — 1) + Cx(t — =), with
B=hK,/gJ, C=vhKp/\/3J, 7 =(/g/Vh)A and
7 = (/g/Vh)As. In what follows, we drop the bar
symbol when referring to non-dimensional time.
Setting x =6 and using first-order representation, we

arrive at a planar switched (Filippov) system of the form
o(1) 0(t)

Fn=1" =1L , for |0 <6 2.8

(%) =2(%0) worioza e
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0
f 0] > 6y,
* (BH(t—Tl)JrCI(t—TQ)) or 161> 6
(2.9)
where
0 1
L= (A O>' (2.10)

3.SYSTEM DYNAMICS FOR 7, = 75 = 0, AND
T # O, To = 0

3.1. Switched system with no time delays

We start our investigations by discussing the dynamics
of switched systems (2.8) and (2.9) for 7, = = 0. We
first make the following observations:

— let x = (6, z) then, by the symmetry, we have that
_F'in<_x) =k (X) and _Fout(_x) = Fout(x);

— the integral curves of Fj, are symmetric with
respect to the 6 and 6 axes.

Second observation implies that if an integral curve of
F,, crosses the switching line 3, at some point a # 0
then it either crosses 33 = {0= 6y}, at —a or 35 =
{0= —6y} at a. Similarly, if we consider a € 3, then
the integral curve either crosses 3, at —a or 3, at a.

The only equilibrium of equations (2.8) and (2.9) is
the origin or a pseudo-equilibrium. A pseudo-equili-
brium of equations (2.8) and (2.9) is the equilibrium
of the full systems (2.8) and (2.9) that lies on the
switching line 3, or 3.

For A>0, the origin is an equilibrium of a saddle
type characterized by the eigenvalues u; = —V/A and
Mo = VA  with the associated  eigenvectors
iy = [1, —VA] and i, = [1, VA].

Lemma 3.1. Consider equations (2.8) and (2.9)
with A > 0, and B and C negative , and such that A +
B < 0. Then the only equilibrium of equations (2.8)
and (2.9) is the origin. There are also two accumulation
points (pseudo-equilibria) which are located at (— 6y, 0)
and (8y, 0). The origin is an equilibrium of a saddle type
and the pseudo-equilibria are the only two global attrac-
tors of equations (2.8) and (2.9). The basins of
attractions of these two pseudo-equilibria are separated
by the piecewise-smooth invariant manifolds of the
saddle point of the full systems (2.8) and (2.9).

Proof. The first part of the lemma is trivial. The
right-hand sides (RHSs) of equations (2.8) and (2.9)
consist of sets of linear equations. If the determinants
of matrix L given by equation (2.10) and the matrix

0 1
A+B C)

are non-zero, which is true for A>0 and A + B<O0, then
the only possible equilibria are located at the origin. It
is vector field F}, that is defined in the neighbourhood of
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the origin. Then for A>0, the equilibrium is of a sad-
dle type as the eigenvalues of L are u; = —VA and
Mo = VA. The only other possible equilibria are
pseudo-equilibria which may only occur on the switch-
ing lines at points where the 6 component of vector
fields F;, and F,; is 0. It is easy to verify that this is
the case only at (— 6, 0) and (6, 0).

To prove the second part of the lemma, we first note
that any point (6, z) within the zone |0] <6, reaches
some point on + 6 in finite time at some point, say
P,. Let us suppose that P; lies on the positive part of
3. From P, the flow follows the flow generated by
F, until some point P, € 3; is reached. The equations
of motion along this segment of the flow are given by

6—(A+ B)o= Cé.

Let —(A+ B) =4 and set H = ((1/2)6 +(A/2)6?),
and multiply both sides by 6. We then have
e’ <o,

dt

Thus, P, must be closer to the origin than P;. From

P,, the flow follows

6— A6 =0.

Using the energy argument again, and owing to the
fact that 3; and 3, are placed the same distance away
from the origin, the energy at the next point of switch-
ing with 3, or 35 is the same as at P,. There is a loss of
energy only owing to the application of the flow Fj
and after subsequent switches between F;, and F,
the trajectory will converge to either of the two
pseudo-equilibria since at these two points the system
F, . reaches its lowest energy.

Finally, to determine which pseudo-equilibrium is
reached, we have to find the intersection points of the
unstable and stable manifolds of the saddle point with
3, (i=1,2). Concatenated segments joining subsequent
intersection points form piecewise-smooth stable and
unstable manifolds. By considering the evolution of a
single trajectory, we can then show that the trajectory
will be moving within a region bounded by the stable
and unstable manifolds of the saddle point until it
reaches either one of the two pseudo-equilibria. Owing
to system’s symmetry if some point P, converges to
(6, 0) then — P, will converge to — (6, 0).

Tllustrative trajectory of switched systems (2.8) and
(2.9) with A=0.5, B=—-0.6, C=-0.5, =1 and the
initial conditions (6, 7y ) = (1,0.4) is depicted in figure 1.

If A+ B<0and Cis identically 0, it is easy to verify
that our system exhibits an infinite number of periodic
orbits which can be thought of as centres. Two representa-
tive periodic orbits for this case are depicted in figure 2.

If, on the other hand, B=0 and C'<0 then the
system trajectories will diverge to + oo.

We conclude this section with the physical interpret-
ation of our results. When both the proportional and
derivative control are applied instantaneously (no time
delay owing to sensing, processing and actuation) then
provided that A + B < 0 it is possible to achieve perfect
stabilization. However, the angle 6 at which the body is
stabilized is offset from the vertical angle 8 = 0.

J. R. Soc. Interface (2012)
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Figure 1. Illustrative trajectory of switched systems (2.8) and
(2.9) for A=0.5, B= —0.6, C= —0.5, 6y =1 and the initial
conditions (6, 7y ) = (1,0.4) converging to a pseudo-equilibrium
(6 0, 0). The eigenvectors are depicted as solid lines.

3.2. Effects of the damping term and the position
delay (t; # 0 and 75 = 0)

Our model system can be thought of as a generalization
of the model studied by Eurich & Milton [20]. In this
work, the authors model human postural sway using a
second-order ODE, which models inverted pendulum
falling under the force of gravity, subject to time-
delayed restoring force and noisy perturbation. Using
an assumption that the postural sway is overdamped,
for healthy subjects with eyes open, they reduce their
model to a first-order system. Our numerics suggest
that this reduction removes stable pseudo-equilibria
present in the second-order system. Thus, the reduced
system does not have the possibility of producing
multi-stable behaviour in the sense of having more
than one pair of stable asymmetric orbits; by the sys-
tem’s symmetry stable asymmetric orbits come in pairs.

We observed the existence of stable pseudo-equilibria
in equations (2.8) and (2.9) with (2.8) having addition-
ally a damping term C6(t). The switched system
studied in this paper with the additional C'(t) term in
equation (2.8), and with 7 =0, can be thought of a
system with damping and delayed position feedback
and it is then the full model system studied in Eurich &
Milton [20]. Numerical results with B varied and fixed
A=0.5, C= —10, time delay 7, =0.2 and 7, =0 are
shown in figure 3. In figure 3a, for B= —0.49, the
pseudo-equilibrium located at (1,0) is unstable. We
depict a representative diverging trajectory. A trajectory
converging to a stable pseudo-equilibrium, existing for
B = —0.51, is depicted in figure 3b. The parameters are
chosen so that the postural sway is overdamped.
Reduction of this system to the first order will remove
the possibility of having a stable pseudo-equilibrium;
the stable state may be of physiological importance.

4. EFFECT OF TIME DELAY IN THE
PD CONTROL

Time delay enters the model through the delay present
in the PD controller. We assume that the time delay
coming from the position and velocity signals are
equal, that is, 7y = 7 = 7. This simplifying assumption
is justified because in reality, we encounter distributed
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(a)
0.5
r 0
0.5
-1.0 > 0 5
0

(b)
0.2

1.0 1.2
0

Figure 2. Periodic solutions of equations (2.8) and (2.9) for A = 0.5, B=—0.6 and C'= 0 with no time delay, i.e. 7y = 7, = 7= 0;
(a) the initial conditions (6y, zp) = [3,0], and (b) (6, 7o) = [1.3,0].
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0.04
xX
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O 1 1 !
0.92 0.96 1.00 1.04
0
(b)
004}
.
0 L
0.90 0.95 1.00 105
0

Figure 3. (a) Diverging trajectory in the switched systems
(2.8) and (2.9), modified by adding C6(t) within the dead
zone, for A =0.5, B=—-0.49 and C'=—0.1; time delay 7 =
0.2, 7 =0. The initial history segment for the trajectory
(for t € [=7, 0]) is set to a constant value: 6(¢) =0.94 and
2(t) =0. (b) Transient trajectory for B= —0.51 and other
parameters as in (a) converging to a stable pseudo-equili-
brium located at (1,0). The initial history segment for the
trajectory (for ¢ € [—7,0]) is set to a constant value: 6(t) =
0.94 and z(t) = 0.

delays and there is no evidence that the delay coming
from the position signal is significantly longer or shorter
than the delay of the velocity signal.

To reduce the size of parameter space, for all our
numerical experiments, we assume 6y = 1. This assump-
tion can be made without loss of generality as shown in
appendix A.1.

4.1 Characteristic equation of the delay system

In order to understand the dynamics of our model, we
have to understand the effects of time delay on the
dynamics of the control system (2.9). We can rewrite

J. R. Soc. Interface (2012)

—4 -2 0 2 4 6
0

Figure 4. Representative trajectory of the switched systems (2.8)
and (2.9) for A = 0.5, B=—0.6 and C'= 0; time delay 7= 0.1.
The initial history segment for the trajectory (for t € [—, 0])
is set to a constant value: 6 (¢) = 1.2 and z(¢) = 0.

equation (2.9) as a second-order linear retarded
differential difference equation. We have

6(t) = AO(t) + BO(t — 7) + CO(t — 7). (4.1)

Let 6(t) = ¢ exp(At), where ¢ is an arbitrary but
non-zero constant. Then, equation (4.1) becomes

A — A = Bexp(—A1) + Chexp(—A7). (4.2)

Equation (4.2) is the characteristic equation of
the retarded differential difference equation (4.1). The
eigenvalue solutions A of this equation determine the
character of the solutions of equation (4.1).

4.2. Dynamics for B = 0 and 7 small, and for
C =0 and T small

Let us consider system dynamics when C'=0 and 7 is
small. Then the characteristic equation (4.2) becomes

A — A = Bexp(—A7). (4.3)

For 7=0, we obtain a system that conserves
energy, and the eigenvalues of the characteristic
equation of the ODE that governs system dynamics
are A2 = +iy/|A + B|. For 7 sufficiently small, we cal-
culate the dominant eigenvalues of the characteristic
equation (4.3) by expanding it in 7. We then have

M = A+ B(1 -+ 0O(7)),
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(@)
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0

(b)
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0.996 1.000 1.004 1.008 1.012
0

Figure 5. (a) A trajectory converging to an attractor of the switched systems (2.8) and (2.9), for A =0.5, B=—0.6 and
C'=—0.07; time delay 7= 0.1, and (b) the attractor.

1.0 15 2.0
0

Figure 6. A diverging trajectory of the switched systems (2.8)
and (2.9) for A=0.5, B=—0.6 and C'= —0.05; time delay
7=0.1.

and after rearrangement we get
N+ B1A — (A+ B) = O(7). (4.4)

Approximating the RHS of equation (4.4) to zero the
roots of the quadratic equation (4.4) are

—Br+ /B2 +4(A + B)
Aijg = 5 )

By assumption B < 0, (A + B) <0, and hence if 7> 0
and is sufficiently small there are at least two roots of
equation (4.4) with positive real parts. This implies
further that in the current case the trajectories of systems
(2.8) and (2.9) will diverge to infinity for 7 sufficiently
small. A representative trajectory for this scenario is
depicted in figure 4 with the parameters set to A = 0.5,
B= —0.6, C=0 and time delay 7=0.1.

We can similarly derive the approximate character-
istic equation when B=0 and C'<0, and argue that
trajectories will diverge to infinity for = sufficiently
small.

To conclude

— if the derivative control is not active (C'= 0: the
damping term not present) or if the proportional
control is not active (B=0: no additional stiff-
ness), and the time delay is small enough, the
switched systems (2.8) and (2.9) is not controllable,
and all the trajectories diverge to + o;

— numerics suggests that the above scenarios persist
also for large values of 7.

J. R. Soc. Interface (2012)

4.3. Switched PD control: B and C non-zero

To create a stable limit cycle, it is necessary to move all
the eigenvalues of the characteristic equation (4.2) to
the left half-plane of the complex plane. Assume that
both 7 and C are small, that is both 7 and C are
O(g). To leading order in 7 and C the characteristic
equation (4.2) is

M —A=B+ CA— B (4.5)
The two roots of the quadratic equation (4.5) are

Mo :% (c —Br+ \/(BT— C)* +4(A+ B)). (4.6)

For C'and 7 sufficiently small these roots are complex
conjugate, and it is the sign of the real part, that is
the sign of C'— Br, which determines whether all the
roots of the characteristic equation (4.2) lie in the left
half-plane of the complex plane.

Considering the previous numerical example if we set
C'=-0.07, we expect that a system trajectory will con-
verge to an attractor since then C'— Bt <0, and the
dominant eigenvalues lie in the left half-plane of the
complex plane. This is indeed the case as depicted in
figure 5.

In figure 6, we depict a diverging trajectory
of equations (2.8) and (2.9) for A=0.5, B=—0.6,
C'=-0.05 and the time delay 7= 0.1. Hence the con-
dition C— Br<(0 is violated and there exist
eigenvalues of the characteristic equation (4.5) with a
positive real part.

We should make a comparison here between our
switched model and the delay differential equation
that governs system dynamics outside of the dead
zone. Assuming there is no dead zone (ideal sensing of
the proprioceptive system) then the small scale stable
oscillations present in the switched system correspond
to the stable equilibrium states of the delay system. If,
on the other hand, there are no attractors present in
the switched system then the equilibrium of the delay
system must be unstable, and the asymptotic dynamics
of the switched and delay systems can be considered
equivalent (the trajectories diverge to + o).

4.4. Multiple stable oscillations

Having established the existence of stable periodic oscil-
lations in our model, we wish to examine the region of
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Figure 7. (a) Periodic orbits of the switched system (2.8) and (2.9) for A =0.5, B=-0.6, C=[—0.1(a), —0.2; (¢), —1; (e),
—10(g)] and the corresponding time series in (b), (d), (f) and (k). Time delay 7= 0.1.

parameter space where these oscillations persist, and
also, what are the parameter values that are critical for
the onset of different asymptotic dynamics. Initially, we
set the parameters to these values for which we
found stable limit cycles in §4.3; we set 7= 1 = 7, = 0.1,
A=0.5, B=-0.6, and we vary C. In figure 7a—h, we
are depicting representative limit cycles and corresponding
time series for C'€ [—10, —0.1]. We note that there is little
effect of the variation of C'on the amplitude and the period
of the oscillations for C'€ [-10, —0.2] (figure 7c—h).
When we vary C between —0.2 and —0.1, we observe
that the value of & at the switching between F;, and F,
increases from around 0.02 to 0.03 and the period from
0.5 to 0.7 (cf. figure 7¢,d with figure 7a,b). To sum up,
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the effect of the variation of C on the existing periodic
orbits is more pronounced for small values of C and
there is little effect of the variation of C on the periodic
orbits for —10 < C< —0.2.

To further investigate the system numerically, we
obtained one-parameter orbit diagrams on which we
depict the variation of a periodic point on the attractor
versus parameter — C' for distinct values of the time
delay 7 (figure 8). We found the coexistence of two
families of attractors. Namely, we observe stable oscil-
lations, e.g. figure 7a—h that coexist with stable
oscillations of different period and amplitude. Note
two curves obtained for 7= 0.25 one in a close proxi-
mity of z; = 1 and the other further away from z; = 1.
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Figure 8. One parameter orbit diagrams capturing two
families of periodic attractors. One family is characterized
by negligible change in the amplitude for C'€ [—0.1, —1]
(the values of 7 are given to the left of the curves); the
second family is characterized by a pronounced change in
the amplitude for the values of C' close to —0.1 (the values
of 7 are given above the curves).

We found the coexistence of these two families of
attractors also for 7=0.5 and 7=0.75 (not depicted
in the figure). We conjecture that these two families
of attractors are born in the limit as 7 — 0. Their pres-
ence is due to the switched nature of the system.
Representative examples of two coexisting attractors,
each corresponding to one family of periodic orbits,
found for 7= 0.25 are depicted in figure 9. The ampli-
tude 6, say Amp(6), of the limit cycle in figure 9c¢ is
Amp(6) ~ 0.02. This is about 50 times larger than
Amp(6) of the limit cycle in figure 9a. The period of
the limit cycle in figure 9c¢ is about 1.2 which is approxi-
mately six times longer than the period of the limit
cycle in figure 9q; cf. the time series in figure 9d,b.

4.5 Homoclinic bifurcations and bi-stability

Another important feature of our system is the birth of
stable symmetric orbits with long period through so-
called homoclinic bifurcation. This phase space tran-
sition takes place under increasing values of 7 when
the switching between Fj, and F,,; occurs at points
on 3; where the eigenvectors corresponding to the
saddle point cross 3.

Consider oscillations depicted in figure 10. Note that
within the dead zone the orbit from figure 10a existing
for A=0.5, B=—-0.6, C=—1 and 7=1.1135 is very
close to the stable and unstable manifolds of the
saddle point (note the dashed lines in the figure super-
imposed on the orbit). For 7= 1.114 this orbit no
longer exists, instead a stable symmetric orbit born in
the homoclinic bifurcation is present (figure 10¢). A
homoclinic orbit existing at the bifurcation is formed
from the stable and unstable manifolds of the saddle
point. Within the dead zone, the shape of the orbit is
given by the straight lines lying along the eigen-
directions of the saddle point and outside of it by the
arches joining these straight lines. In other words, it is
the stable and unstable manifolds that form a homo-
clinic orbit, and any trajectory starting its evolution on
the orbit stays on it and reaches an unstable equilibrium
of the saddle type in infinite time. This in turn implies
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that the periods of the orbits ‘before’ and ‘after’ the
bifurcation are long—see time series in figure 10b,d,
respectively. The straight lines emanating from the
origin refer to the stable and unstable eigen-directions
of the saddle point. We believe that it is the homoclinic
bifurcations that allow for the noise-induced switch-
ings between two coexisting attractors reported in
Eurich & Milton [20]. We note that sufficiently close
to the bifurcation there exist two stable asymmetric
attractors as depicted in figure 11a. If we add white
noise to the system then a typical trajectory will
evolve around these two attractors as depicted in
figure 11b. In the latter case, the switched systems
(2.8) and (2.9) becomes a stochastic switched system
with time delay, and its evolution within the dead
zone is governed by

B = L(g(t)) Fodt), for |0 <6, (A7)

(%)

and outside of the dead zone by

70 0
Fow =1 <x<t>) * (B@(t 7+ Calt - m) (48)
+ o{(t), for |6] > 6y,

where o is the intensity of the applied white noise ¢ (t).
The parameter values are set to A=0.5, B=—0.6,
C=-1, 0=0.1 and 7=1.112. Both figures were
generated using the first-order Euler method with step
size At=0.001. The numerical integration scheme
used to produce figure 115 is described in the appendix.

5. MODIFICATIONS TO THE MODEL

The investigations described here serve as an initial step
to gain insight into the dynamics of upright balance.
There is a number of modifications that could be con-
sidered to gain more insight into the problem of
balancing. In the first instance, we could alter the
model with the dead zone and time delay to a model
with time delay and delay in the switching function.
This modification reflects our assumption on the pres-
ence of time delay in the neural transmission and
muscle activation when switching the PD control. In
this paper, we consider the simplest possible model
and that is why the dead zone is fixed. This can also
be seen as modelling the time delay in the neural trans-
mission only. In some papers, it is also argued that there
is a time delay in the acceleration terms (see [35]). It
could be also interesting to compare different control
strategies and stable states that these can produce.
Finally, we would like to develop the model to include
the mechanism(s) of muscle tiring. This we believe to
be a crucial element in the loss of balance in elderly
people.

There are also other important issues. Namely, the
dynamics of a multiple link inverted pendulum model
could be more realistic. These modifications will be pur-
sued in collaboration with experimentalists who work
on human balance.

At this point, we would like to comment on
the correspondence between the dimensional and
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Figure 9. Coexisting stable limit cycles and corresponding time series of the switched systems (2.8) and (2.9) for A = 0.5,
B= —0.6 and C'= —0.5. Time delay 7= 0.25.
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Figure 10. Homoclinic bifurcation for A = 0.5, B=—0.6, C=—1; (a) ‘before’ the bifurcation for 7= 1.1135, in (b) we depict the
corresponding time series, and (c¢) after the bifurcation for 7= 1.114, in (d) we depict the corresponding time series.

non-dimensional quantities of our model system. For
example, if we take physiologically feasible values, simi-
lar to those used in Asai et al. [25], and set m = 60 kg,
h=1m, g=9.81ms % J=60 kg m? time delay A, =
Ay = 0.1s, the width of the dead zone |6] = 0.02 rad,
and the control coefficients K, = 720 Nm rad”!, Kp =
60 Nms rad™ ' our non-dimensional quantities are
equal to A =0.0001, B=0.00012, C'=0.0031 and the
time delay 7= 31. Our numerical simulations show
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that for these parameter values the system exhibits
stable pseudo-equilibria. We should note that these
values are in a different regime from the one we explored
numerically. The reason for our numerical exploration is
that we want to discover all, or as much as possible, of
qualitatively different dynamics that can be found in
our model system. Having found multi-stability, small
scale periodic oscillations, and a homoclinic bifurcation,
all of which can be potentially important for human
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Figure 11. (a) Periodic attractors close to a homoclinic bifurcation of the switched system (2.8), and (b) a typical trajectory of the
switched systems (4.7) and (4.8) with added white noise.

balance, it now remains to validate which of these scen-
arios can, indeed, be observed in experiments. This
implies further that it may be necessary to use
additional tools from dynamical systems analysis, for
instance a numerical continuation of bifurcation
curves, to obtain an exhaustive picture of the dynamics
of the model system for parameter values which are
physiologically feasible. However, this last point must
be informed by experiments.

6. CONCLUSIONS

In this paper, we introduce a model of human balance
during quiet standing following the idea that a human
body can be modelled by a single-link inverted pendu-
lum, and balance is achieved using linear feedback
control with time delay in the proportional and deriva-
tive error signals. We assume a threshold value of the
angle of the sway below which the motor-neural control
system cannot detect any sway motion. We obtain a
planar switched (hybrid) model. We find that to achieve
stabilization, which is seen as ‘small’ oscillations about
an upright equilibrium, it is necessary that both the pro-
portional and derivative signals of the control system are
used. These stable oscillations seem to represent closer to
observation stable state for upright standing than the
equilibrium points [23]. Therefore, we study the effects
of parameter variations on their existence.

Our parameter study leads to the detection of a mul-
tiple number of stable oscillatory states existing for the
same parameter values and for a wide range of the con-
trol parameters corresponding to the derivative term of
the PD controller. We also find a homoclinic bifurcation
that gives birth to a stable symmetric orbit with a long
period. In particular, we show, using a numerical exper-
iment, that close to a homoclinic bifurcation white noise
introduced additively may result in the system switch-
ing between the two regions where symmetric stable
solutions exist in the deterministic switched system
leading to an apparent bi-stability; in other words,
the switched system with added noise evolves for
some time in the neighbourhood of each one of the
two stable asymmetric limit cycles (present in the
deterministic system) by switching between their
regions of existence. This scenario can explain switch-
ings between a pair of stable asymmetric attractors
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observed in the first-order model in Eurich & Milton
[20], which in turn was used to explain different scaling
patterns that could be detected in human postural
sway data.

Obviously, an important step in the investigations of
human balance would be verification of the stable oscil-
latory states found in our model system. In particular, it
would be interesting to see if, indeed, we can observe
small scale oscillations close to an equilibrium against
the larger scale stable oscillations and how are these
linked with the physiology of human subjects.

Research partially funded by Engineering and Physical
Sciences Research Council grant EP/E050441/1 (CICADA:
Centre for Interdisciplinary Computational and Dynamical
Analysis), the University of Manchester and Manchester
Metropolitan University.

APPENDIX A

A.1. Model scaling
Consider the system for k> 0 given by

0(t) = a(t)

A6(t) if 6] <k
and  #(t) = ¢ AO(t)+ BO(t— =) if |6] >k,
+é$(t* 7'2)

(A1)

which is our standard control model with dead zone
|6] < k. We aim to show that this is equivalent (after
scaling) to a model with dead zone |6] < 1 of the form

0(t) = a(t)

AK?6(t) if 0] <1,
and  z(t) = AK*6(t) + BK*0(t — 1kry) if |6 > 1.
+Ckz(t — 1km)
(A2)

Thus having a smaller dead zone (smaller k) corre-
sponds, in systems rescaled so that the dead zone is
constant, to having a larger relative dissipation but a
longer delay time; i.e. the effect is not obvious (larger
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relative dissipation implies greater stability, longer
delay implies less stability). Note that the time ¢ in
the second equation is not the same as the time ¢
in the first equation.

To see this, we will start from equation (A 2) and
derive (A 1). First, let y(t) = k6(t), so |6] <1 becomes
|| <k and dyy/dt= k(d6/dt) and (A 2) becomes

() = k(1)
Akys(t) if 6] < k,
and  i(t) = < Aky(t) + Bky(t — 1km) if 6] > k.
+Ckz(t — 1km)
(A3)

Now introduce a new time variable uw= ki, and let
d(u) = (t), and y(u) = z(t). Note that

Pt — 1) = p(k(t — 7)) = P(u— k7), (A4)
and similarly for y(u). Moreover
g, _dtd, o 1d
au™ = quar M = g MO
and so using equation (A 3)
d¢, .~ 1. o _
% () = Litt) = o(0) = y(w)
d 1 - -
and ﬁ(u) = %x(t) = AY(t) + Bl,[f(t - %71)
+ Cm(t;@) if || > k,
(A5)

with a simpler equation if |¢p| <k. Finally, using the
definitions of ¢ and y, and the shift rule (A 4) gives
(with primes denoting differentiation with respect to u)

& (u) = y(u)
Ag(u) if [¢] <k,
and ¢/ (u) = Ad(u) + Bp(u—m) if |¢| >k,
+Cy(u — )
(A6)

which is equation (A 1) after the identifications ¢ — 6,
y— xand u— t.

A.2. Fuler’s method for the switched system with
the time delay and white noise

Switched systems (4.7) and (4.8) is a stochastic system
with switching and time delay. The angle 6 and the
angular velocity x = 0 are now random variables. The
presence of the switching function implies that depend-
ing on the value of the random variable 6 system
equation is governed by a stochastic differential
equation, or a stochastic delay differential equation.
We switch between these two systems when the
random variable 6 is greater or smaller than the
threshold value 6,. It has been shown in the study of
Kloeden & Platen [36] that stochastic delay differential
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equations

(1) = [ (2(1), 2(t — 7)) + of(1),

where 7 is the time delay, {(¢) is Gaussian white noise
with intensity o, can be approximated by

(A7)

Tppl = Ty + f (xnz mn—k')h + O'Wnﬂy

for h sufficiently small; 7 is the time delay, h is the step
size, k= 1/h and W, is the standard Wiener process.
Similarly, a stochastic differential equation

(A8)

i(t) = f(x(1)) + oi(t), (A9)
can be approximated by a discrete system
Tpt1 = Tn +f (mn)h + O-Wn\/ﬁ- (A 10)

Above numerical scheme was used to generate the
trajectory of the stochastic switched systems (4.7) and
(4.8). Switching occurs at the integration step n when
0, — 6y changes sign. The standard Wiener process is
approximated numerically at each step ¢, by a function
that generates pseudo-random numbers with expected

value. wu=E[X]=0 and standard deviation
o= /E[(X — n)?] =1, where X is a random variable.
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