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Obesity is a life-threatening factor and is often associated

with dysregulation of gene expression. Here, we show

that the CNOT3 subunit of the CCR4–NOT deadenylase

complex is critical to metabolic regulation. Cnot3þ /�

mice are lean with hepatic and adipose tissues containing

reduced levels of lipids, and show increased metabolic

rates and enhanced glucose tolerance. Cnot3þ /� mice

remain lean and sensitive to insulin even on a high-

fat diet. Furthermore, introduction of Cnot3 haplodefi-

ciency in ob/ob mice ameliorated the obese phenotype.

Hepatic expression of most mRNAs is not altered in

Cnot3þ /� vis-à-vis wild-type mice. However, the levels

of specific mRNAs, such as those coding for energy

metabolism-related PDK4 and IGFBP1, are increased

in Cnot3þ /� hepatocytes, having poly(A) tails that are

longer than those seen in control cells. We provide

evidence that CNOT3 is involved in recruitment of the

CCR4–NOT deadenylase to the 30 end of specific mRNAs.

Finally, as CNOT3 levels in the liver and white adipose

tissues decrease upon fasting, we propose that CNOT3

responds to feeding conditions to regulate deadenylation-

specific mRNAs and energy metabolism.
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Introduction

Posttranscriptional mechanisms are important for various

biological events, and their dysregulation is linked to a

variety of disorders, including cancer, diabetes, and neuronal

defects. Among the posttranscriptional controls of gene ex-

pression, regulation of mRNA stability is vitally important, as

it determines the availability of mRNAs for translation.

Indeed, recent microarray analyses show that nearly half of

the changes in gene expression in response to cellular signal-

ling occur at the level of mRNA decay (Fan et al, 2002;

Cheadle et al, 2005).

Most mRNAs have a poly(A) tail at their 30 ends, which

plays important roles in the regulation of translation and

degradation of mRNAs. Once poly(A) tail shortening takes

place, being catalysed by deadenylases, mRNA decay from

either the 50 or the 30 end proceeds (Garneau et al, 2007). In

addition, the 30 untranslated region (30UTR) of mRNAs has

been implicated in the regulation of mRNA decay. RNA-

binding proteins that interact with sequences at the 30UTR,

such as AU-rich element (ARE) and the microRNA-binding

sites (Garneau et al, 2007; Filipowicz et al, 2008), interact

with the CCR4–NOT deadenylase complex (Lykke-Andersen

and Wagner, 2005; Belloc and Mendez, 2008; Fabian et al,

2009), suggesting that the proteins in the CCR4–NOTcomplex

is important in controlling gene expression and thus various

biological activities.

The CCR4–NOT complex is a large (42 MDa) multi-sub-

unit protein complex conserved from yeast to humans and

serves as a major deadenylase (Collart and Timmers, 2004).

In yeast, two components of the complex, Ccr4p and Caf1p,

possess deadenylase activity (Tucker et al, 2001). The mam-

malian orthologues of Ccr4p are CNOT6 and CNOT6L, and

those of Caf1p are CNOT7 and CNOT8 (Dupressoir et al, 2001;

Yamashita et al, 2005; Morita et al, 2007; Aslam et al, 2009).

Recent structural analyses of the CNOT6L complexed with

nucleotides revealed a deadenylase mechanism involving a

pentacovalent phosphate transition (Wang et al, 2010). In

contrast to the enzymatic subunits, the function of the non-

deadenylase subunits, CNOT1–3, CNOT9, and CNOT10, is

elusive. Some of them are implied to be involved in the

control of deadenylase activity (Tucker et al, 2002; Temme

et al, 2010). In Drosophila, miRNA-dependent deadenylation

is suppressed by CNOT1 depletion (Behm-Ansmant et al,

2006) and CNOT2 depletion affects the length of mRNA

poly(A) tails (Temme et al, 2004). Slight poly(A) tail length-

ening is seen in Not3 mutants (Tucker et al, 2002).

Furthermore, Drosophila NOT3 recruits the CCR4–NOT dead-

enylase to its target mRNA (Chicoine et al, 2007).

In yeast, the CCR4–NOT complex plays important roles in

cell growth, glucose metabolism, and DNA damage response

(Collart, 2003). The mammalian CCR4–NOT complex is also

suggested to be relevant to biological functions. Knockdown

of the expression of the enzymatic subunit, CNOT6, CNOT6L,

CNOT7, or CNOT8, reduces cell growth (Morita et al, 2007;

Aslam et al, 2009; Mittal et al, 2011). Knockdown of CNOT2

induces apoptotic cell death (Ito et al, 2011). CNOT3 depletion

in embryonic stem cell results in differentiation into trophec-

toderm lineage (Hu et al, 2009). Cnot7-knockout mice are

viable, but defective in spermatogenesis, resulting in male
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sterility (Berthet et al, 2004; Nakamura et al, 2004). CNOT7-

knockout mice also have bone-mass increases that are due to

enhanced bone formation (Washio-Oikawa et al, 2007).

These intriguing findings provide a glimpse into the physio-

logical importance of the CCR4–NOT deadenylase and direct

evidence for the involvement of the 30UTR and CCR4–NOT-

mediated deadenylation in these biological phenomena is to

be provided.

In this study, we addressed the biological significance of

CNOT3 and found that mice haplodeficient in Cnot3 are lean

due to poor fat accumulation. We provide evidence that

CNOT3 is involved in the regulation of the CCR4–NOT-

mediated deadenylation of some specific, but not all,

mRNAs that are involved in energy metabolism. We also

found that the expression of the CNOT3 protein, but not other

subunits of the CCR4–NOT complex, is lowered in the liver

and white adipose tissues of fasted mice compared with that

in the fed mice. Taken together, we propose that CNOT3 could

function in sensing nutrients and alter the deadenylase

activity of the CCR4–NOT complex to control the length of

the poly(A) tails and eventually expression of mRNAs coding

for proteins relevant to the energy metabolism.

Results

CNOT3 reduction leads to leanness and diminishes liver

and adipose tissue weight

Northern blot analyses showed that Cnot3 was expressed well

in the various tissues examined except that its expression was

very low in muscle (Figure 1A). The data suggest that CNOT3

plays roles in various tissues. To dissect the physiological

roles of CNOT3, we produced mice lacking the Cnot3 gene.

The success of the procedure was confirmed by Southern blot

and PCR analysis (Supplementary Figure S1). As described

recently by others (Neely et al, 2010), Cnot3�/� mice did not

develop past embryonic day 6.5 (Supplementary Table SI).

Cnot3þ /� mice were alive and fertile, and the expression

levels of CNOT3 in Cnot3þ /� mice were half of that in wild-

type mice (Figure 1B). This decrease did not affect the

expression levels of the other components, such as CNOT1,

6L, and 7. Cnot3þ /� mice were smaller than their wild-type

littermates. The difference in body weight between wild-type

and Cnot3þ /� mice was apparent in the newborn mice

(Figure 1C) and remained throughout development

(Figure 1D). At 12 weeks of age, Cnot3þ /� mice weighed

B20% less than wild-type mice (Figure 1E, left). The nose–

anus length of Cnot3þ /� mice was also reduced by about 5%

at 12 weeks of age compared with wild-type mice (Figure 1E,

right). Dissection of Cnot3þ /� mice revealed a reduction in

the size of almost all organs (Supplementary Figure S2);

however, when the organ weights were normalized to body

weight, the differences disappeared in most organs except for

the liver and adipose tissues (Figure 1F). In Cnot3þ /� mice,

hepatic lipids accumulated poorly (Figure 1G) and the adi-

pocytes in white and brown adipose tissues (WAT and BAT,

respectively) were smaller than those in wild-type mice

(Figure 1H and I). Histological analysis revealed that almost

all tissues, including the thyroid, pituitary, adrenal gland,

growth plate, and salivary gland, were normal (unpublished

observation). Therefore, CNOT3 might have a specific func-

tion in the liver and adipose tissues.

Metabolic balance is disordered in Cnot3þ /� mice

The rate of food intake per day appeared to be slightly higher

in Cnot3þ /� mice than in wild-type mice, but the difference

was not significant (Figure 2A). Therefore, it appears that

nutrients are burned more efficiently in Cnot3þ /� mice than

in wild-type mice. Consistent with this notion, whole-body

oxygen consumption was higher in Cnot3þ /� mice during

dark and light periods than in wild-type mice (Figure 2B and

C). In all, 24 h oxygen consumption rates were 20% higher in

Cnot3þ /�mice than in wild-type mice (1.611±0.088 l/kg0.75/h

and 1.347±0.035 l/kg0.75/h, respectively). There was no sig-

nificant difference in rectal temperature (Figure 2D). These

results suggest that the leanness of Cnot3þ /� mice results

from an enhanced metabolic rate.

We then examined glucose and lipid metabolism in

Cnot3þ /� mice and found significant decreases in blood

glucose under fasting conditions (Figure 2E) and serum

triglyceride levels under feeding and fasting conditions

(Figure 2F), in comparison with wild-type mice. By contrast,

no significant differences were detected in the serum insulin

levels of wild-type and Cnot3þ /� mice under the same

conditions (Figure 2G). A glucose tolerance test revealed

that the blood glucose levels of Cnot3þ /� mice remained

significantly lower than those of wild-type mice after glucose

administration (Figure 2H). The insulin response to glucose

was virtually the same between wild-type and Cnot3þ /�mice

(Figure 2I), indicating that the control of insulin levels was

normal in Cnot3þ /� mice. These data suggest that insulin

sensitivity is increased in Cnot3þ /� mice. Indeed, an insulin

tolerance test revealed a greater decrease in blood glucose

levels in Cnot3þ /�mice than in wild-type mice in response to

insulin (Figure 2J). Moreover, insulin-stimulated Akt phos-

phorylation in the liver and WAT of Cnot3þ /� mice was

increased relative to wild-type mice (Figure 2K). Thus, we

conclude that Cnot3þ /� mice exhibit enhanced glucose tol-

erance and that signalling downstream of insulin receptor is

enhanced.

Cnot3þ /� mice are resistant to high-fat diet-induced

obesity

As the above data suggest that Cnot3þ /� mice are protected

against diet-induced obesity, we challenged Cnot3þ /� mice

with a high-fat (32% wt/wt fat) diet for 12 weeks. As shown

in Figure 3, Cnot3þ /� mice were resistant to high-fat diet

(HFD)-induced obesity; they were less obese than wild-type

mice (Figure 3A) and the weight accumulation of Cnot3þ /�

mice was significantly reduced compared with that of wild-

type mice (Figure 3B) after the period of HFD feeding. The net

weight gain of wild-type and Cnot3þ /� mice was 23.0±0.4

and 13.5±1.0 g, respectively (Figure 3C). Notably, the weight

of the liver, WAT, and BATof the Cnot3þ /�mice was less than

that of wild-type mice (Figure 3D). Poor fat accumulation in

the liver, white adipose tissue, and brown adipose tissue was

observed in Cnot3þ /�mice fed a HFD (Figure 3E). Moreover,

the development of fatty livers was much less significant in

Cnot3þ /� mice than in wild-type mice (Figure 3F).

Macroscopic and computed tomographic analyses showed

that both visceral and subcutaneous fat depots were greatly

decreased in Cnot3þ /� mice relative to wild-type mice fed

HFDs (Figure 3G). In addition, blood glucose levels in

Cnot3þ /� mice were lower than those in wild-type mice on

a HFD (Figure 3H). Blood glucose levels remained lower in
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Cnot3þ /� mice than in wild-type mice in both glucose

tolerance tests (Figure 3I) and insulin tolerance tests

(Figure 3J), suggesting that Cnot3þ /� mice are insulin sensi-

tive even on a HFD.

The obese phenotype of ob/ob mice is ameliorated

by the reduction of CNOT3

Given that suppressed CNOT3 expression had an anti-obesity

effect, we addressed whether introduction of CNOT3 haplo-

deficiency (Cnot3þ /�) into ob/ob mice could improve the

obese phenotype. Note that ob/ob mice showed stronger

hepatic expression of CNOT3 compared with wild-type

mice (Figure 4A). As expected, ob/ob,Cnot3þ /� mice were

less obese than ob/ob mice: body weight, glucose toler-

ance, and insulin sensitivity were all ameliorated in

ob/ob,Cnot3þ /� mice (Figure 4B–D) compared with ob/ob

mice. In ob/ob,Cnot3þ /�mice, oxygen consumption rate was

increased (Figure 4E) and respiratory quotient was lower

(Figure 4F) compared with ob/ob mice, indicating greater

utilization of fat versus carbohydrates as an energy source.

Little difference was observed in locomotor activity (Figure 4G)

or food intake (Figure 4H) between ob/ob and ob/ob,Cnot3þ /�

mice. Thus, we conclude that reduction of the CNOT3 expres-

sion in ob/ob mice ameliorates their obese phenotype.
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Reduction of CNOT3 correlates with up-regulation

of genes involved in metabolism

To examine the underlying mechanisms by which CNOT3 is

involved in the control of metabolic balance, we compared

the gene expression profiles of wild-type and Cnot3þ /� mice

using Affymetrix microarray technology. We chose to analyse

the liver not only because the liver is the essential metabolic

organ, playing a major role in glucose and lipid metabolism,

but also because metabolism-related function in the liver was

affected in Cnot3þ /� mice as shown above. We assumed that

CNOT3 could affect the abundance of mRNAs by regulating

the CCR4–NOT deadenylase activity. In 12-week-old Cnot3þ /�

mice, most of the mRNAs (96%) showed no significant differ-

ences in abundance, and only a small fraction of mRNAs (B1%)

showed a difference of 42.0-fold compared with those in

wild-type mice (Figure 5A and B). Thus, CNOT3 appeared to

regulate the CCR4–NOT deadenylase activity for a fraction, but

not all, of the liver mRNAs. Of B23000 mRNA transcripts, B250

were up-regulated 42.0-fold while 20 were down-regulated

42.0-fold in the liver of Cnot3þ /� mice compared with that

of wild-type mice (Figure 5B). The genes whose expression

was altered are listed in Supplementary Table SII.

KEGG (Kyoto Encyclopedia of Genes and Genomes)

Pathway analysis revealed that the largest proportion of

altered genes was involved in metabolic processes, and

genes involved in lipid metabolism were the most enriched

(19 genes, P (raw)¼ 0.04). As shown in Figure 5C, the genes

up-regulated in Cnot3þ /� mice include lipid catabolism-

related genes such as Acot9 (acyl-CoA thioesterase 9),

Aldh1b1 (aldehyde dehydrogenase 1 family, member B1),
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Cpt1b (carnitine palmitoyltransferase 1b), Hsd17b6 (17-b
hydroxysteroid dehydrogenase 6), Lepr (leptin receptor),

and Pdk4 (pyruvate dehydrogenase kinase 4). By contrast,

lipogenic genes such as Elovl6 (elongation of long chain fatty

acids family member 6), Scd1 (sterol O-acyltransferase 1),

and Srebf1 (sterol regulatory element binding transcription

factor 1) were down-regulated in Cnot3þ /� mice. These

results indicate that increased fat oxidation and decreased

lipogenesis contribute to poor fat accumulation in Cnot3þ /�

mice. Glycolytic genes such as Aldoc (aldolase C) and Hk2/3

(hexokinase 2/3) were also up-regulated in Cnot3þ /� mice

(Figure 5C). Furthermore, energy consumption-related genes,

such as Cox6b2 (cytochrome c oxidase subunit VIb polypep-

tide 2), Pgc1a (peroxisome proliferative activated receptor, g,

coactivator 1 a), and Ucp2 (uncoupling protein 2), as well as

the metabolism and growth regulatory gene Igfbp1 (insulin-

like growth factor binding protein 1) were up-regulated in

Cnot3þ /� mice (Figure 5C). We then validated the data by

quantitative RT–PCR analysis and confirmed that the expres-

sion levels of Pdk4, Cpt1b, Hsd17b6, Aldh1b1, Pgc1a, Ucp2,

Lepr, Igfbp1, and Soat1 were significantly increased in the

livers of Cnot3þ /� mice relative to control mice (Figure 5D).

We tentatively concluded that altered expression of these

genes underlies the leanness of Cnot3þ /� mice.

Control of poly(A) tail length by CNOT3 involves

the 3 0UTR of target mRNAs

To determine whether up-regulation of the mRNAs in

Cnot3þ /� mice is caused by malfunction of the CCR4–NOT

deadenylase, we measured the length of the poly(A) tails of
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mRNAs whose hepatic expression was augmented in

Cnot3þ /�mice. Among the up-regulated mRNAs, we focused

on two mRNA species: Pdk4 and Igfbp1 mRNAs. PDK4

(pyruvate dehydrogenase kinase 4) inhibits pyruvate dehy-

drogenase activity, which is often correlated with enhanced

utilization of fatty acids (Sugden and Holness, 2003). IGFBP1

is involved in the control of mitogenic and metabolic actions

(Siddals et al, 2002), and elevated expression of IGFBP1

produces a lean phenotype (Rajkumar et al, 1995). The

increase in Pdk4 and Igfbp1 mRNA levels in the livers of

Cnot3þ /� mice was confirmed by northern blot (Figure 6A).

To demonstrate that down-regulation of CNOT3 led the

inhibition of the poly(A) tail shortening of the Igfbp1 and

Pdk4 mRNAs, we prepared their 30 poly(A)-containing por-

tions by utilizing RNase H and short stretches of nucleotide

sequences that were complementary to the mRNAs’ se-

quences (Figure 6B, left). Northern blot analyses of the

enriched samples revealed that the poly(A) tails of the two

mRNA species from Cnot3þ /� mice were longer than those

from wild-type mice (Figure 6B, right). After removal of the

poly(A) tails, the lengths of the Igfbp1 or Pdk4 mRNA

samples from Cnot3þ /� mice were virtually the same as

that from wild-type mice. As a control, we tested Gapdh

mRNA, a transcript whose expression is not affected by the

Cnot3 haplodeficiency, and found that there was virtually no

difference in the length of poly(A) tail between wild-type and

Cnot3þ /� mice (Figure 6B).

To investigate the mechanism by which the CNOT3 sub-

unit of the CCR4–NOT complex regulates Igfbp1 and Pdk4

mRNA deadenylation, the 30UTR of the Pdk4, Igfbp1, or Lpl

mRNA was inserted into a luciferase reporter plasmid

(Gopfert et al, 2003). The luciferase reporter assay in wild-

type and Cnot3þ /� hepatocytes showed that the 30UTRs of

Pdk4 and Igfbp1, but not Lpl, were responsible for CNOT3-

mediated suppression of the reporter genes (Figure 6C). The

data argued that the 30UTRs of Pdk4 and Igfbp1 mRNAs are

important for determining the availability of these mRNAs for

translation in a manner dependent on CNOT3. To clarify this

issue, we measured the half-life of the luciferase reporter

mRNA in wild-type and Cnot3þ /� cells. The cells transfected

with the reporter were treated with actinomycin D to inhibit

de novo transcription, and subsequently the time course of

the mRNA level was analysed. We found that the rate of

decline in the level of Pdk4 30UTR-containing reporter mRNA

was lower in Cnot3þ /� hepatocytes than in wild-type hepa-

tocytes (Figure 6D). This difference in rates suggested that

CNOT3 is involved in the 30UTR-mediated mechanism of

Pdk4 mRNA decay. Further examination of the activity of

luciferase reporters linked to various segments of the Pdk4

30UTR revealed that sequences present in segments spanning

basepairs 1–460 and 921–1643 were sensitive to the amount

of CNOT3 (Figure 6E). The 921–1643 segment contains two

possible AREs, with the first ARE (ARE1) conserved between

humans and mice. As the conserved ARE is likely to be

relevant to deadenylation-dependent decay (Barreau et al,

2006; Garneau et al, 2007; Marchese et al, 2010), we exam-

ined the luciferase activity of the ARE1-depleted reporter

construct (Figure 6E). However, ARE1 was not sensitive to

CNOT3, leaving open the possibility of the involvement of

other regulatory elements (discussed below).
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RT–PCR analysis of anti-CNOT3-immunoprecipitated

RNAs showed that CNOT3 physically interacted with a se-

quence within the 30UTR of the Pdk4 mRNA (Figure 6F). The

data suggested that CNOT3 contributes to the decay of target

mRNAs by recruiting the deadenylase complex to their 30

ends. To substantiate this notion, we assessed whether

CNOT6L, a catalytic subunit of the CCR4–NOT deadenylase

complex, is associated with Pdk4 mRNA in a CNOT3-depen-

dent manner. We carried out RNA–immunoprecipitation mi-

croarray (RIP-CHIP) analysis using the anti-CNOT6L antibody

and the hepatocyte lysates. Pdk4 mRNA was identified in the

CNOT6L immunoprecipitates and the association of Pdk4
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mRNA with CNOT6L was confirmed by immunoprecipita-

tion–RT–qPCR analysis (Figure 6G). The association between

Pdk4 mRNA and CNOT6L was decreased in Cnot3þ /� hepa-

tocytes compared with that in wild-type hepatocytes. These

results suggest that CNOT3 is involved in the control of Pdk4

mRNA stability and in the association of the CNOT6L-con-

taining CCR4–NOT deadenylase complex with the Pdk4

mRNA.

A possible involvement of CNOT3 in a nutrient-sensing

mechanism

Analysis of gene expression in Cnot3þ /� hepatocytes re-

vealed that expression of Igfbp1 and Pdk4 was in inverse

relationship with the CNOT3 level. As Igfbp1 and Pdk4 are

up-regulated in various tissues upon starvation (Cotterill

et al, 1993; Jeoung et al, 2006), we addressed if the CNOT3

expression is other way around. Examination of the CNOT3

expression under different feeding conditions revealed that

the level of CNOT3 in the liver and adipose tissues was

greatly decreased after 24 h fasting and returned to nearly

control levels upon re-feeding (Figure 7A and B). The data

imply that the CNOT3 expression is altered responding to the

nutrients in these tissues. CNOT3 expression was little altered

in the brain, pancreas, and testis in different feeding condi-

tions. The decrease in CNOT3 protein levels in the fasted mice

did not parallel its mRNA level (Supplementary Figure S3),

suggesting that the level of CNOT3 was regulated posttran-

scriptionally. By contrast, the levels of other CCR4–NOT

components, including CNOT6L and CNOT7 deadenylases,

remained virtually the same under both conditions (Figure

7A and B). The amount of CNOT3 in anti-CNOT7 immuno-

precipitates from the livers of fasted mice was less than that

detected in the fed mice (Figure 7C). Therefore, the CCR4–

NOT complex in the liver of fasted mice associates poorly

with the CNOT3 protein, which resembles that in Cnot3þ /�

mice.

Then we examined whether expression of hepatic mRNAs

that are elevated in the Cnot3þ /� liver is higher in fasted than

fed mice by microarray analysis. In the livers of 8-week-old

wild-type mice, B1200 mRNA transcripts were up-regulated

upon fasting versus feeding. Of these mRNAs, 68 corre-

sponded to the genes up-regulated in the livers of 8-week-

old Cnot3þ /� mice (Figure 7D; Supplementary Table SIII).

Among the 68 mRNA species, expression of Pdk4, Pgc1a,

Cpt1b, Ucp2, Lepr, Igfbp1, and Irs2 was validated by quanti-

tative real-time RT–PCR. The data confirmed elevated expres-

sion of all of these mRNAs in the fasted mice as well as in

Cnot3þ /� mice (Figure 7E). Therefore, we propose that

CNOT3 plays a part in controlling the expression of the

metabolism-related genes by responding to nutrients. It may

be noted that 36 mRNAs out of the 68 mRNA species have the

ARE core sequence (AUUUA) in their 30UTRs (Supplementary

Table SIV). We also found that some consensus sequence

comprised the 7-nucleotide match to the seed sequence of

miRNAs. For example, miR-325 and miR-298 were identified

among them (Supplementary Table SIV).

Discussion

Accumulating evidence shows that leanness is caused by

multiple factors and results from either the suppression or

the overexpression of various genes (Reitman, 2002). To date,

various types of lean mice have been generated by disrupting

genes such as those coding for regulators of gene expression,

which include transcription factors C/EBPb (Tanaka et al,

1997; Liu et al, 1999) and PGC-1a (Lin et al, 2004) and

translation regulators 4E-BP1 (Tsukiyama-Kohara et al, 2001)

and S6K1 (Um et al, 2004). In the present study, we provide

evidence that impairment of the deadenylase, another regu-

lator of gene expression, induces lean phenotype. We have

shown that mice heterozygous for Cnot3, a gene encoding a

subunit of the CCR4–NOT deadenylase complex, are lean and

resistant to diet-induced hepatic steatosis and obesity. We

further provide evidence that CNOT3 targets metabolism-

related mRNAs, such as Pdk4 and Igfbp1 mRNAs, so that

CCR4–NOT can act to deadenylate these mRNAs.

In lean mice, the intake of nutrition from the intestine is

decreased and/or catabolism is accelerated compared with

wild-type mice (Reitman, 2002). As the food intake of

Cnot3þ /� mice was virtually the same as that of wild-type

mice, catabolism of nutrients was supposedly increased in

Cnot3þ /� mice compared with wild-type littermates.

Supportingly, whole-body oxygen consumption rates were

significantly increased in Cnot3þ /�mice, which suggests that

increased burning of energy that would otherwise be stored is

occurring somewhere in the body. As increased muscle

oxidation is linked to the lean phenotype of genetically

modified mice (Li et al, 2000), muscle oxidation might be

increased in Cnot3þ /� mice. However, this is less likely

because CNOT3 expression in muscle was very low in wild-

type mice to begin with. Instead, we provided evidence that

increased oxidation of nutrients occurred in the liver, which

is one of the most important organs for energy metabolism.

Indeed, Cnot3þ /� mice demonstrated fewer circulating glu-

cose and triglycerides and poorer lipid accumulation in the

liver than wild-type mice. Consistently, the level of catabo-

lism-related mRNAs is increased in the liver of Cnot3þ /�

mice as compared with that of wild-type mice. As Cnot3 was

expressed in various organs including the liver, adipose

tissues, heart, and brain, burning of energy or energy ex-

penditure could potentially be increased in the other tissues

of Cnot3þ /� mice as well.

The CCR4–NOT deadenylases could act to any poly(A)-

containing mRNA species as is evidenced by the in vitro

deadenylating activity of the catalytic subunits (Morita et al,

2007; Temme et al, 2010). In yeast, although the Ccr4–Not

complex could potentially affect the expression of most of the

genes, depletion of CCR4 and CAF1 affected the expression of

distinct sets of genes under different growth conditions

(Azzouz et al, 2009). In Drosophila, depletion of Caf1/Not7

and Not1 was reported to inhibit general deadenylation

(Temme et al, 2004; Behm-Ansmant et al, 2006), but knock-

down of Caf1/Not7 and Not1 affects the levels of only a subset

of mRNAs (Eulalio et al, 2009). In NIH3T3 cells, Cnot6L

depletion induces poly(A) tail shortening of p27Kip mRNA but

not p21Cip mRNA, indicating that CNOT6L differentially tar-

gets distinct mRNAs (Morita et al, 2007). It should be noted

that proper selection of target mRNAs by the CCR4–NOT

complex may involve the function of microRNA, because

CCR4–NOT is implicated in microRNA-mediated mRNA

decay (Behm-Ansmant et al, 2006; Wu et al, 2006;

Wakiyama et al, 2007; Fabian et al, 2009). Therefore,

although CCR4–NOT deadenylase can potentially shorten

poly(A) tails of any mRNA species, its use and/or activity

would be regulated in a manner that depends on cell types
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and/or growth conditions. This would explain why expres-

sion of only a subset of mRNAs is affected in the liver of

Cnot3þ /� mice (discussed more below).

Accelerated expression of mRNAs for energy-metabolizing

reactions in the livers of Cnot3þ /� mice suggests that

CNOT3 is responsible for mRNA metabolism by controlling

the CCR4–NOT deadenylase. There is one preceding report

A B

C Up-regulated genes
in Cnot3+/– mice

Up-regulated genes
in fasted mice

68 1145464

532 Genes
1213 Genes

E

0

1

2

3

R
el

at
iv

e 
P

gc
1α

 m
R

N
A *

* *

Fasted Fed
+/+ +/– +/+ +/–

0

1

2

3 *
* *

R
el

at
iv

e 
C

pt
1b

 m
R

N
A

Fasted Fed
+/+ +/– +/+ +/–

0

1

2

*
** **

R
el

at
iv

e 
U

cp
2 

m
R

N
A

Fasted Fed
+/+ +/– +/+ +/–

0

1

2

R
el

at
iv

e 
P

dk
4 

m
R

N
A

Fasted Fed
+/+ +/– +/+ +/–

**
*** *

0

2

4

6

*
* *

R
el

at
iv

e 
Ig

fb
p1

 m
R

N
A

Fasted Fed
+/+ +/– +/+ +/–

0

4

8

12

16
*
***

R
el

at
iv

e 
Le

pr
 m

R
N

A

Fasted Fed
+/+ +/– +/+ +/–

D

Fed Fasted Re-fed

R
el

at
iv

e 
pr

ot
ei

n 
le

ve
l

Liver

0

1.0

CNOT3

CNOT6L

CNOT7
0

1.0

CNOT3

CNOT6L

CNOT7

Fed Fasted Re-fed

R
el

at
iv

e 
pr

ot
ei

n 
le

ve
l

WAT

0

1.0

CNOT3

CNOT6L

CNOT7

Fed Fasted Re-fed

R
el

at
iv

e 
pr

ot
ei

n 
le

ve
l

Brain

0

1.0

CNOT3

CNOT6L

CNOT7

Fed Fasted Re-fed

R
el

at
iv

e 
pr

ot
ei

n 
le

ve
l

Pancreas

** **

CNOT6L

CNOT7

F
as

te
d

F
ed

R
e-

fe
d

CNOT3

Liver

CNOT6L

CNOT7

F
as

te
d

F
ed

R
e-

fe
d

CNOT3

WAT

CNOT6L

CNOT7

F
as

te
d

F
ed

R
e-

fe
d

CNOT3

Brain

CNOT6L

CNOT7

F
as

te
d

F
ed

R
e-

fe
d

CNOT3

Pancreas

CNOT9

CNOT1

CNOT9

CNOT1

IP:anti-CNOT7

CNOT6L

CNOT7

CNOT3

F
as

te
d

R
e-

fe
d

Liver

CNOT1

CNOT9

Figure 7 Alternation of CNOT3 expression level by responding to nutrient status and identification of CNOT3-regulated mRNAs. (A) Reduced
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showing that deadenylase activity is involved in the regu-

lation of metabolism, with the finding that a loss of

the circadian deadenylase Nocturine (NOC) confers diet-

induced obesity (Green et al, 2007). NOC is thought to

control specific circadian pathways related to lipid uptake

and/or utilization probably by targeting as yet unidentified

mRNAs. Although the mRNAs with altered expression

in Cnot3þ /� mice compared with wild-type mice are candi-

date CCR4–NOT targets, expression of some of these

mRNAs may be altered as a result of secondary effects.

Provided that CNOT3 positively control the CCR4–NOT

deadenylase activity, the mRNAs directly targeted by the

CCR4–NOT deadenylase should have longer poly(A) tails

in Cnot3þ /� compared with wild-type mice. We showed

here that the Pdk4 and Igfbp1 mRNAs clarified the criteria.

Efforts to identify other direct targets of the CCR4–NOT

deadenylase under the control of CNOT3 in the liver are

in progress.

Yeast NOT3 depletion suppresses, albeit slightly, cellular

deadenylase activity, resulting in mRNA stabilization (Tucker

et al, 2002). Although reduction of CNOT3 expression in

Cnot3þ /� mice did not affect the levels of other components

of the CCR4–NOTcomplex, it may have caused the conforma-

tional change of the whole complex, resulting in the altera-

tion of the deadenylation activity. In addition, as only a

subset of mRNAs was affected by Cnot3 haplodeficiency,

CNOT3 may mediate recruitment of the CCR4–NOT dead-

enylase to the 30 end of particular mRNAs. Indeed, RNA–

immunoprecipitation–RT–qPCR analysis using the monoclo-

nal anti-CNOT6L antibody and liver lysates from wild-type

and Cnot3þ /� mice suggested involvement of CNOT3 in the

recruitment. There is a report that the Drosophila CCR4–NOT

complex is recruited to the Bic-C mRNA through an interac-

tion between CNOT3 and the Bic-C mRNA-binding protein

(Chicoine et al, 2007). Likewise, mammalian CNOT3 may

interact with RNA-binding proteins to regulate the recruit-

ment of CCR4–NOT to target mRNAs. The 30UTRs of Pdk4

and Igfbp1 mRNAs contain various cis-acting elements such

as AREs that function as docking platforms for RNA-binding

proteins, which in turn recruit the mRNA decay machinery

(Barreau et al, 2006). Intriguingly, CCR4–NOT interacts with

ARE-binding proteins such as TTP (tristetraprolin) (Lykke-

Andersen and Wagner, 2005), suggesting that some ARE-

binding proteins participate in the deadenylation of Pdk4

and Igfbp1 mRNAs. However, ARE1 in the 30UTR of Pdk4

mRNA (Figure 6E) is not responsible by itself for the CCR4–

NOT-dependent degradation. It may be worth mentioning that

the human CNOT8 deadenylase of the complex interacts with

the RNA-binding protein PUM1 (Goldstrohm et al, 2006). The

PUM1-binding motif was also found in the 30UTRs of both the

Pdk4 and the Igfbp1 mRNAs. Furthermore, recent studies

show that GREs influence decay of mRNAs (Lee et al, 2010),

and that GW182 protein binds to the CCR4–NOT complex to

promote the miRNA-dependent mRNA decay (Fabian et al,

2009). The 921–1643 region of the 30UTR of Pdk4 mRNA

contains one GRE and binding sites for some conserved

miRNAs (such as miR-23, miR-324, miR-429) in addition

to ARE1, suggesting that these sequences cooperate to

control the stability of the Pdk4 mRNA. In addition, the

stability of Pdk4 mRNA is also controlled by the CNOT3-

responding element within the 1–460 region of the 30UTR that

contains GRE and possibly other elements. Further studies

should clarify the precise mechanism by which CCR4–NOT

is recruited to its target mRNAs.

Cnot3þ /� mice are not only leaner but also smaller in size

and weigh less than wild-type mice. This phenotype of

Cnot3þ /� mice resembles that observed in Igfbp1 transgenic

mice (Rajkumar et al, 1995). Our present data showed that

Igfbp1 mRNA was elevated more than threefold in Cnot3þ /�

mice compared with wild-type mice. Consequently, the level

of the IGFBP1 protein was elevated in the livers of Cnot3þ /�

mice (Supplementary Figure S4). IGFBP1 inhibits IGF-

mediated mitogenic activity (McGuire et al, 1992) and differ-

entiation of preadipocytes in vitro (Siddals et al, 2002). On

the contrary, diet-induced obesity is prevented in Igfbp1

transgenic mice (Rajkumar et al, 1999). Therefore, elevated

expression of Igfbp1 mRNA may contribute to the anti-obese

and growth retardation phenotypes of Cnot3þ /� mice to a

certain extent.

As the CNOT3 expression in the liver of wild-type mice

dynamically changes depending on the dietary condition, we

assume that CNOT3 is involved in nutrient-sensing mechan-

ism. This function is important for animals to adapt to the

availability of nutrients. PDK4 and IGFBP1 are known to be

induced in various tissues upon starvation (Cotterill et al,

1993; Jeoung et al, 2006). PDK4 regulates pyruvate dehydro-

genase activity and acetyl-CoA production by balancing

between fatty acid oxidization and glucose oxidization

(Sugden and Holness, 2003). IGFBP1 regulates mitogenic

and metabolizing activity through its interaction with IGF

(Jones and Clemmons, 1995). Their up-regulation has been

shown to be mediated by several transcription factors, such

as PPARa (Sugden and Holness, 2003), FOXO (Kwon et al,

2004), and ATF4 (Averous et al, 2005). Our present data

suggest that starvation-induced up-regulation of PDK4 and

IGFBP1 could be at least in part due to stabilization of

their mRNAs. Consistently, recent evidence showed involve-

ment of translational regulation in amino-acid starvation-

induced IGFBP1: namely the Igfbp1 mRNA is stabilized

by a mechanism that involves the 30UTR of Igfbp1 mRNA

(Averous et al, 2005).

Obesity, characterized by excess body fat, is a prevalent

public health concern and is caused by genetic abnormality

and/or related to lifestyle. Therefore, the obesity is one of the

central medical concerns and the methodologies of improving

obesity have been developed. A recent genetic study shows

significant linkage of an extreme-obesity phenotype with

chromosome 19q13.33–q13.43 (Bell et al, 2005) where the

CNOT3 gene is mapped. As reduction of CNOT3 expression

effectively decreases the amount of body fat, which for

example is evidenced by amelioration of the obese phenotype

of ob/ob mice by lowering the level of Cnot3, CNOT3 could be

a novel molecular target for anti-obesity. Yet, it should be

noted that complete loss of CNOT3 is fatal (Supplementary

Table SI; Neely et al, 2010), affecting cell proliferation (Hu

et al, 2009). We also have to be aware of the increment of the

stress-induced heart failure symptoms in the Cnot3 haplode-

ficient mice (Neely et al, 2010). The symptoms may be

mediated by the transcriptional regulation. Therefore, proper

targeting to deadenylation activity of the CCR4–NOT complex

would be necessary to develop materials that are effectively

anti-obese. In addition, a recent genetic study shows signifi-

cant linkage of an extreme-obesity phenotype with chromo-

some 19q13.33–q13.43 (Bell et al, 2004). As the CNOT3 gene
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maps to 19q13, further genetic studies are needed to clarify

the link between CNOT3 and metabolic disorders.

In conclusion, a reduction in CNOT3 levels affects the

expression of mRNAs that encode proteins important for

lipid metabolism, glucose metabolism, oxidative phosphor-

ylation, and growth regulation. Furthermore, we propose

here that CNOT3 signals to the CCR4–NOT deadenylases in

response to nutrients to regulate decay of mRNAs important

for energy metabolism.

Materials and methods

Mice
Generation of Cnot3-deficient mice is described in Supplementary
materials and methods. Mice were housed in cages and maintained
on a 12-h light–dark cycle, and they had access to water ad libitum.
Mice were fed a normal chow diet (NCD) (CA-1, CLEA Japan Inc.)
or a HFD (HFD32, CLEA Japan Inc.). For fasting analysis, mice
were housed individually and deprived of food for 24 h. ob/þ
mice were purchased from Charles River Japan. To generate
ob/ob,Cnot3þ /� double-mutant mice, ob/þ ,Cnot3þ /� mice were
mated with ob/þ mice. For all analyses, we used 8-week-old
male mice unless otherwise noted. Experiments were conducted
according to the guidelines for animal use issued by the Committee
of Animal Experiments, Institute of Medical Science, University
of Tokyo.

Blood analysis
For glucose tolerance tests, mice were fasted for 16 h. NCD and
HFD mice were given an intraperitoneal injection of glucose
(0.75 mg/g body weight and 0.5 mg/g body weight, respectively).
For insulin tolerance tests, NCD mice and HFD mice were
given human insulin (0.75 mU/g body weight and 1.5 mU/g body
weight, respectively). Blood glucose was measured from tail
blood using the glucose oxidase method (Sanwa Kagaku). Levels
of serum triglycerides and insulin were determined using a
Triglyceride E-Test (Wako) and a Mouse Insulin ELISA Kit
(Morinaga), respectively.

Metabolic studies
Oxygen consumption (VO2) was determined with an O2/CO2

metabolic measuring system (Model MK-500, Muromachikikai) at
241C, as described (Oike et al, 2005). VO2 is expressed as the
volume of O2 consumed per kg0.75 weight per hour. VO2, carbon
dioxide production, and the respiratory quotient were analysed
during a 48-h time period. Continuous measurements were
obtained over a 24-h time period. Consumption of foods was
measured for 7 consecutive days. Rectal temperature was monitored
using an electronic thermistor (Model BAT-12) equipped with a
rectal probe (RET-3, Physitemp), as described (Oike et al, 2005).

Histological analysis of tissue and CT scan analysis
After dissection, all tissues were fixed in 10% formaldehyde
overnight. Paraffin-embedded sections were analysed by haema-
toxylin and eosin staining. Morphometric analysis of adipose
tissues from 500 cells per genotype was performed with Photoshop.
For Sudan III staining, the liver was frozen embedded. The
adiposity of mice was examined using a CT scanner (LaTheta,
ALOKA) as described (Oike et al, 2005). CT scanning from the
diaphragm to the bottom of the abdominal cavity was performed
at 2-mm intervals.

Antibodies and reagents
Rabbit polyclonal antibodies against CNOT1, CNOT3, CNOT6L,
CNOT7, and CNOT9 were as described (Morita et al, 2007). Mouse
monoclonal antibodies against CNOT6L and CNOT7 were generated
using recombinant human CNOT6L (amino acid 155–555) and full-
length human CNOT7, respectively. Their specificities were verified
by immunoprecipitation and immunoblotting of proteins from cells
depleted expression of corresponding proteins as well as from
control cells. Anti-Akt (#9272) and anti-phospho-Akt (Ser-473)
(#9271) antibodies were purchased from Cell Signaling. Anti-GFP
(598) antibodies were from UBI. Human insulin was from Eli Lilly
and Co.

Immunoprecipitation and immunoblotting
Tissues were homogenized in lysis buffer (1% NP-40, 50 mM
Tris–HCl (pH 7.5), 150 mM NaCl, 1 mM EDTA, 1 mM phenyl-
methylsulfonyl fluoride, 1 mM NaF, 1 mM Na3VO4) using a glass
homogenizer and centrifuged for 10 min at 41C. Proteins in the
lysates were immunoprecipitated and immunoblotted as described
(Suzuki et al, 2002).

Microarray analysis
Total RNAs were extracted with ISOGEN according to the
manufacturer’s protocol (Nippon Gene) and purified with an
RNeasy Kit (Qiagen). cDNA and biotin-labelled cRNA were
synthesized according to the protocols from Affymetrix. After
fragmentation of cRNA, 20mg biotin-labelled cRNA was hybridized
to the GeneChip Mouse Genome 430 2.0 Array. To determine the
average difference for each probe set, a global normalization
method (Robust Multi-array Average) was used. Selected probe set
IDs were converted to the manufacture’s annotation. Enrichment
of pathway was analysed by Fisher’s exact test followed by
Bonferonni’s correction. The complete data set reported herein
has been submitted to the NCBI GEO database (http://www.
ncbi.nlm.nih.gov/geo/) and can be obtained under accession
numbers GSE18924 and GSE18925.

RNA analysis
For real-time PCR, total RNAs (0.5mg) were used for reverse
transcription with oligo(dT)12–18 primer (Invitrogen) using the
SuperScript III First-Strand Synthesis System (Invitrogen). Real-time
quantitative PCR reactions were carried out using SYBR Premix
Ex Taq (Takara) and the ABI PRISM 7900HT Sequence Detection
System (Applied Biosystems). Hprt mRNA levels were used for
normalization. Primers used for PCR reactions are listed in
Supplementary Table SV. Northern blot analyses were carried out
as previously described (Yoshida et al, 2000). PCR-amplified DNA
fragments of mouse Cnot3 (nucleotides 1–500), mouse Pdk4
(nucleotides 2989–3430), mouse Igfbp1 (nucleotides 981–1489),
and mouse Gapdh (nucleotides 921–1220) cDNAs were used as
hybridization probes. An RNase H-Poly(A) treatment assay was
performed as described (Mishima et al, 2006), using total RNA
extracted and mixed with 25 pmol oligoDNA complementary to the
30UTRs of the indicated mRNAs (Igfbp1, 50-TGGTGTGCTCCAGAGT
ATAAATATACTATA-30; Pdk4, 50-CAAAACAACTATACATCAGATTACC
CAAAT-30; Gapdh, 50-CAAAGTTGTCATTGAGAGCAARGCCAGCCC-30).
The 30 fragments of the indicated mRNAs were detected by northern
blotting. Low range RNA ladder marker (Thermo Scientific) was
used to estimate the length of poly(A) tail. To measure mRNA
stability, cells were treated with actinomycin D (5mg/ml), and
total RNAs were extracted at the indicated time points and
subjected to qPCR analysis. The amount of reporter mRNAs was
normalized to that of Hprt mRNA. For RNA–immunoprecipitation–
RT–PCR analysis, proteins in the cell lysates were immuno-
precipitated with anti-CNOT3, anti-CNOT6L, and control-IgG
antibodies. The RNAs in the immunoprecipitates were purified
using ISOGEN. The following primers were used for PCR analysis:
Firefly luciferase, 50-TGGAAGACGCCAAAAACATA-30 and 50-GTATT
CAGCCCATATCGTTTCAT-30; Pdk4 mRNA, 50-TTTTGCATTGTAGAT
GTTGTCCTT-30 and 50-TCAACCAATGTGGGAGTCCA-30. To predict
miRNA-binding sequence, miRanda-mirSVR algorithm provided by
microRNA.org was used.

Luciferase assays
The 30UTRs of Pdk4, Igfbp1, Lpl mRNAs were inserted downstream
of the luciferase coding region to produce Luc plus 30UTR constructs
(Figure 6C and D). pRL-TK was used as a control. The plasmid DNA
was transfected into mouse primary hepatocytes (Hashita et al,
2008), and the luciferase assays were carried out as described
(Morita et al, 2007).

Statistical analyses
All values represent mean±s.e.m. Differences between groups were
examined for statistical significance using Student’s t-test (two-
tailed distribution with two-sample equal variance). We considered
a P-value of o0.05 statistically significant.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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